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ABSTRACT. An attempt is made to study the problems of spherical and circular inclusions in elasto-
plastic solids under the action of internal increasing pressure and external constant pressure, taking into
consideration of the work-hardening effect. Particular attention is given to the linear work hardening
effect on both problems. It is shown that results of this analysis are in good agreement with those of
ideal plastic solids.
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1. INTRODUCTION.

Several authors including Mott and Nabarro [1], Eshelby [2 - 5], Jaswon and Bhargava [6] Willis
[7 - 8] have made systematic investigations of the problems of spherical and cylindrical inclusions in an
elastic medium. Both Bhargava [9] and Sengupta [10] have used the principle of minimum energy to
study problems of symmetric anisotropic inclusions in an elastic medium. Tresca [11] has shown that a
metal yields plastically when the maximum shear stress attains a critical value. Bhargava [12] has
investigated the problems of inclusions in elasto-plastic solids under the assumptions of the infinitesimal
theory of strain and perfect plasticity conditions satisfied by an elastic-plastic solid. From a physical
point of view, the work-hardening effect is important in a plastic material even though the consequences
of this effect are quite complex. Hopkins [13] has included the work-hardening effect of the material in
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his problem of dynamical expansion of spherical cavities in metals. Sengupta and his associates [14 -
15] have studied the problems of inclusions in elastic-plastic solids of work-hardening material of finite
and infinite extent. On the other hand, Tokuoka [16] has investigated the plastic deformations and
instability of spherical shells under internal pressure. In spite of this progress, further investigation of
the inclusion problems in an elastic-plastic medium is needed.

This paper is concerned with the problems of spherical and circular inclusions in elasto-plastic
solids under the action of internal increasing pressure and external constant pressure, taking into
consideration of the work-hardening effect. Special attention is given to the linear work-hardening
effect on both problems.

2. SPHERICAL INCLUSION IN ELASTO-PLASTIC SOLIDS.

We consider a spherical region of radius a in a finite elasto-plastic material which tends to
undergo a dimensional change to a sphere of radius @ (1 + 8) where 8 lies in the region of plastic strain.
We designate the spherical region as inclusion, and the outer material as matrix, where its external
boundary is a spherical surface of radius b. The sphere is under constant external pressure, because of
the constraints of matrix, stresses appear both in the inclusion and the matrix. Hill [17] considered the
problem of spherical shell under uniform pressure on its cavity surface under the assumptions of finite
plastic strains.

We assume that the internal boundary of the matrix (a sphere of radius a) is under a gradual
increasing pressure p. At first at moderate pressure p, the matrix behaves like an elastic material.
Introducing spherial polar co-ordinates (r, 8, ¢) and the corresponding displacement components (&, v,
w), for radial symmetry of deformation we suppose

u=ulr), v=0 and w=0 .1
In absence of body force, the only non-vanishing equation of equilibrium satisfied by the displacement
component u is

d(du 2u
22 2 =0, 2.
dr(dr+ r) 0 22

The solution of the above differential equation is
B
u=Ar+ 2 2.3)

where A and B are constants. The stress components are, therefore,
0, =(3A+2u)-4u 2 (2.4ab)
r
0,=0,=(3 +2;z)+2,u£3.
r
According to Hencky and von Mises, the yielding commences when the maximum of Iaa - a,l reaches a

critical value v, where v is a material constant.

B .
Now 0,-0, = 6u-r—3- is maximum when r = a. Therefore, the yielding commences at r = a and
the corresponding pressure p, is determined by the following conditions
B
[6]..=-p» [0].=-P [6# 7] =y (2.5abc)

where p, >>p,.

Thus, yielding begins when



INCLUSTONS IN ELASTO=PLASTIC SOLLIDS 593

2 a
Do = 3 y(l - ?) +p, (2.6)
and ihe corresponding displacement at the inner boundary is given by
2 1 a1 a
U,(a)== —+— |- ), 27
@) 3ya(3/1+2ub3 4;1) A+2m' @n

With increasing pressure a plastic region spreads into the shell. The plastic boundary be a spherical
surface, its radius at any moment is denoted by c.
The stresses and displacement in the elastic region ¢ < y <b are still of the form

3 3
0, =0, = A (T + 1) -B, (%3- + 1), (2.8abc)

3 3
=A ! r+b——12— - B —l—r+£—i2.
3r+2u  4ur 3A+2u 4ur
in the region ¢ <r <b.

We must consider the plastic solid in the region a<r<c

2. ,2

or r

subject to the yields condition 0, -0, =¥.

(0,-0,)=0

Solving the differential equation and using the condition of continuity of the normal stress at the elasto-
plastic interface r = c, we have

c 2 c
o =-2ylog——=y|1-— |-
r yogr By( b3) pe

(2.10ab)
2 c
6,=0,=y-2rlogs- 2y 1-5< |-p
o ro3 b)) 7
If 6,=—p,, at r=a, then
c 2 c .
=2vlog—+—=711-— |+ 2.11
pi=2ylog— 3){ b’) p. (2.11)
From the condition in the plastic region
e,,+2ew=1—2V(o,+209)

where v and E are the Poisson's ratio and Young's modulus respectively, and the condition of continuity

of displacement at the interface, the radial displacement u in the plastic region a <r <c is

2y Sl(4uc+3kp* Y1 1 1|1 2y0-2v)[, ¢ 101
St 7S | PSRl S N L2 AChal A 2] PRI R IR 2.12
" 3KC[( 12z )P 35 3|7 E | 5 T3 T3P @12)
The displacement at inner boundary is

2y S|(4uc*+3kp* Y1 1 1|1 2y1-2v)[, ¢ 1c% 1 a
ua)==co|| ———— |5 -5+ |5 - log——=-S+=|a-p.— 2.13
=3k [( 2u )p 30 3@ E | ta 3p 3] 7Pk @1
We know that the radial displacement of the inclusion isa(8 — €), and

u'(a)=p1% and therefore p, =3K'(6 - ¢).

Now by using the condition of continuity of normal stress at the inclusion and matrix, we get

3K'(5—8)=2710g£+2y l—C—3 +p, (2.14)
a 3 b’ ‘



594 oo ke DAS, Poo R SENGLP TN AND 1. DEBNATH

The displacement of the inner boundary of the maux is ag which by equation (2.13) is

2y 4u<-’+3kb‘]1 Tce' 1|1 2y(1-2v) c 1 1Ic a
=S| R o - S g = - — 2.15
e 3KC[( 2 o 360 3| E 8273730 Pk @13
Therefore
5=£i‘3-(1— V) (2.16)
Ed
The relation between € and § is given by
) 3
e=8- 2| oglel Lo | P @.17)
3K a 3 3b] 3K

The material in the region a <r <c is under elasto-plastic strain and satisifes the work-hardening
conditions. If we define €. g as the radial and tangential elastic strains, €7, €f as the radial and

tangential plastic strains and €,,€, as the corresponding quantities of total strain and if « be the radial

displacement. then we have the following relations

E, =€l +e!, g,=€,+¢€] (2.18)
g = g -4 (2.19)
or r

Ee =0, -2vo,, Ee; =(1-v)o, - VO, (2.20)
It is customary to assume that the plastic strain satisfies the incompressibility condition

€’ +2¢€;=0. (2.21)
Then the following compressibility can be derived by using the equations (2.18) - (2.21)

o, +20, =3K(?ﬁ+3ﬁ} 2.22)

or r

where K is the bulk modulus.

The elasto-plastic material satifies the following equilibrium equation

do, 2

%:-2(0,-a) @23
The stress-strain curve for a work-hardening material in uni-axial compression is of the form (see Hill
)

o=Y+H(e) (2.24)
where 0, € are compressive stress and strain (both taken as positive), Y1 the initial yield stress, H is the
degree of hardening expressed as a function of total strain. Evidently, in radially symmetric

deformations, any element of the material is subject to a uni-axial, radial compressive stress state
o, — 0, together with a hydrostatic tensile stress 0,. The latter stress, by itself, produces a positive
isotropic, elastic strain of amount {(1-2v)o,}/E. Remembering the sign convention for § and €, the
appropriate general yield criterion is

0,-0,=y+ H{—e, + 9;%"-)&} 225

If there is no Bauschinger effect, then H(g)=-H(-€), i.e., H (€) is an odd function of strain. Thus the
general yield criterion for a work-hardening material is

0,-0, =ay+ H{—e, + Q——ZEVl’—"-} a=t1 (2.26)

In case of linear work-hardening, H is a linear function of total strain and an analytical discussion is
possible. In such a case the rate of work-hardening is constant and we suppose the yield crizericn as

E Ju 1-2v
—o =y1-=|+E{-Z .
0, —O, y( E )+ ,{ > + E 09} 2.27)
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where H’(g) = E, = gradient of the stress-strain curve in the plastic range, supposed constant. Solving
(2.22) and (2.27), we find

E _E ou
- =’((“_37<)(@+a)_zz(‘ E)+ s
i (l—i) or r 3 1__E:_ 3(1__E,_)‘
9K 9K 9K
( E) du
-2 g
,- 0. = K )(au 214) Y E or

L E—| ot — | % + .
Cos ) 7 ) k)
9K 9K 9K

Eliminating the stresses o, and o, between the equations (2.23) and (2.28ab) we obtain the following

ordinary differential equation for u.

EI
o (o, 20 of-%)
dr\dr r (BK+E)
The solution of the differential equation (2.29) is

2 %)

£/ (3logr-1 230
r+3y3K g, Greer=1) (2.30)

where A, and B, are arbitrary constants. Therefore, with the help of boundary conditions (2.5abc) and
the continuity condition, the stress components and displacement can be obtained from (2.30) and
(2.28ab) in the plastic region a <r <c and they are

(2.28ab)

1 (2.29)
’

Zy(l E')
- 3
o = E log(-r-) 4y E,(I—Ev) 4y E(l-—Ev)( ) ~p,
3 E(1+—‘—) 3 E(1+—') a
3K 3K

y( E 2y| 1-v |[(¢r=ca’) ¥’
% =7 3! __l I < W
’ (1+5)( % oga) 36| 1, Ex ( pem Tt
3K 3K
27\ 1-2v [3KE(Y =)= E(Ec +3Kb’) (- V)(l_i)ca
u=_(_7\ -2v { +(1_5)10g£3_],+ 9K (iz)
3 )E(1+£)I_ 3KEb E r E(1+£) \r
3K o

—Lel3p3cd(ap - 3K)(1 - 3){45; + 9Ka’(1 - i)lz} ,
q 9K 9K )r

and

_E : )
p]_(z;)l £ (1+3logc) (;)LIE‘I(TE_V))G) _%(}%)
3K 3K
E,

D. 33
+22| 36KED (du 3K 1-— ||, 231
ql[ e (ou )( 91()] @30

where
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q, =9Ka’ - £ 2k E —3u)+12uc*(E, + 3K)| - 4E,[3Kb' (3K +4pu)|. (2.32)
: 9K

Therefore, the displacement at the internal boundary of the matrix is

vy 1-2v [3KE(p’-¢%) E), ¢
(@) =[u],_, ( ) { ! +(1+_z)log_,a
3 E(1+ %) 3KEb E) “a

E,
y(1-v)
+———(i) " 5—:[3b’c3(4u - 31()(1 - 9E—[’(){4E,a + 9Ka(l - —54)}] (2.33)

E(l + —E—) oK
3K

It is noted that this displacement induces the initial elastic part of the displacements.
We consider the inclusion which is under a normal pressure p; on its external boundary and is

therefore
G,=-p, 0g=-p, T,=0.
It is not very difficult to mark with the help of the yield criteria of Tresca [11] that the material of the
inclusion never yields and it is always in a state of elastic deformation. The displacement at the surface
of the inclusion is given by
_ Pl
u'(a)= K’ (234)
By using the condition of continuity of normal stress at the inclusion and matrix boundary, we get
E
K(6-0)=20 (1 310g )+ 42 B0 &
3 ..k a 3E(1+_E_,)a
3K 3K

3
Syt q—[36E b’c*(4u - 31()(1 - 951?)] (2.35)
1

The displacement of the inner boundary of the matrix will be ae, which by equation (2.33) is
3KE(b* - c*)- E,(Ec’ +3Kb’ 3
ae:_(ﬂ) 1-2v_[3KE(Y’- )~ E( ), ( _5)1%,% .
E E a

3 (1 + Et) 3KEb®
3K
E,
va-v1- 2]
b\ 9K) C Pelagyic(ay - 3K)(1 - —"L){wﬂ + 9Ka(l - i)} 2.36)
5(1 +E ) a q 9K 9K
3K

Solving for § with the aid of equations (2.35) and (2.36), we obtain
5= Mfﬂ[H E (i_i)]
3 ’
E(l L E ) @l 9\k K

3K
3KE(b® -c*)- E,(Ec + 3Kb*
(- Bt - B P
9(1+—'-) K’ K) K E 3Eb
3K
27C p 33 ( E (4K )
Le 3p°c3(4u - 3K E -9k ||. 2.37
ok p g 20 (4 3K) I - 2.37)
If the bulk modulus of the matrix and the inclusion are same, then
soY1-vc 1 peb’ Y(4u -3K")(E, - 9K '), (2.38)
E & 3K'g )

where
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q, =12a°(9K’ - E)[K'b*(E, - 3u) + uc'(E, + 3K")| - 12EK b (34 +2p)
This result is essentially the same if the work-hardening effect of the plastic material is altogether

absent.
Now for the elasto-plastic solids of work-hardening material, the relation between € and & is

given by
1- E 3 3
€= 5_(171)_5_(1+ 3,0g£)_4_7M(£) +EK(£)
9k )14 E. a 9KE(1+_E,_)a 9k \b
3K 3K
-122< £ (bc)* (4 -31()(1—5) (2.39)
q 9K
For a particularly plastic material, the corresponding result is given by
2y c 1 17
£=8-"Lllog—+--==|. 2.40
3K(0ga 3 3b’) 240)

Comparing the above results it follows that the relation between € and & for the case of same inclusion
and the matrix material depends
(i) on Poisson's ratio v , Young's modulus E, bulk modulus K’ of the inclusion and on the yield stress in
case of perfectly plastic solid, and (ii) on the rate of constant work-hardening factor E, besides the
quantities already mentioned in (i).

The equilibrium pressure of the inclusion in the present case is given by (2.31), which may be
compared to equation (2.11) for the perfectly plastic case.

Another important point in the present case is the jump in the hoop stress on the surface of the
inclusion given by

(-3
- 3
0, -0, = EljogC Y 3n 241)
( E,) b2
1+
3K

This result is independent of & and € but depends on the constant rate of work-hardening factor E,.

In the case of perfectly plastic solids the jump in the hoop stress is 7, the yield stress, which can
be deduced from the above result by putting E, =0.

All other important results involved in (2.31), (2.33) and (2.39) are found to agree with the
corresponding results for perfectly plastic solids given by Bhargava [12], if we put b — e, p, =0 and
E, =0, in the above equations.

3. CIRCULAR INCLUSION UNDER CONDITIONS OF PLANE STRAIN

Bhargava [12] discussed the problem of circular inclusion in an elasto-plastic material of infinite
extent. We consdier here circular cylindrical inclusion in a finite elasto-plastic material with effects of
work-hardening. The cylinder is under constant external pressure p,. As the problem of circular

cylindrical inclusion even under the conditions of the plane strain is much more difficult than that of
spherical inclusion, we suppose Vv =% for compressible material. This assumption greatly simplifies the
solution of the problem.

Introducing the cylindrical coordinates (r,8,z) and the corresponding displacements (&, v, w) ,
we assume for the present problem

u=u(r),v =w=>0
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Proceeding in a similar manner as the case of spherical inclusion, we suppose that the internal circular
boundary of the matrix is under a pressure p within the elastic limit. Our discussion is confined to the
scope of the infinite theory of strain.

The only equation of equilibrium under no body force is

i(ﬂ+i‘-)=0 3.1)
dr\dr r
and hence the solution is
u =Cr+2 3.2)
r

where C and D are two arbitrary constants.
The yielding commences when the maximum of |0, — ;| attains a critical value Y, where yis a

material constant.

Now o0, -0, = 4;12, is maximum when r=a. Therefore the yielding begins at r = g and the
2

corresponding pressure p, is determined by the following conditions

[0.])..=-P0[0,]., =-P.
and
D
y=4u ;1—2— 3.4
where Do >> D,
Therefore yieldings commences when
7 2
1-Z 3.5
P = 2( e J p. (3.5)
and at this stage the displacement of the internal boundary is
2 2
Ya a 1 a
u(@)=—|5m——+—|-—0—— 3.6
@=7 [b’(“u) ua] 20+m)"™ GO

2
For an increasing pressure beyond %(1 —Z—z)-l- P., the plastic zone is developed in the matrix, and if ¢

be the radius of elasto-plastic interface, then proceeding as in the case of spherical inclusion under
external pressure, the elastic stresses and displacement in the matrix beyond ¢ are given by

1 1 1 1 )
o,=-§c2(b_z_;_) P., og-%c (b2 = ) P 0,=V(0,+0,)= v[%—zm] (3.7abc)

and

4% DR SR ¥ 0 | SRS A
“‘4C[b2(1+u)’+u(r)] 20 +p) 38

The material in the region a<r<c is elasto-plastic and satisfies the work-hardening condition.
Presenting an analysis similar to that of a spherical inclusion, the equilibrium equation is

7] 1
a‘:, ;(0, _ 0'9) =0 3.9

and the yield criterion of linear work-hardening material is

E du
o,—-0 =Y|1-—|+E|—-—— 3.10
] r Y( E ) l( ar ) ( )
The plastic material satisfies the compressibility equation
Ju u_ @.11)
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Since the displacement component « is continuous on the elasto-plastic interface r=c, then it is given by

%! NN S B ) S 3.12
g [bz(l+u)c+uc}r 2(1+,u)(r) @12
Eliminating u and o, from equations (3.9), (3.10) and (3.12), we obtain
J0, 7( E) Y 4 1 1)1 p.
—L=L|1-=2|+E L ———Cc+—t5—E—"7—— 3.13
o r\E)TTSS bz(/l+/,1)c cfrt T 2(A+u)r @13

Solving the above differential equation for the normal stress and using the continuity condition on the

elasto-plastic interface r=c we have

o —-_(]_Q) ]075-}-1(‘2 ﬂ ;C‘F‘—]— (l__l_ +
! E)VRT T b*(A+u)  pe ]\ P

[ Ec (1 1)
-p| |5 - |+!

_4(l+p) ¢t |
E c\,¥ .| Ec]_ 1 1(1 1) (1 1)
(Uit Liats g el vt bevrampm Gl { bl il e St 3.14ab
% y( E)( ogr)+2c[4{b2(/1+u)c uc} A ) et & (3.14ab)
- — EC (i+i)+1_
p'_4(l+u) CZ r2 |

1
o, = —2-(0', +0,)

=%‘y|:( _%)(1 - 210g§)+cz{%(mc+ i} (317 - ;12—)} - p‘[m%—-;)- + 1}] (3.15)

The pressure p, at the internal boundary of the matrix is
/

E c v | Ec 1 1 (l 1) (1 1)
=1-Zlylog L =)~ 4 U o
n={ E)y()ga 2”[4{b2(1+u)‘+uc} 2 2) e
Ec® (1 1
—_— | S -— 1
+p‘[4(l+u)(c2 a2)+1] (3.16)

As regards the inclusion, if it is under uniform pressure p,, the principal stress and displacement field is

given by
o': =-p, , O'; =-p , o‘::—zv'pl ) (3.173.'))
w__pvii=2v) (3.18)
r E

where E’ and v’ are theYoung's modulus and Poisson's ratio respectively.

According to Bhargava [9] the inclusion never yields for infinitesimal strains. The circular
inclusion of radius of radius a spontaneously undergoes dimensional change to a circle of radius
a(1+ 8) in the absence of matrix and attains the radius a(l+ £), when it is in equilibrium in the presence

of the matrix. Presenting an analysis similar to that of a spherical inclusion, we obtain

) R S L__Pe_(s)z .
e [bz(l +y)c+,uc:|a2 2(A+u)\a 3.19)
8—5-—-;;,(—111%i‘/) (3.20)

where p, is given by (3.16).
These results (3.15) - (3.20) for elasto-plastic solids with work-hardening effects are in good agreement
with the corresponding results of a perfectly plastic solid if we put p, =0 and E, =0 in the above

results.
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The jump in the hoop stress as we cross the common boundary of the inclusion and the matrix is

E (Y\Ec 1 1 E (cY
5 = e - — | = 3.21
%6~ % Y(I E)+(4) & {bz(l +u)c+uc} 2(4 +,u)(a) b G.21)

If E, =0, this result reduces to that of perfectly elastic solid. It is important to point out that in

case of perfectly plastic solid the hoop stress is independent of the external boundary of the matrix.
Finally, all the results obtained in the above analysis depend on the constant rate of work-
hardening factor E, which plays an important role in plasticity.
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