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ABSTRACT. We present here a modern, detailed proof to the following theorem which was introduced
by Garrett Birkhoff [1] in 1938. If'S is a local semigroup with neighborhood of 1 homeomorphic to a
Banach space and with multiplication strongly differentiable at 1, then S is a local Lie Group. Although
this theorem is more than 50 years old and remains the strongest result relating to Hilbert’s fifth problem
in the infinite dimensional setting, it is frequently overlooked in favor of weaker results. Therefore, it
is the goal of the authors here to clarify its importance and to demonstrate a proof which is more accessible
to contemporary readers than the one offered by Birkhoff.
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0. INTRODUCTION

In the year 1900, Hilbert presented a list of twenty-three problems at the Second International
Congress of Mathematics in Paris. The central idea behind Hilbert’s fifth problem is whether
every C° group is in fact a Lie group. More explicitly, is continuity of the multiplication enough to
ensure analyticity of the multiplication? In his comprehensive book on Lie groups, Price [2] gives credit
to Schur [3], in 1889, for showing that if G is a C*-Lie group (k > 2), then G is a Lie group. Price also
points out that an outline of the methods used by Schur may be found in Montgomery and Zippin [4],
while details for the case k 23 may be found in Pontrjagin [S]. It is interesting to note the
absence of Birkhoff’s result in Price’s book, a result which requires less differentiability (indeed, less
than C'), and which appeared one year prior to Pontrjagin’s paper of 1939. In 1929, Von
Neumann [6] showed that each topologically closed subgroup of the group of invertible matrices is a
manifold and that the multiplication is analytic. In fact, he showed that the exponential series maps a
neighborhood of 0 in the tangent space onto a neighborhood of 7 in the group. In 1952, Gleason [7] and
Montgomery and Zippin [8] improved on this result by showing that every finite dimensional,
locally connected, locally compact group is a Lie group. Finally, in 1957 Jacobi [9] showed that if G is
a local group with Euclidean neighborhood at 1, then G is a local Lie group; while shortly
thereafter, Mostert and Shields [10] showed that if S is a local semigroup with Euclidean neigh-
borhood at 1, then S is a local group. Hence, combining these last two results we have if S is a local
semigroup with Euclidean neighborhood at 1, then S is a local Lie group. This seems to close the
book on Hilbert’s fifth problem, at least in the finite dimensional case. However, this result is not
true in the general setting of a Banach space. Consider, for example, infinite dimensional Hilbert
space, which is homeomorphic to RY, the countable product of the real numbers. R" admits
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a continuous multiplication, namely coordinate-wise multiplication. Therefore, Hilbert space admits
a continuous semigroup multiplication with identity 1. However, there are points arbitrarily close
to 1 which are non-invertible. Hence, this semigroup is not even a local group. This indicates that
something stronger than continuity is required in the infinite dimensional case, particularly if G is
required only to be a semigroup and not a group. It is at this point that the significance of Birkhauff’s
paper, which holds in the infinite dimensional case, becomes apparent.

DEFINITION. The statement that the function f, with domain the open set U in the Banach
space X, and with codomain contained in the Banach space Y, is strongly differentiable at the point
p in U means there is a continuous linear function T : X — Y such that if ¢ > 0 there is a 6 > 0 such
that if each of x and y is in U and is within 8 of p then | f(x) - f(y) - T(x - y)| s¢|x - y|.

The statement in Birkhoff’s Theorem that S is a local Lie group means that under canonical
parameters and in an appropriate neighborhood of 1, S is representable by a power series. More
precisely, suppose S has a neighborhood of 1 homeomorphic to the Banach space X, and V is the
corresponding multiplication, in X, defined on a neighborhood of 0. Then there are open sets C and
D containing 0 and a transformation T : D = C such that T is strongly differentiable at 0, T'(0) =1,
and ifx €D and each of 5, t,and s +¢ €[-1,1], then V(T (sx), T(tx)) = T((s + t)x). This then implies
the existence of a multiplication W : D xD — X defined by W(x,y) =T '(V(T(x), T(y))) which is
also strongly differentiable at (0,0), is associative, and has the property that if x €D and each of s,
t,and s +t €[-1,1] then W(sx,tx) = (s +)x. That is, the restriction of W to a straight ray through
0in D is a local one parameter subgroup. It is the multiplication W that is representable by a power
series.

The first appearance of the power series representation of the group multiplication, a particular
series given in terms of the associated Lie algebra multiplication, is attributed to Campbell [11] in
1898, by Price, although the key question regarding convergence of the series was not settled there.
This problem of convergence was later avoided independently by Baker [12], in 1905, and by
Hausdorff [13], in 1906, by giving a purely algebraic version of the series which relies on the algebra
of matrices. Consequently, this Lie group power series is often referred to as the Campbell-
Baker-Hausdorff (CBH) formula. However, Birkhoff attributes the series originally to Schur and
refers to it as the SCH series, inadvertently overlooking Baker altogether. In any event, the
convergence of the CBH series is of primary importance to these authors and a detailed proof is
given towards the end of this paper.

1. THE CANONICAL TRANSFORMATION

The primary goal of section 1 is to present a proof of the following theorem.

THEOREM 1.1. IfSis alocal semigroup with neighborhood of 1 homeomorphic to the Banach
space X and with multiplication strongly differentiable at 1, then S can be transformed into canonical
parameters.

Before proceeding directly to a proof of Theorem 1.1, we develop some necessary machinery.
Notice that in the theorems which follow, strong differentiability is required at a single point only.
The following versions of the chain rule, the Inverse Function Theorem, and the Implicit Function
Theorem are included here for completeness, and may be found in numerous functional analysis
texts.
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THEOREM 1.2. [If each of X, Y, and Z is a Banach space, {:X =Y, g:Y —=Z, and g is
strongly differentiable at f(x,) and f is strongly differentiable at x, then g o f is strongly differ-
entiable at xy at x, and (g ° f) (x, = g'(f(x)) * f'(xo)-

THEOREM 1.3. Inverse Function Theorem. If f: X —Y is strongly differentiable at x, and
f'(x) is invertible, then there are neighborhoods U and V of x, and f(x,) respectively so that [|U
is a homeomorphism onto V and (f | U)" is strongly differentiable at f(x,).

THEOREM 14. Implicit Function Theorem. If {:X xY — Z is strongly differentiable at
(x5 Yo) and f(xg, *)'(y,) is invertible, then there is a neighborhood U of x, and a unique continuous
Junction u :U —Y such that u(xy) = y, and f(x,u(x)) = f(xq, y,) for each x in U. Moreover, u is
strongly differentiable at x, and u'(x,) = [f(x0, *Y Yo)]™ © f(*, yo)' (o).

Next, let D be an open neighborhood of 0 in the Banach space, X, and V : D x D — X such that
Vis strongly differentiable at (0,0) and V(x,0) = V(0,x) =x for eachx €ED.

APPLICATIONSTO V. V'(0,0)(x, y) =x + y implies that V(0, «)(0) = I. Therefore, Theorem
1.4implies the existence of uso that V(x, u(x)) = 0 for each x in some neighborhood D’ of 0. Similarly,
a v exists such that V(v(x),x) = 0 for each x in some neighborhood D"’ of 0. By associativity of V,
u(x) =v(x) for each x close enough to 0. Thus, without loss of generality we may assume that for
each x €D there is a unique x™' and moreover that x — x™ is strongly differentiable at 0 and has
derivative -I there.

Furthermore, if T:X — X is strongly differentiable at 0 and T(0) = 0 and T"(0) = I, then the
function W : X x X — X defined by W(x,y) = T (V(T(x), T(y))) is associative and strongly differ-
entiable at (0,0) by Theorems 1.2 and 1.3.

NOTATION: ﬁx;sV(x,,,V(x,,_l,V(...,V(xz,xl))...) if this product makes sense, and
=1

x" = V(x,x" ') where x? = V(x,x) again whenever each of these makes sense.
Theorems 1.5 and 1.6, which follow, are extremely powerful and will be used throughout the
remainder of the paper.

THEOREM 1.5. If¢ > 0 there is ad > 0 so that if S |x| <8 then
1=l

n
i. []x; exists,
1=1

<g 5:|x,.| ,and
i=1

.. n n
ii. |Hx,-—2x,-
i=1 i=1

n n
i, |nx,. <2+ 3|x|
i=] iml

PROOF. Suppose 0<e<1. Choose 8>0 so that if |x| +|y|, |a| +|b| <d then
[V(x,y)-V(a,b)-(x-a)-(y -b)| se(|x —a| +|y -b]). If |x] +]x] <§ then
| V(x,x,) - V(0,0) —x; — x| s€(|x| +|x)|), and | V(xp,x,)| < (e+1)(|x)| +|x,|) <. In order to use

n n n n n
induction on n, suppose that if ¥ | x| <gthen [T x; exists, hasnorm < §,and |[Jx, - 3 x,| s€ 3 |x].
iw=l i=1 1=l i=1 1=1
n+l
Now suppose Y | x| <%. It then follows that
i=1
n+l n+l n n n n n+l
',I—[lxi_iglxi s V(x,mﬂx.) -V(Oaﬂlx;) =X, |t ,ﬂlx, - ,Elxi <t ‘Ellxll
- - - - - - =
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n+l n+l
and ’ [1x|s(e+1) ¥ |x| <o. Thus, by induction, a proof is complete.
1=l 1=1

THEOREM 1.6. Ife >0 there is a d > 0 so that if §|x,| <dand i]y,l < & then each of llllx,
tel 1= 1=

and ﬁ y, exists and
r1=1
‘l:[Ixi "I:IIY.‘ —;El(x’ -y)|se- ’gllx. -yl

PROOF. Note that (x,y,z) = V(x,V(y,z)) is strongly differentiable at (0,0,0) by Theorem

1.2, so we may choose 8, > 0 so that if | x| +|y| +|z| <8, and |a| +|b| +|c| <, then

|V, V(y,2))-V(a,V(b,c))~(x —a)-(y =b)-(z —¢)| <e(x-a| +|y -b| +|z-¢|).

By Theorem 1.5, choose 8,>0 so that if Y |x| <, then f]x, exists, f]x, <2+ ¥|x|, and
i=l i=1 i=l t=1
Ix - ix,. <g- ilx‘|. Let 6-min{ 2,%}, and suppose i|x,.| <6 and §:|y,-| <6. Thus, the
i=l i=1 i=1 i=1 1=1

L
choice of & and 8, implies that each of ,|%|, and | y;| has norm less than 3, for

’

n j
. ﬂ X; H Yi
imj+l i=1
each j € {1,2,...,n}. It then follows from the choice of 8, that
n n " n n j-1 n J-1
Hx-Iy-30-y) se 3 V( IT x V(x,,il_]l y;)) - V(' 1 x,,V(y,-,,l]l y.-)) - -yj)|

Py Sj+l

n
= E‘Ellx-‘ -y -

In the following discussion we will consider functions from [a,b] into the Banach space X. If
D > 0, the function fis said to be D-admissible provided that f is continuous, of bounded variation,
|fix)| sD for each x €[a,b], and Var,, f<sD. If e=[a,B] is a subinterval of [a,b] then
f. = f(B) - f(a) and f*= f(B)f(a)™ if it exists. A subdivision of an interval I is a finite collection of
nonoverlapping intervals whose union is I.

If P is a subdivision of[a,b] and t € [a,b] then let P, denote the subdivision of [a,t] consisting
of those members e of P which are contained in [a,t] together with [a,t]} ift €[a,B] E P. Define
I1,f:la,b]=X by (I, NW) =L f. _---f, if P,={ey,....e,} withe;<e;,, for each i=1,...,n -1,
provided the product exists; and define 3, f:[a,b] = X by (3, f)(t) = . gp‘ f° provided f° exists for
eache €P,.

THEOREM 1.7. There is a D >0 so that if f is D-admissible then each of [, fand 3, f

exist on[a,b] for each subdivision P. Moreover, ife >0 there is a & > 0 so that if each of P and Q
is a subdivision of [a,b] with mesh less than b then

i |ILH®)-T1,NP) se-Var,,f, and

i |(S,N0)-(3,N®) st - Var,,f.
PROOF. Using the strong differentiability at (0,0) of (x, y) — xy ™" and Theorems 1.2 and 1.6,
choose D > 0 so that

i. if each of |x| and |y} is less than 2D then y™ exists and |xy™ - (x - y)| s|x -y|, and

ii. if each of il|x,.| and i|yi| is less than 6D then each of f[x, and ﬁ y, exist and
i= i=l i=l i=l

x-T1y.- Z@-y)| = Zlx-yl
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Next, suppose 0 <€ < 1. Using Theorem 1.5, choose &' > 0 so that if ,.2 |x,| <28 then []x, exists
=1 1]

n n
and l['[x,— Y x,
1= t=1

a subinterval of [a,b] with length less than & then Var, f<d'. Suppose each of P and Q is a

s:—- ilx,[. Now, assuming f is D-admissible, choose 8 >0 so that if e is
1=l

subdivision of [a,b] with mesh less than 8 and Q refines P. Foreache EP letQ“={d €Q :d Ce}.
Note that if e €EP and e =[a,f], then 3 |f,| s Var f=<0' since the length of e is less than
deQ’

8. Therefore, ['[Q’ f exists and ](Ho,f )

- (1)@ 3 5
I(ﬂg,f) (B)| s(1 +§) « 3 |f) which implies 3 I(HQ,f) (ﬁ)] <2-Var,,fs2D. Moreover,
P <Ep

<§- S |fd- Thus,
deQ’

Y |fl =D and 3 |f| =D; hence, each of ([],f)(b) and (T1,N(b) exist. It then follows, since
eEP e€Q

(M, e = T /) (B) that

(1,0 ®)-11,N6) = (n)®- 3~ ®)|« 3,)e-(n,7) @)
-(11,.1)®)
<253 3 1
4.eracy

£
s3° Var, ,.f-

Now, since | f(t)| 2D for each ¢t €[a,b], which implies | f(¢)"| s4D, it follows that f* exists for
each subinterval e of [a,b] and | f*| <2|f,|. Therefore, 3 |f| <2+ Var,, f=<2D for each sub-
cEP

division P of [a,b]. If each of P and Q is defined as above, it follows that Y, |f“| <2< Var.f<?d

deQ”
and thus, st. 2 | f¢|. However, since [] f“=f°, we have
d€Q°  de deQ”
E(f‘— 5 de) <330 <5 3 3 A1 sg e Vars
<EP deQ° cEP dEQ

The result now follows easily. Moreover, Theorem 1.7 leads us to the following.

COROLLARY 1.8. There is a D >0 so that if f is D-admissible and € > 0 then there is a
8>0 so that ife =[o,B] is a subinterval of [a,b], then there are points [ fand 3 f in X so that
if P is a subdivision of [a, B] with mesh less than b then

i |TLF-(LN®) <e+ Var,,f, and
i |3.f-(C,0)B) < Var.f.

Let[]fand } f be defined for such fby ([Tf)(¢) = I1,,fand (T ()= ﬂh ,,f- Wenow return
to a proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Choose D > 0 so that 6D satisfies Theorem 1.6 for ¢ = 1 and
so that D satisfies Corollary 1.8. Let B(0,D) denote the D-neighborhood of 0 in X. For each x in
B(0,D) define f,:[0,1] = X by f.(s)=sx. Since f, is D-admissible for each x €B(0,D) we can
define T : B(0,D) — X by T(x) = []£.(1). Notice that T(0) = 0 and that if P is a partition of [0, 1] then
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> (f.). =x for eachx €B(0,D). It then follows from Theorem 1.6 that T is strongly ditterentiable
e€EP

at 0 and T'(0) = I. Therefore, applying Theorem 1.3 to T, let U and V be open neighborhoods of 0
in X so that T|U is a homeomorphism. = We can now define W:UxU -V by
W(x,y)=T"(V(T(x),T(y)))- In order to complete a proof of Theorem 1.1, it remains only to be
shown that if x €U and s,¢,s +t €[-1,1], then W(sx,tx) = (s +¢)x. In the case where s,r €(0,1]
this is clear by construction. Therefore, first consider the case where 1 = —s. Let x be nonzero in
U,s €(0,1], and € > 0. Choose a positive integer N so that if n is a positive integer, n =z N, then

3
£ |-
n

€

<2°|st T2

SX -SX SX  Sx
V=, — =
n n

-—+
n n
Let n be an integer, n = N. The choice of D guarantees that if j is a positive integer, j < n, then

'(i—f)" <2+ |sx| <2D, |('"—“)’| <2D, and If'—' . l’_’fl <2D. Therefore, since the sum of these three is
less than 6D, it follows that

3) ﬁ.-sx) osx)' g) e\ _(sx osx
n n n n n n n n
which implies that

sx) [ -sx\’ s\ —sx !

B G]=[) )]

n n n n

which, by induction on is less than 2j « [=+ '"—“, =¢. Therefore, since T(sx) = lim (%)N, it follows
N—-®

n

SX —=SXx

n n

<

SX —=SX

n n

that V(T (sx), T(-sx)) = 0 which implies that W(sx,—sx) = 0 - W(-sx, sx). The situation where ¢ = s
can be considered in various cases depending on which of 5,¢, and s +¢ is positive. For example,
in the case where s >0, t <0, and s +¢ > 0, we have, by construction, T(sx) = V(T((s + ¢)x), T(-tx)).
However, since T(-tx) is the inverse of T(tx), it follows that V(T(sx), T(tx)) = T((s + ¢)x) and hence,
W(sx,tx) = (s +¢)x. The other cases follow similarly, which completes a proof of Theorem 1.1.

Theorems 1.9-1.13 which follow, although not required for a proof of Theorem 1.1, will be
used in the main construction of section 3.

THEOREM 1.9. There is aD >0 so that if f:[a,b] — X and f is D-admissible and P is a
subdivision of [a,b], then each of 3, f,3 f,I1,f, and[]f is 6D-admissible.

PROOF. Choose D' small enough to satisfy Theorem 1.6 for € = 1, Theorem 1.7 and Corollary
1.8,andsothatif [x |,|y |, |z|,|w|sD' then|xy™ —zw™ = (x ~z) + (y =w)| s|x -2| +|y -w]| and
|xy -zw —(x -z)-(y -w)| s|x-2| +|y -w|. LetD = D'/3 and suppose fis D-admissible. Choose
6 > 0so that if e =[a, B] is a subinterval of [a,b] and P is a subdivision of e with mesh less than &
then

i. [ILf-{1/)®) <Var.fand
i. |3, f-C,N®) <Var.f.

Note that 3 | .| < Var,f=D. Therefore, by the choice of D we have I(H” N®- 3 fi] < 3 I
which implies |([1, /)(B)| =2 Var.f. Thus, |[f| <|([1of)B)| +Var.f<3+ Var,f. Similarly,
since | f“| <2|f,| for any subinterval d of [a,b] we have |3, /| = dgp} fé| +Var.f=<3«Var,f. Note
that| (TT)B) - [1/)(@)] =|T1, f * T1/)(@) - ([1f)(a)|; but, we have just seen that | ([T /) ()] = 3D
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and |[] f| = 3D. Therefore, we have that

[T =TT f - A1) = A1) @) =TT f1 +IT1f s2-|T1,f| <6 Var.f.

It follows that Var,[[f =6« Var,f for any subinterval e of [a.b] and, hence, that []f is 6D-

admissible. Next, |(Zf).| =[(Zf)B)-(Zf) (@) =| 3 f|, which as noted above, is less than or
equal to 3 » Var, f; so 3 f is 3D-admissible. Now suppose P is an arbitrary subdivision of [a,b]. If
e =[a,B}is in P and d = [y,d] is contained in e then

|(2.1),| =1E,n®-E,Hwl =@ - fs@”

But, each of | f(8)], | f(a)|, and | f(y)] =2D s D', which implies |(Z,f),| s2|f. It follows that

Vard(zm) <2+ Var,f for any subinterval d of [a,b]. Hence, 3 f is 6D-admissible. Finally, note
that
|1, @) -T1,NW| = (f®) - flo(] )~y - e, (@)

fa.a) {a.a)

Therefore, since | (I]M] f)(@)| s3D and | f(8) - f(a)|,| f(y) - fla)] <D, we have

|1, @ -TLAH] s2+[(f)-fla) - (fY) - fl)] s2+ Var,f.
It follows that Var,[],f <2 « Var,f for any interval d of [a,b] and [], f is 6D-admissible.

[a,a)

THEOREM 1.10. There is a D >0 so that if f,g:[a,b]— X are D-admissible, then
|([1,£)B)-T1,8)B) =2+ Var.(f-g) for any subinterval e of [a,b] and any subdivision P of e.

PROOF. Choose D >0 so that D satisfies Theorem 1.7 and Theorem 1.6 for ¢ = 1. It then
follows that []_ f and [], g exist for any subdivision P of ¢ and that

ITLf-TLgl < 3 |fi-8) <2+ Var(f-g).

We now have the following.

COROLLARY 1.11. If D is as in Theorem 1.10 and each of f and g is D-admissible, then
|T1,7-T1 g| s2 -+ Var.(f-g) for each subinterval e of [a,b]

THEOREM 1.12. There is a D >0 so that if f:[a,b]— X is D-admissible and € >0
there is a 8>0 so that if P is a subdivision of [a,b] with mesh less than d then
Var, (3 f - Epf) s¢e-Var,, f.

PROOF. Choose D, >0 as in Corollary 1.8 and suppose € > 0. Choose 8 as in Corollary 1.8
so that if e = [a,B] is a subinterval of [a,b] and P is a subdivision of e with mesh less than & then
| 2.f- (zpf)(ﬁ)l <¢€ * Var, f. Suppose P is a subdivision of [a,b] with mesh less than d. Ife = [a, B]

is in P we have that {e} is a subdivision of e with mesh less than 8. Therefore, since

3./ =CNH®-CH@and =, B~ (Z, )@= (3, )(B), we have
Cf-2,0|=15.7-C, NP se+ Vars.

THEOREM 1.13. There is a D >0 so that if f is D-admissible then each of ¥ f and T[(3 f)
exist and ([[(2 ) (¢) = fl)f(a)™.
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PROOF. Choose D, small enough to satisfy Theorems 1.9, 1.10, and 1.12 and let D =D /6.
If fis D-admissible, then 3 f and 3 f are D,-admissible for any subdivision P of [a,b]. Also, if
€ >0 then there is a >0 so that if P is a subdivision of [¢,b] with mesh less than 8 then
[TIE HGB)-TTAZ N B) <€ - Var,,)3. f s 6 * Var,, ,f. Therefore, by Theorem 1.10 we have
that |([T,(E M ®)-[1,Z,NB) <2+ Var, (3 f- 3, f), which, by Theorem 1.12 can be made
smaller than 2¢ - Var, ,,f by making the mesh of P small. Thus, there is a P so that

[TIEMNG)-ALE, MG s|TIEMNG) - ESHOHG) +[E,ENE)-E,N)N0)

se-Var,, f+4e-Var,, f.

However,([T1,(Z,/))(b) = f(b)f(a)",since(Z, f)_ = f* foreache € P. Thus,([I(T/))(b) =/(0)f(a)"

and by extension ([T(3 f))(t) = f(¢)f(a)™ for each t €[a,b].

2. THE DEVELOPMENT OF THE LIE ALGEBRA MULTIPLICATION

In this section we show that if S is a local semigroup with neighborhood of 1 homeomorphic
to the Banach space X, then there is a bilinear "bracket" function [ ]: X xX — X which is a Lie-
Algebra multiplication on X. We first define the commutator function K : S xS — X on § xS by
K(x,y)=x"yxy and then after a sequence of theorems show that bracket can be defined on all of

X xXby[x,y]= limoﬁK(ax,by) for real a and b.
ab—

THEOREM 2.1. If ¢>0 there is a d>0 so that if |x|+|y|+|u|<d then
| K(ux,y)-K(x,y)-K(u,y)|sc | K(u,y) | and | K(x,uy) - K(x,y) ~K(x,u) | s c | K(x,u)|.
PROOF. Suppose 0 <c <1. Letd, >0 such that:

i. If|w]|+|z|<d, then|wz-w-z|sS|w]|, using strong differentiability of the multipli-
cation at (0,0), and
ii. if |x|+]|a|+|y|<d; and |x|+|b|+|y|<d, then |xay-xby-a-b|<i|a-b],

by Theorem 1.2. Choose d>0 so that if |x|+|u|+|y|<d then
-1,,-1

[x™u ™y uyx | + | x7ly'xy |<::i and | x | +|x™ |<5, using continuity of the multiplication
and inversion functions.
Next, let|x | +|u | +|y |<d. It then follows from the choice of 4, that
| K(ux, y) - K(x,y) - K(u, y)| <+ K(wx,y)-K(x,y)-x"k(u, y )|

+x ' K(u,y»x -K(u,y)|
1ol -l

< |7y uyx) 7y ay) - x e~ 1y - luyx - x 7'y — Lxy)|

+x7'u = 1y uyx —uy 1uy|
s%|x"u"y“uyx| +_cz_| u -1y uy|

=<c|K(u,y) .
Similarly, |K(x,uy) - K(x,y) - K(x,u)| sc|K(x,y)|.
THEOREM 2.2. There is a d >0 such that if each of m and n is a positive integer and

2AKE"y")
mn

m|x| +n|y| <d then |[K(x,y)| s
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PROOF. Letd, > Osuch thatif|x| +|u| +|y| <d,then|K(ux,y)-K(x,y)| sé|K(u,y)] . Using

n n n
HX,—ZX, SZIX,|,
t=1 1= 1=l

Theorem 1.5 fore = 1, let d, > O such that if ¥ |x,| <d, then [] x, exists and
r=l] 1=l

which of course implies f[x,
1=l

n
=<2 ¥ |x|. Now suppose m is a positive integer such that
1=1

mix|+|y |<% Then it follows that | x‘ | +|y | +|x |<d,foreacht =1,2,...,m — 1. Therefore, the

choice of d, yields |K(x",y)-mK(x,y)| s In%lK(x',y)—K(x"',y)— K(x,y)| s5|Kx,y).

Similarly, there is a 0<d3<% such that if n is a positive integer and |x|+n |y |<d; then

|K(x,y")-nK(x,y)| s5|K(x,y)|. Now let0 <d <d;and supposem |x | +n | y |<d. It then follows

that
|K(x",y")-mnK(x,y)| <|K(x",y")-nK(x",y)| +|nK(x",y)-K(x,y)

s%lK(x"',y)l +'£8£|K(X,)’)l

mn
5—2—|K(x,y)[ .

The conclusion now follows from the triangle inequality.
THEOREM 23. Thereared > 0andM > Osuch that if| x| +|y| <d then|K(x,y)| sM|x||y|.
PROOF. Let d, >0 such that:

i. ifm|x|+n|y|<d, then|K(x,y)| <27 sing Theorem 2.2,

ii. ifm|x|+n|y|<d, then|x"| s2m|x| and|y,|2n|y|, using Theorem 1.5 for & = 1, and

iti. if |x™| +|y”"| <24, then|K(x™,y")| <1, using the continuity of X at (0,0).

d, 4,
Let 0 <d <3 and choose M > . Next, suppose | x | +| y |<d. Choose m and n so that 5 < | mx| <%
d‘

dz
and ? <|v| < 2, which implies |mx| |v| > . It then follows from the choice of d, that

|KCx, )| SZK(:M”) S%SMSMM yl -

mn;

THEOREM 24. There are d >0 and M >0 such that if |x|+|h|+|g|<d then
|g7xg ~h'xh| sM|g -h| |x].
PROOF. Choose a positive number d, so that if |a'|+|b| <d, then

|a”b-a?a-(b-a) s;|b-al. Using Theorem 1.2, choose a positive number d, so that if
|a|+|b|<d, then |a'ba-a™a-b| <|b|. Choose positive numbers M and d so that if
|x|+|h|+]|g|<d then:

i. |(g7'xg)"| +|h~'xh| <d,, which implies | g"'xg — h~'xh| = 2| g x"'gh 'xh|,
ii. |h| +|K(gh™,x)| sd,, using the continuity of K at (0,0),

iii. |K(gh™,x)=%|gh™| |x|, using Theorem 2.3 and continuity, and

iv. |gh™-hh™'-(g-h)| s|g-h|, which implies |gh™| s2|g - h|.
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Now suppose | x | +|h | +| g |<d. It then follows from the choice of d that
|g7'xg —h~'xh| s2|g"'x"\gh ™' xh|

=2|h"'K(gh™,x)h|

s2|K(gh™,x)|
<2 1gn 1
sMlg-h||x|.

The following is a direct consequence of Theorem 2.4 and strong differentiability of the
multiplication at (0,0).

COROLLARY 2.5. There are d>0 and M >0 such that if |x|+|y|+|u|<d then
|KGx,y)-K(u,y)| sM|x-u| |y|.

THEOREM 2.6. Ifc >0 there isad >0 such that if |x | +|w | +|y |<d then |K(x +w,y) -
K(x,y)-K(w,y)| sc|w||y| and |K(x,w +y)-K(x,w) - K(x,y)| sc|w| |x]|.

PROOF. Suppose ¢ >0. Let d, >0 such that if |x| +|w| <d, then there is a u such that
x+w=ux, using Theorem 1.4. Let O0<d,<d, such that if |x|+|y]|+|ul<d, then
|K(ux,y)-K(x,y)-K(u,y)| s3|u| |y|, using Theorems 2.1 and 2.3. Let 0<ds<d, and
M >0 such thatif ju|+|y|+|w|<d,then |[K(u,u)-K(w,y)| <M|u-w]||y|, by Corollary 2.5.
Finally, let 0<d <? such that if |x | +|u |<d then |wx —u —x| <;|u| and |ux —u -x| s | u|.
Now suppose |x |+|w|+]|y|<d. Let ube in X such that x + w = ux, by choice of d,. Notice,
since w=ux-x, the choice of d yields |u|s2lw|, |u-x|sg|uls5|wl,
|x| +|y| +|u| s|x| +|y| +2|w| s2d <d,, and |u| +|y| +|w| s|y| +3|w| s3d <d;. It then
follows that

|K(x +w,y)~K(x,y)-K(w,y)| <|K(ux,y)-K(x,y)-K(u,y)| +|K(u,y)-K(w,y)|

c
szlul |yl +Mlu-w||y|

scw| |y| .

Similarly, | K(x,y +w)-K(x,y) - K(x,w)| sc|x| |w].

Theorem 2.6 and the triangle inequality give the following.

COROLLARY 2.7. Ifc >0 there ared >0 and M > 0 such that if | x | +|y | +|u |+]|v|<d
then |K(x +u,y +v)-K(x,y)| sM(u| +|v|).

THEOREM 2.8. Ifc >0 there is ad > 0 such that if each of m and n is a positive integer and
m|x| +n|y| <d then |K(mx,v)-mnK(x,y)| <cmn|x| |y|.

PROOF. Suppose ¢ >0. We first show the case where n =1. Let d > 0 satisfying Theorem
2.6, and suppose m|x| +|y| <d. Then since (m —j)|x|+|x|+|y|<d for each j=1,2,...,m it
follows that | K(mx,y)~mK(x,y)| séllK((m —jx+x,y)- K((m - j)x,y)-K(x,y)| scM|x||y|.
Similarly, there is a d > 0 such that if |x| +n|y| <d then |K(x,v)-nK(x,y)| scn|x||y|. Next,

choose a d >0 so that if m|x| +|y| <d then |K(mx,y)-mK(x,y)| s5m|x||y| and so that if

|x| +n|y| <d then |K(x,v)-nK(x,y)| s3n|x||y|. Suppose m|x| +n|y| <d. Since this implies
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that |x| +n|y| <d and m|x| +|v| <d, it follows that
K(mx,v)-mnK(x,y)| sK(mx,v)-mK(x,v)| +m|K(x,v)-nK(x,y)|
scmn|x||y| .

THEOREM 2.9. Ifc >0 there is ad >0 such that if | x| +|y| <d and each of h, |, m, and n

) L b1
is a positive integer such that 0 <~,~ <1 then

h 1 hl hl )
Lxty| -k 2 ix) 1y -
K(mx’ny) mn x.y) sCmnlxlbI

PROOF. Suppose ¢ >0. Using Theorem 2.8, choose d >0 so that if m|x| +n|y| <d
then |K(mx,v)-mnK(x,y)| s5mn|x| |y|. Suppose |x| +|y| <d and 0<,%,f< 1. Then, since
h +I|fl <d, it follows that

x
m

hl

h 1 hi
‘K( ;x,;)’) - Ky =

<SnlX12 +ﬂ|,,,,,,<(1,z)_K(,,,(i),,,(z)y
2 m||n m’n m
sc2Lia 1y

mn I

We now show Theorem 2.9 holds for real numbers s and ¢ between 0 and 1.

THEOREM 2.10. If ¢ >0 there is a d >0 such that if |x| +|y| <d and 0<s,t <1 then
l%K(sx,ty)—K(x,y)’ =sc|x||y].

PROOF. Suppose ¢ >0. Let d,>0 and M, >0 such that if |x| +|y| +|u| +|v| <d, then
|K(x +u,y +v)-K(x,y)| sM,(u] +|v|), by Corollary 2.7. Using Theorem 2.9, choose 0 <d, <d,

so that if |x| +|y| <d, and 0<£,£<1 then IK(%x,%y) —%K(x,y)| <2 |x||y|. Now suppose

m 6mn

|x| +|y] <d and 0 <s,t <1. Choose rational = <s and - < so that
. M
1. :(

. 1 ki
ii. —+—<2,and

st mn

h
s=2|1x +[e-7]Iy1) 5l%l 1yl s

i, (st -2) % <5[x] |y
It now follows that

1 1 h h l ] h 1
l;K(sx,ty)—K(x,y) s |K(;x +(s —;)x,;y +(t —;)y) —K( ”—'x,;y) I

1
=
st

h 1 hl 1| Al
K(;x,'—'y)————K(x,y)I +s_tlm—n_s' [K(x,y)|

mn

sclx||y| .
Itis clear that we can now define the bracket function on all of X x X by [x, y] = lim ﬁK(sx, ty).
s 10

Furthermore, since K(-x +x,y) = K(0,y) = 0, Theorem 2.6 can be used to show that if ¢ > 0 there

isad >0such that if | x| +|y| <d then|K(-x,y)+K(x,y)| sc|x||y|, which in turn can be used to
show [x,y]= lim ‘%K(sx,ty). The next theorem follows immediately from the definition of [x, y]
5,0 =0

and Theorem 2.10.
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THEOREM 211. If ¢>0 there is a d>0 such that if |x| +|y| <d then
|bx.y1-K(x,y)| sc|x| | y|.
The following theorem shows that the bracket function is bilinear.
THEOREM 2.12. [x +w,y]=[x,y]+[w,y]and [x,y +2]=[x,y] +[x,z].
PROOF. Suppose ¢ >0 and each of x,w, and y is in X. Choose 0 <s,¢ <1 so that
i. [[x +w,y]- %K(s(x +w), ty)l <3 |[x,y] - S%K(sx,ly)l <3 ,[w,y] - ;’;K(sw, ly)] <, using

the definition of [x, y], and

clswl iyl
4wy’

ii. |K(sx+sw,ty))-K(sx,ty)-K(sw,ty)| s using Theorem 2.6.

The conclusion now follows easily from the triangle inequality.

We now combine some of the previous results into a single theorem. Notice that part ii, which
follows from part i and Theorem 2.11, together with Theorem 2.12 implies that the bracket function
is continuous.

THEOREM 2.13. There ared >0 and M >0 such that if | x| +|y| +|v| <d then
i |KCe,y) =M|m||y|,
ii. |[x,y] sM|x||y|,and
iii. |y Ty -vio| sM|x| |y -v]|.
We now show that [ ]is a Lie-Algebra.
THEOREM 2.14. [x,y]=-[y,x].
PROOF. Suppose ¢ >0 and each of x and y is in X. Using Theorem 2.13, choose 4 > 0 and
M > 0such that if |a| +|b| <d then |K(a,b) sM|a||b|. Choose 0 <s <1 so that
i. |sx| +|sy| <d,
ii. |K(sx,sy)+K(sy,sx)| =|K(sx,sy) - K(sx,sy)K(sy,sx) + K(sy,sx)| sz;K(sx,sy)|, using
strong differentiability of the multiplication at (0,0), and
iii. l[x,y]—:—zK(sx,sy)l s and |[y,x] —:lzK(sy,sx) =3, by definition of [x,y].

The conclusion now follows from the triangle inequality.

The next two theorems will be used in Theorem 2.17 to show that the bracket function satisfies
Jacobi’s identity.

THEOREM 2.15. Ifc >0 there is ad >0 such that if | x| +|y| +|z| <d then

[(x,y)2]-K(K(x,y),2)| sc|x||y||z] .

PROOF. Suppose ¢ >0 and each of x, y, and z, is in X. Using Theorem 2.13, choose d, > 0
and M, > 1 sothat if | x| +|y| <d, then|[x,y] sM|x||y|. Using Corollary 2.5, choose 0 <d, <d,
and M > M, so that if |x| +|y| +|z| <d, then |K(x,z)-K(y,z)] sM|x -y||z|. Using Theorem
2.11, choose 0 < d; <d,sothat if | x| +|y| +|z| <d then|K(x,y)| +|[x,y] +|z| <ds. Now suppose
|x| +|y| +|z| <d. It then follows that
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|K(K(X,)’)al)—[[x,)’]’z]| = IK(K(X,}’),Z)—K([X,Y]’Z)‘ + ]K([x,)’]’z) _[[x’y]*z]‘
=M|K(x,y)-[x.y] |2l + 55100, y] |2

<2 %] [y] 12l + Ml 3]
sclx| |yl 2] -
THEOREM 2.16. Ifc >0 there is ad > 0 such that if | x| +|y| +|z| <d then
|K(K(x,y),z) * K(K(z,x),y) * K(K(y,2),x)| sc|x]|y]|z] .
PROOF. First note that it is easy to verify * below by direct computation that
K(x,y)K(K(x,y),2)K(z,y)K(z,x)K(K(z,x), y)K(y,x)K(y,2)K(K(y,2),x)K(x,2) = 0.
Now suppose ¢ > 0. Using strong differentiability of the multiplication at (0,0) and Theorem 2.13,
choose d, >0 and M > 1 so that if |a| +|b| +|g| +|4| <d, then
| gabh - gabK(b,z)h + K(b,a)| <|K(b,a)| sM|a||b|,
which implies | gabh — gbah| <2M|a| | b|, since abK(b,a) = ba. Choose 0 <d <d, so that
i. d <$, and
ii. if|x| +|y| +|z|] <d anda -‘I:;[xa,-, where j € {1,2,...,9} and g, is one of the nine terms
in (*) above, then |a| <.
Now suppose [x| +|y| +|z| <d. Then, since
K(x,y)K(y,x)=K(z,y)K(y,2) =K(z,x)K(x,z) = 0,
the conclusion follows from the triangle inequality.
We now give Jacobi’s identity.
THEOREM 2.17. [[x,y]),z]+[[z,x), y]1+[[y,z],x]=0.
PROOF. Suppose each of x, y, and z is in X and ¢ > 0. First choose d, >0 and M > 0 so that

if |a| +|b| <d, then |K(a,b)sM|a||b|, by Theorem 2.13. Next choose 0 <d <d, so that if
|x)] +]%) +|x3| <d then

<
™?

i |xps - (x, +x,+33)] <=5 (x| +|x)| +|x3|), using Theorem 1.5,

il | K(KCx,x,),%5)  K(K(x3,2,),%,) * K(K(x, * x3),%,)| s5|x] | %] | x|, using Theorem 2.16,
and
iii. | [Bx1, 2,1 23] + (D3, x,1,265] + [0, %31, 2,1 = (K(K (1, X5), %3) + K (K (%3, %,), ) +

K(K (x5, x3),x)))| 537'(|x1| |x,] | x| ), using Theorem 2.15 and the triangle inequality.

Now choose 0 <A < 1 so that |Ax| +|Ay| +|Az| <d, and
| K(K(Ax,Ay),Az)| +|K(K(Az,Ax),Ay)| +|K(K(Ay, z),Ax)| <d .
It then follows that

|[x,y}z]+[[z,x} y]+[[y,z}x]| =%I [, Ayl Az] +[[Az, A Ay ]+ [[hy, Az] Ax])

sclx||yll2,
which completes a proof.
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3. THE MAIN CONSTRUCTION
The purpose of this section is to prove that if an analytical group is in canonical coordinates
then the multiplication function is determined by the bilinear function [, ] in a canonical way.
THEOREM 3.1. If (X, V) is an analytical group in canonical parameters then there isad > 0
so that if | x|,|y| <d then
y 'y =x -y, 2]+ (129 [y, [y,x]1- ... = exp(ad(-y)) (x) .
Notice in canonical parameters this also implies that
yoy~t=x +[y,x]+ 2Dy, [y,x]]+ ... = explad(y)) (x) .
PROOF. Suppose ¢ >0. By Theorem 2.13 choose M and d > 0 so that if | x|,|y|,|v| <d then
|K(x,y)l <M|x]| |y,
|lx.y] <M|x| |y,
and
|y ™oy —vov| <Mix| |y -v] .
Suppose | y| <1 and choose 7 so that |"l y| <d. Let T be defined by

e (b))

1
Sx-x+[x,'—1—y] .

and S by

Suppose | x| <d/e™. We then have

[ Tx - 0"'x0] < M| x| %y|

. 1
since |x| <d and |;y| <d. Thus we have

| T <(l+%M|y|)|x[ .
Assume that if 0 </ <k — 1 <n then (T')x exists and
1 !
|5 <(1 43 M11) 1

Since (1 <'-'17M|y|)k_1 <e we have |T*~'x| <d so T(T* ~")x exists and

k
| T*x| s(l+%M|y|)|T"lx| s(1+%M|y|) |x| .
A similar induction shows that
1 k
|S"x| s(1+;M|y|) | x|

forOsk=<n.
By Theorem 2.11 choose 0 < 6 < 1 so that if |a|,|b| <o then
|K(a,b)-[a,b]] <t|a]|b|

and so that
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|ab —a -b| <g|b]| .
Suppose|y| <1and chooseanintegernsothat%]y] < bandM’Hy] <. Suppose | x| < (min(d,d))e".

Then | T*x| <min(8,d) and |[K(T*x,zy)| <M|T*x| |1y| <0 fork =0.1,...,n ~ 1.

Suppose 0 < k <n and consider

| T(T*x)-S(T*x)| = r‘xK(z*x,niy)-r*x- T*x,nly} <

T‘xK(T"x,;%y)—T‘x—K(T‘x,%y) + K(T‘x,nly)—[ﬂx,%y] s

€ +€| T'x| 'l'y

K(T"x,'l?v)

For the same x, y,n, and range of k we have

1 1
1 - - .
< + )1+ M|y 213114

[S(T*x)-S(S* x| 5(1 +%M|y|)|7‘*x—S"x| .
It follows that
" 1 1 1 -1 k-1
|T*x - S*x| seM +1) 1+;M|y| ;|y||x| + l+;M|y| |T*'x -S* x|
fork = 1,...,n. By induction then we have
<&M +1)|x| |y

|T"x - S"x| sns(M+l)(l+%M|y|) | x| %y

If we are in canonical parameters then T"x = y 'xy. Moreover, S"x approaches exp(ad(-y))(x)
as n increases without bound. Thus we have shown that if € > 0 then there is a & > 0 so that if | x| <o
and y xy exists then

|y ™xy - explad(-y))(x)| <&|x||y| .

However, in canonical parameters, we have
() b))
n n n
so (y"(%x)y) -nl(y"xy). Thus, if x and y are such that y~'(ix)y exists for each ¢ €[0, 1], we have
that if n is sufficiently large then

(3% - exptadt-yn 3]

1
<ex|4] ]

and the fact that we are in canonical parameters implies that we can cancel out "l in the inequality

to obtain
|y xy —exp(ad(-y))(x)| <¢|x||y| .
Hence we have
¥ ™%y = exp(ad(-y)) (x)

and we are done with a proof of Theorem 3.1.

Recall the definition of D admissible following the proof of Theorem 1.6.

LEMMA 3.2. There is a >0 so that if > D >0 and each of p and q is D admissible then
the product pq is 4D admissible.
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PROOF. Choose 6 > 0 so that if each of x, y,a, and b has norm less than 6 then
|xy —ab~(x-a)-(y-b)| <|x-a| +|y-b|.
Let 0 <D < b and suppose each of p and g is D admissible. Let [a,b]=dom(p)=dom(q) and
suppose [c,d] C [a,b]. Note that each of p(c), p(d),q(c), and q(d) has norm less than 6 and hence

| p(d)g(d) - p(c)g(c)-(p(d)-p(c)) - (q(d)-q(c))| <|p(d)-p(c)| +|q(d)-q(c) .
It follows that
|p(d)q(d) - p(c)g(c)| <2( p(d)-p(c) +|q(d)-q(c)])
and hence that pq has variation not exceeding 2(Var, ,p + Var, ,q) <4D.

We have from our choice of 8 that

|p(d)q(d)-00-(p(d)+q(d))| <|p(d) +|q(d)|
or that
[p(d)(d) <2(|p(@)| +|q(d)|)<4D .
Thus pq is 4D admissible.
The following lemma will be used to prove Theorem 3.4.

LEMMA 3.3. Thereisd > 0sothatif6 >D > 0andpis D admissible then p™ is 2D admissible.
Here p™ denotes the multiplicative inverse; that is, p™ :[a,b]— X by p~(x) = (p(x))™".

PROOF. Since the derivative of x — x ™' at 0 is -/d, choose > 0 so that if each of x and y has
norm less than d then

[ -y -y -x)] <|x -yl
If0 <D <8 and p is D admissible then the last inequality shows that for each x and y in dom(p) we
have
[p@)' -p)'| <2/ p(x)-pO)

and

[px)" = (-p))| <|px) -
It follows that p~* is 2D admissible.
LEMMA 3.4. There is aD > 0 such that if each of p and q is a D admissible function from
[0,A]into X and € > O then there is a & > O such that if [, ] C [0, A] has length less than b then
|P(B) - p(@) - [u(a)(g(B) - g(a)u(a)” +u(B) - u(0)] = &(Vary, g + Varggu),
where u(\) = ([Tp(M)[TTgMI™
PROOF. Choose D, >0 as in Lemmas 3.2 and 3.3 and suppose 0 < D, < D, satisfies Corollary

1.8 and Theorems 1.9 and 1.13. Choose 0 <D <D,/(48* 6) and so that if | x| +|a| +|b| <D then
| xax™ -xbx™| <2|a -b|. Now suppose € > 0 and each of p and q is D admissible. It then follows
from the two previous theorems that each of u and Y u is D, admissible. Choose & > 0 to satisfy
Corollary 1.8 and also small enough so that if e = [a, ] ©[0, A] with length less than 6 then

[T, (@)1, qlu(@]" - TIE, w) - w(@), glu(@]"| s ¢ TIS, «)] -

Here[](3, u)denotes [[(S u |io,5) (B) and similarly [T g denotes [1(g |..5)) (B)- Now assumee = [, B]

has length less than & and consider the following inequality.
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|P(B) - p(@) - [u(@)(q(B) - g(a)u(@)” +u(B) - u(a)]
s|p@®) -p@-T1 p| +IT1p -TI(Z, ulu(@]I], glu(@)]"|

+ [T, w) (@1, glu(@]") - [IE, w) - (w1 qlu@)] )|
TS, w) - @®) - u(@)] + [u(@)T, qlu(@)] " - (@) (q(B) - g@)u(@)] .

Each of the first and fourth summands is less than eVar, zp by choice of D,. The second

summand is identically 0, again by choice of D, since []p = [1p@)[1p )],
[1g=Tla@®I1g(@)]", and [I(3 u)=u(@)[u(x)]'. The third summand is less than
elu(B)[u(a)]|, by choice of &, which is less than 2eVar gu. Finally, the fifth summand
is less than 2|[] g —q(B)-¢q(a)| by choice of D, which in turn is less than 2eVar, g by choice
of D, Therefore, if D is chosen small enough to also insure that
Var, gp s 2Varg[1p s 4(Var, gu + Var,g[[1q]") s 48(Var,zq), it follows that  the
original quantities can be made to differ by less than S1e(Vary, gu + Var,, gg), which completes a
proof of Theorem 3.4.

THEOREM3.5. ThereisaD > Osuchthat ifeach of p, q, andq' is a continuously differentiable,
D admissible function from [0,A) into X andu =([1p)([1q)", then p' =uq'u™ +u'.

PROOF. Choose D to satisfy Theorem 3.1 and Lemma 3.4 and suppose each of p, g, and q°
is D admissible. Let a €[0,A]and € > 0. Choose d > 0 satisfying Lemma 3.4 and the definition of
differentiability at o for u and q. If B €[0,A] and |a -B] < §, it follows that

|P(B)-p(@) - (ug'u™ +u’)(@) * (B~ )
=|p(B) - p(a@) - [u(a)(q(B) - q(a)u(a)™ +u(B) - u()]
+|u(@)(g(B) - ga)u(a)” - u(a)(g'(@) (B - a)u(a)- 1|

+lu(@)(q@' (@) (B-a)u(@)' ~ua) ' (@u(@)" - (B-a)| +|u@-u(@)-u'(@)(B-a) -
The first summand is less than e(Vary, gg + Var;, gt) by choice of D and 3, while the fourth summand
is less than €| B — a| by choice of 8. If D and 8 are chosen small enough, the second summand is
less than 2| g(B) - g(a) - g'(a) (B — )|, which in turn is less than 2¢| B - o], and the third summand
is identically 0 by Theorem 3.1. This is enough to complete a proof of Theorem 3.5.

Suppose each of x and y is near 0 and consider the continuously differentiable function g defined
on [0,1] by

2 3
q(t)=tx +ty +%[x,y]+%[x,[x,y]]+

The derivative of q is given by the series
t 5
O =x +y + Sy 40Dy T+ o= x + exp(iad(x) ()

by Theorem 3.1.

Now consider the function r defined by r(z)=(&x)(zy). If x and y are close to O then
[ r)(1) = r(1)r(0)" =xy. The next lemma shows that 3 r = g so that we have [Jg(1) = xy.

LEMMA 3.6. There is ad >0 so that if each of x and y is within d of 0 and each of q and r
is defined as above thenq = y.r.
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PROOF. By Lemma 3.2 we have that r is 4d admissible if | x| ,| y| <d if d is sufficiently small.
By Theorem 3.1 we have the existence of ad > 0 sothat if |x|,|y| <d thenq'(t) =x + (x)y(tx)™ for
1 €[0,1]. Suppose d is small enough to make both of these happen and so that Corollary 1.8 holds
for D =dd and [x|,|y| <d.

Suppose each of tand ¢ + 4 is in [0,1] and consider
[P+ m)r(e)" (q(e +h)=q)| =|r(t +h)r(t)" —hq'() +|hq'() - (gt + 1) -4 ()]
s|r(t + )@t - hq'(t)] + MR®
for some A > 0.

Continuing the chain of inequalities we have the last sum equals
| (hx) (1) (hy ) (y ) (ty Y ()™ = hox = (ex) (y ) (ex) ™| + MA?.
We can force each of hx and (tx)(hy)(ex)™ as close as we like to 0 by choosing h small so if € >0

we can find a & > 0 so that if | | <& then the last quantity is dominated by €| | | x| + Mh®. On the
other hand, if we apply Corollary 1.8 to r we have

[r(e+h)r(e)" =(Zr)(e +h)=(Zr)(©)| <eVar,,,,r -
But, using strong differentiability of multiplication, we have the existence of a B >0 so that
|r(b)-r(a)| <B|b -a| and hence that Var,, .,y <B|h|.

Combining all the inequalities we have if each of |x| <d and |y| <d and | h| < then

(SR +h)=(Zr)(t)-(q(t +h)-q(t))| <eB|h| +¢|x]| +MHK?
and hence that (3 r) is differentiable and that (3r) =q' on [0,1]. The lemma now follows since
(2r)(0)=4(0).

The strategy for building a series expression for xy is now apparent. We have the series q
whose product integral is xy. We will modify q into a succession of p’s, each having product integral
xy. Indeed, noting that each of the first two terms of q is already of the form & for some z € X, we
will alter the third term 'Z—Z![x, yJinto this form while at the same time introducing a new infinite series
of terms. Each of these new terms, together with each of the terms of the original series, will be
altered one at a time in succeeding steps, each step introducing a new series and in the limit
approaching a P of the form P(t) = tZ, where here Z denotes the Campbell-Hausdorf series. Due to
the complexity of the construction, rather than choosing a D at this time, we will simply assume
that each of x and y is chosen small enough for each intermediate step and show in the end that it is
indeed possible to choose such a D.

We first choose a norm on X so that if each of x and y is in X then |[x,y]| =|x||y|. Next, let
b be a denumeration of the set of all brackets involving x and y such that b, =x, b, =y, by =[x, y]
and if n is a positive integer greater than 2 then b, = [b,,b,], where each of i and j is a distinct positive
integer less than n. Furthermore, we define the length of each of b, and b, as 1 and the length of b,
inductively as /, +1, where I, denotes the length of b, and we require the sequence [ to be non-
decreasing. In other words, b is a sequence of brackets in x and y of non-decreasing length. Next,
define p,:[0,1] = X by

t2 13 ®
()= sty + S yleglaleyle .= 3 p 00
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Notice that p,, = 0 for infinitely many { and that Lemma 3.6 gives [ p,(1) = xy. In order to define

P..Iinductively, assume p, : [0, 1] — X is defined as p,(1) = i P..(t)b; and define u, : [0,1] — X by
1=l

(1) = (tp, (1) =p, (1)) b, =B, (1) * b, .
Notice thatu,(r) = u(r) = 0 for each t and are included only for completeness. Define p, ,,:[0,1] = X

as

P =2w,]1p,).
If D is chosen small enough so that Theorem 1.13 applies, it follows that
[P, . (0) = w1 PO TTP, 0 'u(0)" = u, () [Tp,(0) .
since each of [ p,(0) and 1 (0) is 0. Therefore [[p,,,(1) = u(1) = []p.(1), which by induction equals

xy. Moreover, since u, = []p,..(I1p.)", it follows from Theorems 3.5 and 3.1, that if D is chosen
small enough,

p’n&l =u,’lun-l +u’n
’ ’ ’ 1 r
= (P (=P b, 4P [P, 1l iy, P T

£ en 1
= (P,, n(l)_p,n.n )bn +‘pr,n‘l bl + [ﬁnbn’ Elp,n.i b:] +5"'

@ @ @ k
“ QoD =Pan o 305+ S 00 B,

where b, | =b, and b, ,,, =[b,,b, ].

Next, notice that each bracket in p, = i py.:b,, which has a non-zero polynomial coefficient
P> is of the form [x,b]=[b;,b,] and hen‘c-el has a first term of length 1. Recall the length of
b, is denoted by /,. Now suppose n is a positive integer and each bracket in p, with non-zero
coefficient is of the form [b,,h,], where /; < I, and if ; = /, then b, = b,. Then, ignoring simplifications
resulting from bracket algebra such as [x, y] = -[y,x] and the Jacobian identity, it follows that if p, ,,
is non-zero and b, = [b,,b,], then each bracket of the form [b,,b,,,], as defined above for p’, , |, has

a first term of value b, and hence of length I, and therefore corresponds to a polynomial p, ; which
is constantly 0.

We now define q,,,:[0,1]—>X by q,,,(t)= 3 q,.,,(t)b;, where for each j,q,,,; is a real
i1
valued polynomial defined on [0,1] as

P, (1), if j=n
Pa, () if p,; isnon-zero, j=n

G, (O0=4 ot
Y fé(ﬁ;,) p'n;(s)ds, if b;=[b,,b;,] forsome i and k

0, otherwise

It follows from induction on n and the argument above that q,,, is well defined, at least

coordinate-wise, and that g, ,, (0) = 0foreachj. It will be shown below that each of 3 supy | g,.b,| ,
i=l

> sup.| g’ bl > and Y supy ) q”,, by is bounded for each n and hence each of g, and q’, exist.

i=1 1=

Moreover, this also implies thatg', = ¥ q’,; b;.
1=l
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Furthermore, since ¢',,,(¢)=p’,,, (t) for each t €[0,1] and g, . ,(0) = p, . ,(0) = 0, it follows
that p, ., =4, ), and hence that []q, (1) =[]p,, (1) =xy. In other words, even though p,,, was
defined earlier in terms of p, and u, to obtain []p,, (1) =xy, it follows that p, ., is also given by
the infinite series g, , ;. Notice, by induction on n, that the first n terms of g, , ,, and hence of p, , ,
are each of the form 1z for some z in X.

We now show that ¥ supy,|q,.,b,| is bounded by showing that 3 Vary (q,.b,) is bounded
1=l i1=1

and in fact can be kept as small as desired, provided D is chosen accordingly. First, we define

v, = Var, (g ,b,) and notice that if D is chosen small enough we have Y v, < 1/20, since g, = p, = p,.
t=]

Also by =x and b, =y gives g3 =¢q,. However, since b; =[x,y] and hence the coefficient of b, is
non-zero, it follows that
Vary, \fs = ,21 V”’[o,;](q-t,,bi) - '% v, + |q3.3(1)b3’ +.§1 w, s.‘?l v, +‘Zl W,
iw3
where
. Var, (qq,b;), if b;=[b;,b;] for some j
"o, otherwise.

Therefore, using the fact that

t 1
V“’[O.u( [ BV (oxs -[bs,b,-_,]) RO RO TORICRN

k!
= (V""[o.u(”z)k |63 ) - Var, ol P3| * B = (Var [o,uﬁsbs)‘ * Varp ps.b,

and the fact that Var, 8, < 2Vary, ,yp; 5, we have that

Varg g, = .21 v, + i% Vary ps.b; + kzl(Varm ,]ﬁzb,)‘

o

1
< ;21 Vitio® 2Vary 1P, 3bs
< i v, +i . -—Z—Var b
210 T 1= 2(110)  AoPas
d 1
- 121 Vi * ZV3 :
The reader should note that if w, is non-zero, then ; is not of the form [x, ;] and hence the coefficient

of b, in p, is zero. Thus, the variation of these previously zero coefficients form and infinite
. - . 1 . .
series, namely 3 w,, which sums to less than ; of a single previous summand, v;. Clearly,
i=1
1 11 1 . . . .. .
Vary s <5 +7 % <15 Subsequent steps in the construction yield similar results, where v, is replaced

by either v, for some i > 3, or w, for some positive integer i, or some other variation introduced at

an earlier stage while altering a term such as w;. Thus, if n is a positive integer and n — 1 new series
have been introduced, each with their corresponding series of variations, it follows that

it 13 12 1231 1 4 1
Var, SQV+ D V4= D Vit <= ) —=——c-<—,
0.1 ,21 ! 4;21 f4? z1 ! 20,514 20 3 10

Thus, just as before, we have
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Va’[mﬂn s 21 Va’[o.lﬂn.:b, + 21 u.,
1= -

where here

"= Var,,g,.b, it b,=[b,,b] forsome j
"o, otherwise.

Therefore, using a similar argument as before, we have

Varg s .1 s ,21 4..b, +’§] Varg p, b, * k%(Var[O_l]Bnbn)k
= 2:1 9. +Zvar[0.l]pn,n n

@ 1
< ,21 Var,,g,.b, + 2 Varg g, .b, -

. e . 1 .
Thus, the variation of g, is less than 1 for each n and, except for showing the convergence of the
various series and their derivatives, as promised above, we are done. However, in order to drive

home the idea that the tails of the series must approach 0, suppose € > 0. Choose a positive integer

N, such that Y i, % v, <=. This implies that the sum of the variations of the series introduced to
k 1=N, 2

alter the v,,i > N,, plus the series introduced to alter these, etc. sum to less than ; However, we still

need to take care of the fact that each of the at most N, - 1 variation series introduced to alter bracket
terms with index less than N, such as the W series used to alter b;, contain infinitely many terms
corresponding to brackets with index greater than N,. For each of these series, say W,, Wy, .. Wy

choose a positive integer N, satisfying z‘l, % W, <§. Thus, if N is chosen greater than
k=0% 1 «N,

max{N,,N,, ...Ny, } it follows that the sum of the variations of all series introduced after the N* stage

is less than €.

We now show that ¥ supy jq’. .., b,| can be made arbitrarily small by an appropriate choice
1=l

of D. But this argument is very similar to the one above.
For if

*(Bs (S))‘t

4y f0) = j P’y s)ds

as defined above, and hence b, = [b,,b, ,], then

Supy, 1]| G bjl < (Va’[o,l]B»b.)k * S“P[o'u, q..bj .

Thus, for example, if we denote supy | g'5,b;| as v'; we have that

’,21 S“P[o.l]lq'a,: b 52«1"'.’ +| p35(1)by] +k}_:l(v"’[o,uﬁsb3)k . ,21“713.; b

@ 2v. © 5
sEv Vv +— > =yv+-

10 1-2(1/10) & it g™
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Thercfore, if we again use the property that ¥ supy | p’,, b,| = l'—o as our induction step we see that
t=1

« ’ x = .
S suppilg'.. b < 3 v, +7 3 Vary,g..b,. But we’ve already shown this last sum can be made
1wl Pl =1

as small as desired, since 1/10 may clearly be replaced by (1/10)¢; hence we are done.

The property that 21 supp.lg”, .., b,| is bounded for each n follows from the fact that

K :
B b Db+ 5,841

’

,
q" ., b=

Thus, since sup;o | [¥',

s|p,.(1) +supg | p's.| =M,, we have
,21 supy |]| q" .., l’.| = él SUP[o,l]lq"n,. b.l +M, - ‘E] élk(var[o,uﬁnb,.)k-l . SUP(o.uIPlu.: b
+ (Va"[o‘x]ﬂnb,.)‘ . S“P[o.l]IP”n.l b| .
But the first summand of the double sum is bounded due to the previous arguments for éi Vary 14..b,

and 3 sup, | q’,, b, and the fact that ¥ ka*~' < oo for|a| < 1. Furthermore, the second summand
=1 k=1

is also bounded due to the previous arguments, and by induction as is the first sum. Thus,

> supyo.ilg”,., b is bounded for each n.
i=1

Therefore, we may now conclude that it is possible to choose a D > 0 small enough so that
Theorem 1.13 holds for u, [ p,, Theorem 3.5 holds for p, ,, and p’, , and Theorem 3.1 holds for u,

and p’, , for each n.
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