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ABSTRACT. We prove two new inequalities for the identric mean and a mean related to the arithmetic
and geometric mean oftwo numbers
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1. INTRODUCTION.
The logarithmic and identric means of two positive numbers a and b are defined by

’-’ for a # b; L(a, a) aL L(a, b): logb-loga

and

I I(a, b): ! (bb/a,)i/(b-’) for a # b; I(o a) a,

respectively.
Let m A(a, b): ,,t, and G G(a, b)" denote the arithmetic and geometric means ofa

and b, respectively. Many interesting results have been proved for these means, see e.g. ([1] [3], [5]
[10]). Let us introduce the mean U defined by

The aim ofthis note is to prove the following:
THEOREM. For a :/: b one has

U(U3G)/ < I < (1.1)

2. PROOF OF THE THEOREM.
For the first inequality we apply the Newton quadrature formula (see [4])

fa + -5--) + f(b)] (b-a) f(4)()648 (2.1)

where E(a,b) and f:[a,b]--oR has a continuous 4-th derivative on (a,b). Let
f(x) logx(x > 0) in (2.1). Then frO(x) > 0, and after certain transformations we get the left side
ofl.1.
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In order to prove the second inequality of (1 !) dwide all terms by a < b and denote x. > 1.

Then the inequality to be proved becomes

(4x’-’ + 10x + 4)/(x + 1)9(x) > 9/e (22)

where g(x) xx/I:--1 x > 1.
Introduce the function f. [1, oe) ] defined by

f(x)- (4x2+lOx+4)/(x+l)g(x), x> 1" f(1)=lim f(x) =9/e
x--l

We shall prove that f is strictly increasing, and this proves (2 2) We have

ix-l)

and, after some elementary computations, we can deduce

(x 1)g(x)f’(x) (4x + 10x + 4)(x + 1)log x- 10x3 6x + 6x + 10 (2.3)

We now show that the right side of (2 3) is strictly positive, or equivalently

L < (8A + GO’)A/’(IOA + G2) (2.4)

where L L(x, 1) etc Since it is known that L < (2G+ A)/3 (See [3]) we try to prove that
(2G + A)/3 < (SA + G2)A/(IOA G2). This holds true iff 14x3 20x2y + 4xy + 2y3 > 0, with
x= A,y=G, ie,

(x- y)(Tx 3xy- y2) > 0 (2.5)

We have

7x 3xy yZ [x + y (v/-11]-3)] [x y (’/]-11]+3)] >0 by 14 > 0

and 0 < 14 < 1. Thus (2 5) is proved, concluding the proof of (2.2) and of the theorem.
3o REMARKS.

(1) Clearly, G < U < A (for a - b). Relation (1.1) offers the improvement

UG (. (U3G) 1/4 <: I < X < U < A (2.6)

(2) It is well-known that (see e g. [7]) A > I, so from the fight inequality in (1.1) we have

912 < 8A + G (2.7)

On the other hand, it is known that [8] I > (2A + G)/3, which according to A > G and (2 7) yields the
following double-inequality:

4A + 5G <: 912 < 8A + G (2.8)

(3) The two sides of(1 1) imply
U > A’G (2.9)
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