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ABSTRACT. Let Rbe a ring, J(R) the Jacobson radical of R , and P the set of po-
tent clements of R. We prove that if R satisfies ( # ) given x,y in R there exist inte-
gers m = m(x,y) >1and n = n(x,y) >1 such that z”y = xy" , and if eachx € Ris
the sum of a potent element and a nilpotent element, then N and P are ideals and R
= N@ P. We also prove that if Rsatisfies ( * ) , and if each x € Rhas a representa-
tuon in the formx =a + v, wherea € Pandu € J(R) ,then Pis an ideal and R =
J(RY D P.
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1. INTRODUCTION.
Throughout this paper,for the ring R, J(R) will denote the Jacobson radical of
R, N the set of nilpotent elements of R , and P the set of potent elements of R —that
is+ the set of x € R {or which there exists an integer n = n(x) >1 such that 2" = z.
If =R, wecall RaJ -ring ; if J(R) = R, we call Ra radical ring. A ring R
is called periodic if for each x € R there exist distinct positive integers m,n for which
2" = 2" ; following[2], R is called weakly periodic if each element is the sum of a
potent element and a nilpotent element. It is known [1,Lemma 1]that all periodic
rings are weakly periodic, but it is an open question whether weakly periodic rings
must be periodic. In this paper, we consider the following condition:
(*) For each x,y € R, there exist integers m = m(x,y) > 1 and n = n(z,y) > 1
such that

"y = xy". (1.1
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It1s obvious that the above condition ( * ) is weaker than the condition 2" = z
forall v € R, since there exist non- J -rings satisfying ( * ). As an example, consid-
erany zeroring Ry i.e. xy =0foralla,y € R.
2. MAIN RESULTS.
We begin with
LEMMA 1. Let R be a ring satisfying ( * ). Then P is a subring of R.
PROOF. Ifa,6 € I’ , thena = a” , b = 4" for some integers m >1, n >1. Let
e, =a" "and ¢, = """ Then
ae, = a =eaand el = ¢,,
beyn =b=-cband el = ¢, .
Thus.
(e.es — €.e06.) = 0 = (ese. — e.ese,). 2.1
Leta =v¢,and ¥y = e,e, — e.ese,in (1.1). Using (2.1), we have
ety — €athen = €7 (Caty — €atses) = e,(esey — e,e4,)" = 0
for some integers m; > 1 and n, >1.
Similarly. we get ese, — eqe,e, =0. Hence e,e;, = €., = e, . Lete = e, + e, — e,es.

Then

et=¢,ac=ea=a,andbe =eb=0b. 2.2)
Let r=auband y=¢ in (1.1). Using (2. 2), we have ab = abe™ = (ab)™e = (ab)™
for come integers m, >1 and n,>1.  Similarly, we havea — b = (a — b)™ for some

integer m; >1. Then ab € P and a — b € P as desired. The lemma is thus proved.

THEOREM 1. Let Rbe a weakly periodic ring satisfying( * ). Then N and P are
idealsand R=N® P .

PROOF. Ifz,v € Randn = n(x,y) > 1and m = m(z,y) >1 are such that 2"y
= 2" .then

Dy = gyl+ro=D for all positive integers k. (2.3
It [ollows that
au =ua = O0foralla € Pand u € N. (2.4)
This, together with Lemma 1 and the fact that R= P + N , shows that P is an ide-
al. To complete the proof, we need only show that N is an ideal, which by (2. 4)
amounts to showing that N is a subring.

Letwu,s u, € N, and letu; — u, = b + ufor someb € Pandu € N . It follows
from (2. 4) that (u; — u;)* = (4, — u)u , and hence that (u, — u)**' = (u; — u;)*u
for all £2>1. TItis clear from (2. 3) that (u; — u;)*u = 0 for some £ , hence u, — u,
€ N . A similar argument shows that u,u, € N .

COROLLARY 1. Let R be a periodic ring satisfying( * ). Then N and P are both
ideals and R=N® P.

PROOF. Evident.

COROLLARY 2. Let Rbe a ring in which, given z,y € R, there exist distinct
integers m = m(x,y) >1and n = n(x,y) > 1such that 2"y = xy". Then N and P
are ideals and R = N @ P.
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PROOF. For all x € R . by hypothesis there exist distinct integers m = m(x) >
1 and n = n(2) > 1 such that 2”2 = zz". Then Ris periodic. Hence N and P are ide-
als of Rand R = N @ P by Corollary 1.

COROLLARY 3([1],[4],and[5]). Let Rbe a ring in which, given z,y € R ,
there exists an integer n = n(x,y) > 1such that 2"y = zy". Then N and P are ideals
andR=N@PPI.

PROOF. For all z,yin R, by hypothesis there exist integers m = m(z,y) > 1
and n = n(zx,y) > 1 such that

2"y = xzy"and (2")"y = 2"y .
Then
2y = 2"y =yl
Since the equation mn = m + n — 1 has no integer solutions such thatm > 1 and n >
1. there exist distinct integers s = s(z,y) > 1 and ¢t = t(z,y) > 1 such that 'y =
)" . The corollary is thus proved by Corollary 2.

COROLLARY 4. Let Rbe a ring in which, givenz,yin R , there exist integers
m =m(x.y) > 1land n =n(x,y) > 1such that 2"y = xy = zy". Then Ris commu-
tative.

PROOF. Obviously, R is periodic. Then N and P are ideals and R = P @ N by
Corollary 1. For all z,y € N, there exists an integer m = m(x,y) > 1 such that

2m—1

xy =z"y = 2" lxy = 2"y ==,
Then N is a zero ring, and hence R is commutative.

REMARK. By the same process we used in proving the above results, we can
prove ‘

Let R be a ring in which, given z,yin R, there exist integers m = m(x,y) > 1
and n = n(x,y) > 1such that zry = 2"y" . Then (1) N.and P are ideals with N* =
; (2) R=N@® P and R is commutative.

THEOREM 2. Let R be a ring satisfying ( * ). Suppose that each x € Rhas a
representation in the formx=a+u , wherea € Pandu € J(R) . Then Pis an ideal
and R = J(R) @ P.

PROOF. It is clear that J(R) N P ={0}. Since each x € R has a representation
in the forma + u , wherea € Pandu € J(R) , it suffices to prove that Pis an ideal
ol R.

Ifa€ Pandu € J(R) , thenau , ua € J(R) . Letting x = ¢,and y = auin (1.
1). we have

au = ejau = e,(au)"” = (au)".
Since av € J(R) and n > 1, we have au =0. Similarly, ua =0. Then PJ(R) =
JUDHP ={0}.

Foralla € P, r € R, writing 7 in the formr =r, + r, , wherer, € P, r, €
J(R) , we getra= (ry+r)a=ra-+ra=ra€ Pandar = a(r, + r,) = ar, +
ary,=ar, € P. Then Pis an ideal by Lemma 1. This completes the proof of Theorem
2.
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We conclude with

THEOREM 3. Let Rbe a semisimple ring satisfying ( ¥ ). Then Ris isomorphic
to a subdirect sum of fields.

PROOF. If Ris a diviston ring. then, {or all nonzero elements z,yin R , by (1.
1) we have 2" '=3y""', Then [ 2" 'vy]=0forallz,y € R, soRis a field by a the-
orem of Herstein [3].

Suppose now that Ris a primitive ring. Note that condition ( * ) is inherited by
all subrings and all homomorphic images of R. Note also that no complete matrix
ring (D)), over a division ring D(¢t > 1) satis{ies condition ( * ), as a consideration of
2 = I;,and ¥y = Eshows. Because of these facts and the structure theorem of primi-
tive rings. we may assume that Ris a division ring. Then Ris a field.

Il Ris a semisimple ring, then R is isomorphic to a subdirect sum of primitive
rings R, each of which as a homomorphic image of R satisfies condition ( * ), so each
R.1s a lield. Thus, R is isomorphic to a subdirect sum of fields .
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