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-ASTRACr. In this paper e have studied the properties of Quasi-ideals and Bi-

ideals in ternary sni groups. We prove that every quasi-ideal is a hi-ideal in T

but the converse is not true in general by giving several example in different

conteJ:
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1. NTROD ON.

D.H. LeNder [4] gave the definition of a ternary semi Stoup as follows:

DEFINITION I.I. A non-empty met T is called a ternary semigroup if a ternary
operation on T is defined and satisfies the associative law

[Ix x2 x3]x4 x5] [xl[xz x
3
x4]x5] Ix x2[x3 x4 x5]]

for all x. e T, < < 5.

Banach showed by an example that a ternary semi group does not necessarily re-

duce o an ordinary semi group. This has been shown by the following example.

EKAMP[E 1.2. Let T {-i,o,i} be a ternary semi ffroup under the multiplication

over complex nurrber while T is not a binary semi roup under the multiplication over

complex nurrber.

Los [5] showed that any ternary semi group hovaver rry be erredded in an ordi-

nary semi group in such a way that the operation in the ternary semi group is an

(ternary) extension of the (binary) operation of the containing semi group.

Dudek [I], Feizullaer [2], Kim and Roush [3], Lyapin [6] and Sioson [7] has

also studied the properties of the ternary semi groups.

We give the following definitions of ideals [7] as follows:

DEFINITION 1.3. A left (right, lateral) ideal of a ternary semi group T is a

non-empty subset L(R,M) of T such that
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[TrL] = L([RTF] c__j, [TMr] c_.. M)

DEFINITION 1.4. If a non-empty subset of T is a left, right and lateral ideal

of T, then it is called an ideal of T.

DEFINITION 1.5. For each element t in T, the left, right and lateral ideal

generated by ’t’ are respectively given by:

(t) L
{t} u [Trtl

(t) R t} u ItTr}

(t)M
{t} u {TtTI u {TrtTr|

Due to associative law in T, one tray write Sioson {?|

txi... [txmx+IXm+zlxm+ Xm+4]...,, m < n

DEFINITION 1.6. Quasi-ideal in a ternary semi group [7] is also a subset Q of

T (xssibly empty) satisfying following tv conditions

(I) [QTr] n [TQT]n [TrQ] Q

(Z) [QTrl n [ln [TrQI Q

1.7. Every right, left and lateral ideal is a quasi-ideal. But every

quasi-ideal is not a right, a left and a lateral ideal of T. This follows from the

following exanle

0 0 1 0 0 1 .0 0 0
8. Let T {( 0 0 )’ 0 0 )’ 0 0 )’( 1 0 )’( 0

)} be the ter-

O0 O1
nary semi group under matrixmultiplication. Then Q (( 0 0 )’ 0 0

)} be the quasi-

Ideal of T, which is neither a left, nor a right nor a lateral ideal of T.

DEFINITION 1.9. A ternary sub ,semi group is a subset S of a ternary semi group

T such that

[sss] s

EEFINITION I.I0. A ternary semigroup T is said to be a ternary group if it

satisfies the following property that for all x,y and z in T, there exists unique

a,b,c in T such that

[xab] c, [ayb] c, [abz] c

DEFINITION I.II. A ternary group T is said to be a ternary group with 0 if for

all a,b,c in T

[oab] 0 [aob] [abol [aool [obo] [ooc].

DEFINITION 1.12. A ternary semi group T is with identity if there exists an
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idenDotent e in T such that

ideal.

[aae] [eaa] [aea] a, Va T.

S(VE RESULTS ON QUASI-IDEAL IN T WHICH ARE TRIVIALLY TRUE

PROPOSITION 2.1. A ternary group T with 0 and [TFr] # 0 has no proper quasi-

PROPOSITION 2.2. The intersection of a quasi-ideal Q and a ternary sub semi-

group A of a ternary semi group T is either empty or a quasi-ideal of%.

PROPOSITION 2.3. Let Q be any non-empty subset of aternary semi group T, then

the following are true:

(I)

(2)

(3)

(4)

O u [TID] is the smallest left ideal of T containing O.
Q u [QIT] is the snllest right ideal of T containing Q.

Q u [TQT] u- [] is the snllest lateral ideal of T containing Q.

If Q is a quasi-ideal of T. Then

Q= (Ou [TrOl),n(O u [TQTI u [rIX:nl)n (O u [grr]).

PROPOSITION 2.4. The intersection of arbitrary set of quasi-ideals in a ter-

nary semi group is either empty or a quasi-ideal of T.

EIFINITION 2.5. Let X be a non-empty subset of a ternary semi group T. The

quasi-ideal of T generated by X is intersection of all quasi-ideals (X)q of T conta-

ining X.

If the subset X consists of a single element X, then (X) is the cyclic quasi-
q

ideal of T.

PROPOSITION 2.6. Let X be a non-empty subset of ternary semi group T, then

(x) (xu [TrX]) n(Xu [TXT] u [rrxTr]) n (xu [XTr])q

is the smallest quasi-ideal containing X.

PROOF. Sioson [7] shows that the intersection of a right, a left and a lateral

ideal of a ternary semi group T is a quasl-ldeal. Therefore the proof easily follows

by using 2.3.

FroTh 2.6 it follows that

(X)q ({X}u. [rrX]) n ({X} u [TXr] u [Trxrrl),n ({x} u [xrrl)

is the snllest quasl-ideal of T containing X.

3. BI-IDEALS IN TERNARY SD4I GROUP

[FINITION 3.1. A ternary sub semi roup B of a ternary semi group T is a bi-

ideal of T if [BTBTB] B.

PROPOSITION 3.2. Every quasi-ideal of a ternary semi group T is a hi-ideal.



504 V. N. DIXIT AND S. DEWAN

PROOF. Let 0 be a quasi-ideal of T. Then Q is a ternary semi group of T.

Now 0TQTQ

Similarly [QTQTQ] 5. [XTQ] n [TIIT].

13aerefore [QTQTQ] c_.[I] n [ITUI]

PROPOSITION 3.3. Let A be an ideal and 0 be a quasl-ldeal of T. Then A 0 0
is a bl-ideal and a quasl-ldeal of T.

PROOF.[ An Q An O A n Q [AAA] n [0O0] AnQ implies that An Q is

a ternary sub semi group of T. Also

An T An 0 T An 0] [QTQTQ] n [A[TAT]A Qn

by (3.Z) and the given hypothesis implies that L.H.S. On A. Thus An O is a hi-

ideal of T. Since A is an ideal of T and it is also a quasi-ideal of T. Hence An Q

is a quasi-ideal of T.

PROPOSITION 3.4. Let X,Y be non-empty subsets of ternary sern group T, then

N [XTY] is a bi-ideal of T.

PROOF. Clearly N is a ternary sub semi group of T. Also

[NTNTN] =_. [X[TITI[Trrl[TrrlY] i [X[TITIY]

[XTYI N.

Then N is a hi-ideal of T.

PROPOSITION 3.5. The intersection of arbitrary set of bi-ideals of T is eit-

her empty or a bi-ideal of T.

We omit the trivial proof.

PROPOSITION 3.6. Every left, right or lateral ideal of T is a bi-ideal of T.

PROOF. Trivial.

PROPOSITION 3.7. Let Q be a subset of a ternary semi group T and Y be a non-

epty proper subset of T such that

(1) [T] u [TOT] u [0Tr] u [TR/rr] Y.

(2) Y i Q.

Then Y is an ideal of T. Moreover Y is a hi-ideal of T.

PROOF. It is obvious that [’ITY], [TYT]. [YTr] and [TrYTr] are contained in Y

under the condition (2) therefore Y is an ideal of T. And hence a quasi-ideal of T

which by 3.2 is a hi-ideal of T.

In the following example we showy that if both or either of the conditions (I)

and (2) of above proposition are not satisfied then Y is neither a left, a right, a

lteral, a quasi nor a hi-ideal of T.

EX/MPLE 3 8 Let T ={
0 0 0 0 0 0 0 0 0
o o), o ), (oo), o o), o),( o )}.

Then T is a ternary semi group under rrmtrix multiplication.
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00 10(I) Take Y {( 0 0
)’

0
and the quasi-ideal

00 0Q ={( 0 0
)’

0 0
)} ofT.

We see that Y i.Q, and

[’rz) u [) u [’Tr[’) u [ri’]

O0 0 OO 01 O0=(( 00), 00), 0 ), 00), 0 )}

_z
Also each of [TRY], [TYT], [YXT] and [TIXXT] is not in Y.
Therefore Y is neither a left, nor a right nor a lateral ideal of T.
,Moreover [TRY} n [TYT} n [YTr] i Y"
So, Y is not a quasi-ideal of T.

I0 10(2) Take Y {( 0 0 and Q ={
0 0
0 0 ), 0 0 )} Then Yc_ O.

Again [TI] u [TQT]u {QIT] u [TIll Y.

Since each of [TRY], [TYT], [YXT] contains
0 0
0 0 )’ they are not contained in Y.

Hence Y is neither a lef%, a lateral nor a right ideal of T.

Also [TIX] n [TYT] n [YTI’]

So Y is not a quasi-ideal of T.

Further [Y] i Y implies Y is not a bi-ldeal of T.

oo o o o! oo oo
(3) Now v take Y ={ 0 0 )’

0
)’

0 0 )’ 0 0 )’ 0 )} and Q= {( 0 0 )}
of T. ’.ten Y .Q.

0 0[vzDIu [:}Y] u [] u [(nn"] =(( o o Y"

We find that
0 0
0 0

( [TRY], [TYT] and [YTr].

But 0 Y" So Y is either a left, a lateral nor a right ideal of T. Similarly

Y is neither a quasi nor a bi-ideal of T.

THEORD4 3.9. Let X,Y and Z be three non-empty subsets of a ternary semi-

group T and N [XYZ]. Then N is a bi-ideal of T if one of the following conditions

hoIds

(I) X,Yc Z and Z is a bi-ideal of T.

(2) Y,Z:_. X and X is a hi-ideal of T.

(3) X,Zc Y and Y is a bi-ideal of T.

(4) At least one of X,Y,Z is a right, or a left or a lateral ideal of T.

PROOF. (I) [NNN]I [XYZ[ZZZ][ZZZ]]

[xY[zzz]] N

and [NTNTN] [XY[ZTZTZ N.

Similar proofs establish (2) and (3).

(4) Asssume X is a right ideal of T. Then
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[NNNI [x[rrl[TrrlYZl [xTrYZl N

[rrNT.I 5x[Trrl[TrrlTPCZl [rzl N.

Similar proofs can be given when either X or Y or Z is a left, or a lateral or a

right ideal of T.

DEFINITION 3.10 [7]. An elnent ’t’ in a ternary semi group T is said to be

regular if there exists x,y in T such that

[txtyt] t.

If all the elements of T are regular then it is said to be regular ternary
semi group.

EXAMPLE 3.11. This example shows that there exists a ternary semi group

while T is not a regular ternary semi group such that T has a minimal right, a min-

imal lateral and a minimal left ideal of T.

be the ternary semi group under the operation (), (given below

0 0 0 0 0

e 0 e a b

a 0 a 0 0

b 01b 0 0

Ya,b,c T, [abc] a(bc) (ab)c.

Hence 0} is a minimal right, a minimal left and a minimal lateral ideal of T.

Since a and b are not the regular elements of T. Therefore T is not a regular ter-

nary smi group.

Ncvwe use theorem 3.9 to give an example of a ternary semi group in which a

bi-ideal is not a quasi-ideal.

EXJ%MPLE 3.12. Let T be a ternary semi group such that T is not regular,
X,Y,Z be respectively a minimal right, a minimal lateral and a minimal left ideal

of T satisfying the condition of 3.9. Thus N [XYZ] is a bl-ldeal of T. We will

show that N is not a quasi-ideal of T.

PROOF. [XYZ] i [xTr] 5 X, [XYZ] i Y, [XYZ]_= Z. So, [XYZI X n Z n Z which

is a minimal quasl-ldeal of T [7].

If we assume that [XYZ] is a quasl-ideal then [XYZ] Xn Y Z which (by

Sioson [7]) thus implies that T is a regular ternary semi group. Hence it contra-

dicts the hypothesis. So [XYZ] is not a quasi-ideal but hi-ideal by Theorem 3.9.

PROPOSITION 3.13. In a regular ternary semi 8roup every bi-ideal is a quasi-

ideal.

PROOF. Sioson [7] shows that a subset Q of a regular ternary semi group T is

a quasi-ldeal if and only if

Let T 0,e,a,b}

in the table)
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[qrQTQI n [orrQrrQ] Q.

Since a hi-ideal of T, clearly satisfies the above condition, so we get the proof.

PROPOSITION 3.14. Let C be a non-empty subset of a ternary semi group T

without identity. Then C u [CC] u [CTCII] is the srrmllest bi-ideal of T containing

C.

PROOF. Let x be any elernnt of C u [CC_] u [CrCI%]. Then either x x for x

in C or x [c c
2 c31 [CCC] for all c in C. i 1,2,3 or x [cltlc2t2c31

[C] for all c in C, 1,2,3, t in T, i 1,2.

We will consider the elements of []. The other tw cases will be done in

similar nnner. Let x,y,z e [CIU-XU].

i.e., x [clt czt 2 c3], y [c4t 3 Cst4 c6]. z [cTt5 Cst6 c9], ci C,

i 1,2, 9, t
i

T, i 1,2 6.
Then

[xyz] [[clt c2t2 c3][c4t3 Cst4 c6][c7t 5 Cst6 c9]]

[Cl[[tlC2t2l[c3c4t3][Cst4C6]]c7[tscst6]cg]

[cItTcTtScg] where

t7 [[tlc2t2][c3c4t3][Cst4C6 ]]

t8 t5c8t6
so [xvzl ( C u [O0Cl u [crcl.

Further, [xtgytl0z] [[cltlcZt2c3]tg[c4tcst4c6]t10[cTtScst6C0]]

[Cl[[tlCztzJ[c3tgc41[tcst4]Ic6[t10c7[tscBt6]Icgl

[Cl tll c6 t12 cgl

where tll [[tlc2t2J[C3tgC4J[t3cst4]]

t 12 [tl0c7[tstBt6]], t9, tl0 T.

Thus

[xt9 Ytl0 z] ( C u [(Xl3| u [CILRC].

Hence C [C(X3] u [] is a bi-ideal of T containing G.

Suppose there exists a hi-ideal R of T containing C such that

R c C u [COC] u [CIVIC].

Then R being a bi-ideal implies that

R c_. C u [CCC] u [l c_ R u [RRR] u [RTRTR]. R.

Thus R C u [CC_C] u [CIL-’IC] is the s.Tellest bi-ideal of T contain ing C.
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