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‘ABSTRACT. In this paper we have studied the properties of Quasi-ideals and Bi-
ideals in ternary semi groups. We prove that every quasi-ideal is a bi-ideal in T
but the converse is not true in general by giving several example in different

context .
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1. INTRODUCTION.
D.H. Lebmer (4] gave the definition of a ternary semi group as follows:

DEFINITION 1.1. A non-empty set T is called a ternary semigroup if a ternary
operation [ ] on T is defined and satisfies the associative law

[x) % %3]%q %51 = [x)[%; %3 x41%5] = [%) %5[x3 x4 %5]]
for all x; €T, 1 <1 <5,

Banach showed by an example that a ternary semi group does not necessarily re-
duce to an ordinary semi group. This has been shown by the following example.

EXAMPLE 1.2. Let T = {-i,o0,i} be a ternary semi group under the multiplication
over complex nunber while T is not a binary semi group under the multiplication over
cormplex number.

Los [5] showed that any ternary semi group however may be embedded in an ordi-
nary semi group in such a way that the operation in the ternary semi group is an
(ternary) extension of the (binary) operation of the containing semi group.

Dudek [1], Feizullaer [2), Kim and Roush [3], Lyapin [6] and Sioson [7] has
also studied the properties of the ternary semi groups.

We give the following definitions of ideals [7] as follows:

DEFINITION 1.3. A left (right, lateral) ideal of a ternary semi group T is a
non-empty subset L(R,M) of T such that
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[TIL] ¢ L([RTT] c R, (IMI] = M)
DEFINITION 1.4. If a non-empty subset of T is a left, right and lateral ideal
of T, then it is called an ideal of T.

DEFINITION 1.5. For each element t in T, the left, right and lateral ideal
generated by 't' are respectively given by:

(t), = {t} v [TTt)
(t)g = {t} Vv [rTT)
(t)y = {t} Vv [TtT] v [TTtTT]

Due to associative law in T, one may write Sioson (7]

[xl xZ""§n+1] = ["1"‘ xmxwl...xm"...)&“]'. m<n

Oepee e U X2 i3 Xmeg ]+ e By @ <0

DEFINITION 1.6. Quasi-ideal in a ternary semi group [7] is also a subset Q of
T (possibly empty) satisfying following two conditions:
(1) [QTT] n [TQT] 0 [TIQ) 2Q
(2)  [QrT] o [TIATT]N [TIQ] € Q

REMARK 1.7. Every right, left and lateral ideal is a quasi-ideal. But every
quasi-ideal is not a right, a left and a lateral ideal of T. This follows from the

following example

_ 00 10 01 00 00 _
EXAVPLE 1.8. Let T = {( o /)y (g g)s Cgg sl g )s( g3 )} be the ter
nary semi group under matrix multiplication. Then Q = {( g g )y ( g (1) )} be the quasi-
ideal of T, which is neither a left, nor a right nor a lateral ideal of T.

DEFINITION 1.9. A ternary sub 'semi group is a subset S of a ternary semi group
T such that

[ssS) € S

DEFINITION 1.10. A ternary semi group T is said to be a ternary group if it
satisfies the following property that for all x,y and z in T, there exists unique
a,b,c in T such that

[xab) = ¢, [ayb] = ¢, [abz] = ¢

DEFINITION 1.11. A ternary group T is said to be a ternary group with 0 if for
all a,b,c in T

[oab] = 0 = [aob] = [abo] = [aoco] = [obo] = [ooc].

DEFINITION 1.12. A ternary semi group T is with 1identity if there exists an
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idempotent e in T such that

[aae] = [eaa] = [aea] = a, ¥age T.

2. SOME RESULTS ON QUASI-IDEAL IN T WHICH ARE TRIVIALLY TRUE

PROPOSITION 2.1. A ternary group T with 0 and [TIT] # 0 has no proper quasi-

ideal.

PROPOSITION 2.2. The intersection of a quasi-ideal Q and a ternary sub semi-
group A of a ternary semi group T is either empty or a quasi-ideal of A.

PROPOSITION 2.3. Let Q be any non-empty subset of aternary semi group T, then
the following are true:

(1) QU [TIQ] is the smallest left ideal of T containing Q.

(2) Qu [QTT] is the smallest right ideal of T containing Q.

(3) Q v [TQT] u. [TINIT] is the smallest lateral ideal of T containing Q.
(4) If Q is a quasi-ideal of T. Then

Q=(Qu [TM])»w(Q v [TQT] v [TIQTT]) M (Q v [QTT]).

PROPOSITION 2.4. The intersection of arbitrary set of quasi-ideals in a ter-
nary semi group is either empty or a quasi-ideal of T.

DEFINITION 2.5. Let X be a non-empty subset of a ternary semi group T. The
quasi-ideal of T generated by X is intersection of all quasi-ideals X)q of T conta-
ining X.

If the subset X consists of a single element X, then ()()q is the cyclic quasi-
ideal of T.

PROPOSITION 2.6. Let X be a non-empty subset of ternary semi group T, then

()()G1 = (Xu [TTX]) n(Xu [TXT) v [TTXTT]) n (Xu [XTT])
is the smallest quasi-ideal containing X.

PROOF. Sioson [7] shows that the intersection of a right, a left and a lateral
ideal of a ternary semi group T is a quasi-ideal. Therefore the proof easily follows
by using 2.3.

From 2.6 it follows that

(x)q = (X}y (TXDn ((X}u [TXT] y [TIXTTD) 0 ({X} u [XIT])

is the smallest quasi-ideal of T containing X.

3. BI-IDEALS IN TERNARY SEMI GROUP

DEFINITION 3.1. A ternary sub semi group B of a ternary semi group T is a bi-
ideal of T if [BTBIB] & B.

PROPOSITION 3.2. Every quasi-ideal of a ternary semi group T is a bi-ideal.
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PROOF. Let Q be a quasi-ideal of T. Then Q is a ternary semi group of T.
Now [QIQTQ] < [QITIT]IT] < [QIT].
Similarly [QIQIQ]) < [TTQ} n [TINIT].
Therefore [QIQIQ] < [TIQ) n [TIQIT] n [QTT] < Q.

PROPOSITION 3.3. Let A be an ideal and Q be a quasi-ideal of T. Then An Q
is a bi-ideal and a quasi-ideal of T.
PROOF.[ An Q An Q An Q) c[AAA] n [QQ] c AnQ implies that An Q is

a ternary sub semi group of T. Also
CAnQTAnQTANnQJ cLQrQTQl n LALTATIAY ¢ Qn [AAA]

by (3.2) and the given hypothesis implies that L.H.S. < QnA. Thus An Q is a bi-
ideal of T. Since A is an ideal of T and it is also a quasi-ideal of T. Hence An Q
is a quasi-ideal of T.

PROPOSITION 3.4. Let X,Y be non-empty subsets of ternary semi group T, then
N = [XTY) is a bi-ideal of T.

PROOF. Clearly N is a ternary sub semi group of T. Also

[NINTN] < [X[TTT][TTT}[TTTIY] < [X[TTT]Y])

< [XTY) = N.

Then N is a bi-ideal of T.

PROPOSITION 3.5. The intersection of arbitrary set of bi-ideals of T is eit-
her empty or a bi-ideal of T.
We omit the trivial proof.

PROPOSITION 3.6. Every left, right or lateral ideal of T is a bi-ideal of T.

PROOF. Trivial.

PROPOSITION 3,7, Let Q be a subset of a ternary semi group T and Y be a non-
empty proper subset of T such that

(1) [T} v [TQT] v [QTT] v [TIQIT] < Y.

(2) YecqQ.
Then Y is an ideal of T. Moreover Y is a bi-ideal of T.

PROOF. It is obvious that [TTY], [TYT]. [YTT] and [TTYTT] are contained in Y
under the condition (2) therefore Y is an ideal of T. And hence a quasi-ideal of T
which by 3.2 is a bi-ideal of T.

In the following example we show that if both or either of the conditions (1)

and (2) of above proposition are not satisfied then Y is neither a left, a right, a
lateral, a quasi nor a bi-ideal of T.

_ 00 10 10 01 00 00

EXAMPLE 3.8. Let T={ ( o 0 )» (51 ) Cgg)e Cugde Cqg)alygyI)e

Then T is a ternary semi group under matrix multiplication.
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(1) Take Y = {( g g ), ( (1) (1) ) } and the quasi-ideal

_ 00 10
Q_{(Oo)r(oo))OfT.

We see that Y ¢ Q, and

[TMQ) v [TQT) v [TIQIT) v [QIT)
_., 00 10 00 01 00
$ Y
Also each of [TTY), [TYT), (YTT] and [TTYTT] is not in Y.
Therefore Y is neither a left, nor a right nor a lateral ideal of T.

Moreover [TTY] n [TYT) n [YTT] 4 Y.
So, Y is not a quasi-ideal of T.

(2) Take ¥ =(( 3} amda=(( 30, (10)) . menvco.

Again [TIQ] v [TQT]u (QTT] v (TIQTT] ¢ Y.

Since each of [TTY), [TYT), [YIT) contains ( g g ), they are not contained in Y.
Hence Y is neither a left, a lateral nor a right ideal of T.

Also [TTY] n [TYT] n [YTT] ¢ Y.

So Y is not a quasi-ideal of T.

Further [YIYTY] ¢ Y implies Y is not a bi-ideal of T.

(3) MNowwe take Y ={ ( 0 00, (g 00, (290, (58, ()5 and=1Cg g
of T. ',1enY$Q.

(TIQly [10T) v (TIOTT] v (@TT] ={( § 0} = Y.
We find that ( g g ) € [TTY], [TYT] and [YTT].

But ( g ? )¢ Y. So Y is either a left, a lateral nor a right ideal of T. Similarly
Y is neither a quasi nor a bi-ideal of T.

THEOREM 3.9. Let X,Y and Z be three non-empty subsets of a ternary semi-
group T and N = [XYZ]. Then N is a bi-ideal of T if one of the following conditions
holds:

(1) X,Yc Z and Z is a bi-ideal of T.
(2) Y,Zc X and X is a bi-ideal of T.
(3) X.Zi Y and Y is a bi-ideal of T.
(4) At least one of X,Y,Z is a right, or a left or a lateral ideal of T.

PROOF. (1) [NNN}c (XYZ[z2zz])(ZZ2Z]]

< [Xv[zzZ]]<N

and [NTNIN] S_[XY[ZTZTZ]] < N.
Similar proofs establish (2) and (3).

(4) Asssume X is a right ideal of T. Then
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[NNN] < [X[TTT](TTT]YZ] ¢ [XTTYZ] <N

[NINTN] SOX(TTT](TIT]TIYZ] < [XTIYZ] c N.

Similar proofs can be given when either X or Y or Z is a left, or a lateral or a
right ideal of T.

DEFINITION 3.10 [7]. An element 't' in a ternary semi group T is said to be

regular if there exists x,y in T such that

[txtyt] = t.

If all the elements of T are regular then it is said to be regular ternary
semi group.

EXAMPLE 3.11. This example shows that there exists a ternary semi group
while T is not a regular ternary semi group such that T has a minimal right, a min-
imal lateral and a minimal left ideal of T.

Let T ={0,e,a,b} be the ternary semi group under the operation ( ), (given below
in the table)

() 1o e a ,‘b
o Jolo o |o
e 0 e a b
a 0 a 0 0
b 0 b 0 0

¥a,b,c € T, [abc] = a(bc) = (ab)c.
Hence { 0} is a minimal right, a minimal left and a minimal lateral ideal of T.
Since a and b are not the regular elements of T. Therefore T is not a regular ter-
nary semi group.

Now we use theorem 3.9 to give an example of a ternary semi group in which a
bi-ideal is not a quasi-ideal.

EXAMPLE 3.12. Let T be a ternary semi group such that T is not regular,
X,Y,Z be respectively a minimal right, a minimal lateral and a minimal left ideal
of T satisfying the condition of 3.9. Thus N = [XYZ] is a bi-ideal of T. We will
show that N is not a quasi-ideal of T.

PROOF. (XYZ] < [XTT] < X, [XYZ] < Y, [XYZ]_c Z. So, [XYZ] < Xn Yn Z which
is a minimal quasi-ideal of T [7].

If we assume that [XYZ] is a quasi-ideal then [XYZ] = Xn Yn Z which (by
Sioson [7]) thus implies that T is a regular ternary semi group. Hence it contra-
dicts the hypothesis. So [XYZ] is not a quasi-ideal but bi-ideal by Theorem 3.9.

PROPOSITION 3.13. In a regular ternary semi group every bi-ideal is a quasi-

ideal.
PROOF. Sioson [7] shows that a subset Q of a regular ternary sem! group T is

a quasi-ideal if and only if
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(QIQTQ] n [QTIQITR] € Q.

Since a bi-ideal of T, clearly satisfies the above condition, so we get the proof.

PROPOSITION 3.14. Let C be a non-empty subset of a ternary semi group T
without identity. Then Cu [CCC] v [CTCIC] is the smallest bi-ideal of T containing
C.

PROOF. Let x be any elemnt of Cu [CCC] v [CICIC). Then either x = X for %y
in gor x = [c1 <, c3] € [OCC) for all < inC. i =1,2,3 or x = [clt1c2t2c3]

[CICIC] for all 4 inC, i =1,2,3, ti inT, i =1,2.

We will consider the elements of [CICIC]. The other two cases will be done in
similar manner. Let x,y,z ¢ [CICIC].
i.e., x = [<:1i;1 cztz c3], y = [<:4t3 <:5t4 °6]' z = [c7t5 °8t6 c9], g € C,
¥i =1,2,...,9, €T, ¥i = 1,2,.0.4,p.
Then

ty

[xyz] [[clt1 cyty c3][<:41:3 cgty c6](c7t5 cgte c9]]

i

leglltyeatallegeqtsllegtycgllepltsegtyleg]

] where

[°1t7c7t8c9

t7 = [[tlc2t21[c3c4t3][05t4c6],

t8 = It5c8t6]

so [xyz] ¢ Cuy [OCC] y [CICIC].
Further, [xt9yt10z] = [(°1t1°2t2°3]t9[°4t3°5t4°6]t10[°7t5°8t6°0]]

leglltoptp)legtaeylltgestydlcglt go7[tsegtllcg]

= le) tyy <4 ty2 Sl
where tll = ([tlcztz)[c3t9c4][t3c5t4]]

t e T.

12 = [t1oc7(tstatel]s tgs tyg
Thus

[xt9 ytlo z] € Cu [COC]lv [CICIC].

Hence Cv [CCC) u [CICIC) is a bi-ideal of T containing C.
Suppose there exists a bi-ideal R of T containing C such that

R < Cu [CCC] v [CICIC].
Then R being a bi-ideal implies that
R < Cu [CCC) v [CICIC] ¢ Ru [RRR] u [RTRIR] g R.

Thus R = Cu [CCC] u [CICIC] is the smallest bi-ideal of T contain ing C.
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