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ABSTRACT. Some numerical schemes, based upon Newton’s and chord methods, for the computations
of the perturbed bifurcation points as well as the solution curves through them, are presented. The
"initial" guesses for Newton’s and chord methods are obtained using the local analysis techniques and
proved to fall into the neighborhoods ofcontraction for these methods. In applications the "perturbation"
parameter represents a physical quantity and it is desirable to use it to parameterize the solution curves
near the perturbed bifurcation point. In this regard, it is shown that, for certain classes of the perturbed
bifurcation problems, Newton’s and chord methods can be used to follow the solution curves in a

neighborhood of the perturbed bifurcation point while the perturbation parameter is kept fixed.

KEY WORDS: Perturbed bifurcation, singular perturbation, bifurcation from the trivial solution,

Newton’ s and chord methods.
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1. INTRODUCTION
Many problems in applications are formulated as

G(x,%,’r.) =0 (1.1)

where G H x R x R + H is a smooth mapping, H is a real Hilbert space, % and x are real parameters

often representing some physical quantities, G satisfies the properties

G(0,JL,0)=0, ,e R, (1.2)

G,(0, ,,0), 0, , R, (1.3)

and the Frechet derivative G Gx(0, o, 0) satisfies for some ko R

(a) N(Gx) is one-dimensional spanned by , (,) 1,

(b) N(G*) is one-dimensional spanned by g v: 0,

(c) R(Gx) N(G*) and R(Gx’)= N(Gx)1, (1.4)

(d) a <g, Gxx> #: 0,

(e) (g,) 1,

(f) b --<t,G,> ;0,

where G,* denotes the adjoint operator ofG, G,x G,.(0, )o, 0) and G, G,(0, o, 0).

Properties (1.2) and 1.3 respectively imply that the "trivial" solution x 0 solves the "unperturbed"

problem

G(x,.,O) =0, (1.5)

for each k R and that it is not a solution of (1.1) for any % R when x : 0. Properties (a)-(c) of (1.4)

imply that G is a Fredholm operator with zero index and together with the property (d) of (1.4) imply
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that (0,, 0) is a bifurcation point of (1.5). Observe also that property (e) of (1.4) implies that the zero

eigenvalue of GI’ has algebraic multiplicity one.

The parameters and x in (1.1) are usually called the bifurcation parameter and the perturbation

parameter respectively. Whcn : :g: 0, the solution set of (1.1) is completely different from that of (1.5)
and in this case (1.1) is usually termed a perturbed bifurcation problem. Many excellent analytical and

numerical treatments of such problems exist in the literature. The reader is referred to [4], [6], [7], [9],

10], 11 and the references therein for an extensive account of the subject.

In this paper we concentrate on the numerical aspect of (1.1) and in particular on the applications
of Newton’s and chord methods to this problem. In this respect our techniques go along the same lines

as those of Decker and Keller [3] for the bifurcation problem (1.5). The difficulties arising in the

applications of Newton’s and chord methods to (1.1) in the neighborhood of (0, o, 0) are due to the

nonuniqueness of the solution, the singularity (or the near singularity) of G, and the non-availability of

the "close enough" initial guesses for these methods.

The rest of this paper is organized in four sections. Some preliminary results regarding the solution

set of (1.1) and based upon the Implicit Function Theorem are presented in Section 2. Also in Section

2 we state the basic convergence theorem for Newton’s and chord methods which is used in the later

sections. In Section 3 we present and prove the convergence of some numerical schemes for computing

the perturbed bifurcation points and the solution curves through them. In Section 4 we show that

Newton’s and chord methods can be used to compute all solution curves of (1.1) near (0,, 0) for certain

types of problems, while the perturbation parameter a: is kept fixed. In Section 5 we apply the schemes

developed in Sections 3 and 4 to a numerical example.

2. PRELIMINARIES

In this section we study the behavior ofthe bifurcation point (0,),,o, 0) of (1.5) under the perturbation

x : 0. It is shown that there is locally a family of "limit points" through each of which there is a family

of solutions of (1.1). The proof of these statements is based upon the Implicit Function Theorem. We

also state the basic convergence result for Newton’s and chord methods which will be used in the later

sections.

Let Y denote the Hilbert space H H R R and F Y R ---) Y be the mapping

G(E+ y,,k + r,,r2)
Gx(eX + Y,, o + r,, r2) ( + y:,)

(2.1)F(y,) <,, y,)

where y (y,, Yz, r,, rz) e Y, and e is a real parameter. We consider the equation

F(y,e) =0 (2.2)

We observe that (0,0) is a solution of (2.2) and that the Frechet derivative ofF with respect to y at (0,0)

where G, Gx, are Gx(0,, 0) are G,(0,, 0) respectively.

(2.3)

LEMMA 2.1. There exists a unique smooth curve y y(c) defined on el -< V-o, for some eo > 0,

such that y(0)=0 and F(y(e),e.)=0 for each e with Icl -< e0.
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PROOF. We observe that if y (y,, y2,r,,r,_) e Y satisfies

F, (0, O)y =0,

where F, (0, 0) is defined by (2.3), then the components of y satisfy the systetn of equations

(a) r2G O,G y, +

(b) G,y, + G, y2 + r,G, + r2G, O,

(c) (,, y.> 0,

(d) <,, y.,) 0.

From (a) it follows that rb 0, and therefore condition (f) of (1.4) implies that r 0, and hence yl A,
for some constantA. Now by (c),A must be zero and hence yl 0. This reduces (b) to Gy2 + rlG,x O,
which in turn implies that ra 0. Since a e 0 by condition (d) of (1.4), it follows that r 0, and that

y A, for some constant A. This together with (d) implies that Y2 0. Thus, y 0. It follows that

F, (0, 0) is one to one. Since F,.(0, 0) is clearly onto, it follows from the Open Mapping Theorem that it

has a bounded inverse. This enables us to apply the Implicit Function Theorem to equation (2.2) and

obtain the desired conclusions.

Let > 0 be the number provided by Lemma 2.1. Then for each in el < there exist

yl(l), y2(:) H and r(a) R such that x() Iz + y(), () + y(l), ,(a) + r(l) and "l:(Iz) r2(l
satisfy

G (x (E), ,(e), "r,(e) =0,
G (x(e), ,(e), x(e))(e) 0. (2.4)

It follows from the perturbation theory for linear operators [5] that for small enough

(i) R(G,(x(e),k(.),’r,(eO) is closed.

(ii)

(iii)

N(Gx(x(e),k(e.),’t(e))) is one-dimensional spanned by (e),

N(G;(x(e),k(e),x(e.))) is one-dimensional, say, spanned by W(e),
(2.5)

(iv) a(e) (ttl(e), Gxx(X(e),k(e),’r,(e))Op(e)) O.

Now for each e in el -< , (i)-(iv) of (2.5) imply that there exists a unique smooth solution branch F(e)

of (1.1) which passes through (x(e), ,(e), x(e)). This shows that a bifurcation occurs at (x(e..), k(e), x(e)).
It follows from the perturbation theory of [7] that

d(.) =- (gt(), G.(x(), (e_.), x(e))) a e. + 0(2), (2.6)

which in turn implies that this "perturbed" bifurcation point is a limit point for small enough : 0.

We summarize the conclusions of the above paragraph in the following theorem.

THEOREM 2.2. There exists a unique smooth curve (x(e), k(e), x(e)) defined on el < Co, for some

e0>0, of solutions of (1.1) passing through the bifurcation point (0,k0,0). Furthermore, for

: 0, (x(e), :k(e), x(e)) is a limit point through which there passes a unique smooth solution branch F(:)
of(1.1).

REMARK 2.3. The use of the Implicit Function Theorem in the treatment of the perturbed
bifurcation problems ofthe type considered in this paperwas suggested in [7] where a different technique
was used.



564 M. B. ELGINDI AND R. W. LANGER

The following basic result for the convergence of Newton’s and chord methods is a consequence
of Newton-Kantorovich Theorem and its statement is due to Moore [10].

THEOREM 2.4. Let F(U, 5) be a mapping from B R to B2, where B and B are Banach spaces,

which is continuously differentiable in U and continuous in 5. Let U(5) be a continuous mapping from

(0, 5) to B for some 5 > 0.

(I) Assume that for 5 (0,5),F,(U(5),5) has a bounded inverse which satisfies

(a) F’(U(5), 5)F(U(5), 8)11 <

(b) F3’(U(8), 8)[F,(U, 8) F(V, 8)]11 < L(8)II U VII,

for U, V B2,Is)(U (8)),
(c) h(5)=-rl(5)L(5)=O(8) as S--->O.

Then there exists 82 > 0, 82 < 8 and a continuous mapping U’(5) from (0, 8) into B such that U’(5) is

the unique solution of F(U, 8) 0 in the ball B2,a)(U(5)) and Newton’ iterates.

U(’+)= U(’)-F(U’),5)F(U’,5), k >_0,

U) U(8),

converge to U*(5) for each 5 (0, 52).

(II) Assume that for 5 (0, 51),Ft,(U(5), 5) has a bounded inverse which satisfies condition (a) above

and the conditions,

(d) [[Ft(U(5),5)[Fv(U(5),5)(U V)-(F(U,5)-F(V,5))][[ < q(5)[[ U- VII,

for U, V e B2,(8)(U(8)),
(e) q(5) 0(5) as 5 - 0.

Then there exists 52 > 0, 8 < 5 and a continuous mapping U’(5) from (0, 5) into B such that U’(5) is

the unique solution of F(U, 5) 0 in the ball B2,)(U(5)) and the chord iterates

U( ) U’)- F[s(U, 8)F(U, 8),

U) U(8),

converges to U’(5) for each 5 e (0, 52).

3. THE NUMERICAL COMPUTATION OF THE PERTURBED BIFURCA-
TION POINTS AND THE SOLUTION BRANCHES THROUGH THEM
In this section we demonstrate the application ofNewton’ and chord methods in the computations

of the perturbed bifurcation points of (1. l) and the solution branches through them.

The computations of the perturbed bifurcation points of (1. l) using the Newton’s and chord iterates

involve the application of Theorem 2.4 to the equations (2.2). As an "initial" guess we take ytO 0. It

follows from the proof of Lemma 2.1 that F, (0, c) has a bounded inverse, for e in el < e-o, where e0 > 0

is small enough. Using similar arguments as those in the proof of Lemma 2.1, we can show that rl(e),

L(e) and g(e) of Theorem 2.4 are 0(e), 0(1) and 0(c) as c 0, respectively. This proves the following

theorem.

THEOREM 3.1. There exists Co > 0 such that for 0 < 1 < e0 both Newton’s and chord iterates

with initial guess y(O) 0 converge to the unique solution y(c) of equation (2.2).

We now consider the application of Theorem 2.4 in computing the solution branches through the

perturbed bifurcation points. To this end let us assume that the unique solution y(e) (y, y;,r, r) of

(2.2) corresponding to some c in 0 < [[ < c0 has been determined. With x r being fixed we want to
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compute (x, %,) near (x’,)’), where x" =+y and " Xo + r, such that

G (x %,, "r.) =0.

Wedefineforu=/w/HRand8R

565

(3.1)

G (x" + gc" + w, )" + g, x)]K(U,5)
@’,w>

where #" # + y2, and consider the equation

K(U,8) =0.

Since

(3.2)

(3.3)

(4.1)

(4.2)

(4.3)

of (1.1) near the bifurcation point (0, 2%, 0) for small x ;e 0. The solution curves can be written as

Case 1: x(:) A,+ 0(:=),

.(;:) x +@+ o(:),

Kv(O,O) =[G,,(x’,.’,q:) G,(x.’,x)]<,’, .>
it follows from (2.6) that Ku(O, O) has a bounded inverse and hence the same is true for Ku(O, 8) for all

8 in 151 -< 80, provided that 80 is small enough. Also we have

K(0, 8) =0(5).

Using this, similar arguments to those used in the proof of Lemma 2.1 verify conditions (a)-(e) of

Theorem 2.4 with initial guess U) 0. This completes the proof of the following theorem.

THEOREM3.2. There exists 50 > 0 such that for each 8 in 0 < 51 < Newton’s and chord iterates

converge to a unique solution U’(k) of (3.3).
REMARK 3.3. In some cases (1.1) may have solution curves which do not pass through the

singular solutions (x(e), ,(e), x(e)). Such solution curves cannot be determined by the above method.

Under some additional assumptions it is shown in the next section that Newton’s and chord methods

can be used to compute all the solution curves in some neighborhood of (0, 2%, 0). The initial guesses
in these cases are obtained using the singular perturbation methods [8].

4. THE NUMERICAL COMPUTATIONS OF THE SOLUTION CURVES
OF SOME PERTURBED BIFURCATION PROBLEMS
This section is concerned with the applications of Newton’s and chord methods in computing all

the solution curves of (1.1) in some neighborhood of (0,,0) for a given small value of the perturbation

parameter x : 0. We will consider the following two cases.

Case 1: (The non-degenerate case) E 0, where Eo

Case 2: (The degenerate case) E 0, E : 0 and T, < 0, where

2
o2,,w,> +(,, + <,,%>,E1 .(ii/’ 0

G=G,.=(O,),O) and w,=-G -’

The singular perturbation theory of [8] reveals the following information about the solution curves
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and A is determined by the equation

EoA2+aA +b =0.

Case 2: x(.) A. +A 2.2W at- 0(3)

() Xo +% + o(:),

3= I1
and A is determined by the equation

EA +aA +b =0.

Let H denote the Hilbert space H x R and define

F(’)’HIxRxR-+Hl, i=1,2, by

[G(A* + W Lo + + l.t, 2)]F’(U, ,:)
(,w>

where A is a solution of (4.4) for the given value of , and

(4.4)

(4.5)

(4.6)

(4.8)

(4.9)

F2(U,,:) G(A.d+A 8-w, +w,+z+l.t,:3)

where A is determined by (4.8)for the given value of, and in (4.9)and (4.10)U HI.

We consider the equations

F’(U,,.)=O, i=1,2,

corresponding to the two cases and 2, respectively.

For R, the linear operator

L, =- F’v(O, , O) [ G(, :], i=1,2,

satisfies the properties (Lemma 5.6 [3])

(i) L, is a Fredholm operator with zero index,

(ii, N,L,, is one-dimensional spanned by o (?/,
(4.13)

N(L,) is one-dimensional spanned by(iii)

(iv) the algebraic multiplicity of the zero eigenvalue of L, is two.

It also follows from Lemma 5.6 [3] that for each C > 0 there exists 8(C) > 0 and there are smooth

2 x2 matrices B,(,),/, (:, ) and smooth functions ,.j(:,), V,.j(:, ), i,j 1,2, defined for I1 <- C,
I:1 -< 8(C) such that the restriction of the linear operators

L,(z,)=-F(O,,), i= 1,2, (4.14)

to the subspace N,(:, ) spanned by ,.(:,) and ,.2(:, ) has two eigenvalues which are the same as

those of B,(:, ). Furthermore H can be written as

H, N,(:, ) (D H,(:, ),
where

H,(:,) {U E (V,,(:,), U> O,j 1,2},

the restriction of L,(, ) to H,(,) has a bounded inverse and the following relations hold

(4.10)

(4.11)

(4.12)
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0 (4.15)

(4.16)

lbri= 1,2.

Fuher properties of the operators defined by (4.14) are given in the following lemmas.

I.EMMA 4.1. For { C, l 8(C),

LT’(, g)ll 0C’a), 1,2.

PROOF. It is enough to show that each eigenvalue a of B,(,) has the form a C’: + 0() for

some constant C, 0. But the solvability condition of the equation resulting by differentiating the first

equation of (4.15) with respect to and setting 0 gives

,:0, ) A a , O,

where b:(,) is the (l,2)-entW of B,(, ). This shows that has the desired form.

LEMMA 4.2.

(a) IIL?’(,)F’(O,,)II=O(Sa),

(b) -’(, )FZ(0, , )ll 0(7a).

PROOF. (a) and (b) follow fromLena4.1, by expanding F’ (0, ,) and observing thatA satisfies

(4.4), (4.8) for 1,2, respectively.

It follows from Lemmas 4.1 and 4.2 that the functions h () and q() of Theorem 2.4 satisfy

h() 0(2), q() 0(=),
for case 1, and

h() 0(3), q() 0(3),
for case 2. This completes the proof of the following theorem.

THEOREM 4.3. For each C > 0 there exists 8(C) > 0 such that for each in gl C d each

in 0 < I1 8(C) Newton’s and chord iterates with initial guess U 0 converge to a unique solution

of (4.11) for each real solution A of (4.4) or (4.8) (depending upon whether or 2) for the given

value of .
NUMERICAL EXAMPLE
In this section we apply the schemes developed in Sections 3 and 4 to the following (finite

dimensional) equation.

3

G ,9v,’t =0. (5.1)
k-k.x,) x4, +x +x,x+(-)x

We notice that for 0, 0 is a simple bifurcation point and properties (1.4) are satisfied with

(1,0)’, a =-1, b 1, E0 0 and E 1, and hence the conditions of case 2 of Section 4 are
satisfied.
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Equation (2.1), whIch determines the biflrcation curve of (5.1), reduces to

3 E’, + r8 + r,y:++

3382 +

_
Y2 + 4)’2Y22 + 38YeY22 r

48+ 8Y2 + 3Y2Y22 + 8".)’22 + (1 r,) v_

=o, (5.2)

0
and Y2 The numerical results obtained by applying the schemes of Section 3where y

Y2 Y22
to (5.2) are presented in Table 5.1.

The solution branches of (5.1) through the perturbed bifurcation points are approximated by

applying the schemes of Section 3 to the equation

):.:3 ]
g w (8++w)4+(y+y+w (y+y=w)_+_(8++w)+

w + Y2W

=0.

The numerical results obtained for the solution branch through the perturbed bifurcation point

corresponding to 8 0.1 are presented in Table 5.2.

Finally, we apply the schemes of Section 4 to approximate the solution branch of (5.1) which does

not pass through the perturbed bifurcation point.

Equation (4.10) for this example reduces to

0 w2 + x; +-dx,w,_
F " -0

2/3x, + wi + x, "2 + (1

where x A’l:m(1 + A’t1/3) and A is the negative root ofA3-A + 0. The numerical results obtained

for : .002 are presented in Table 5.3.

The numerical results of Tables 5.2 and 5.3 determine approximations to all the solution branches

near the perturbed bifurcation point when "t .002, which corresponds to 0.1 in Table 5.1.

In Tables 5.1-5.3, Nand C denote the number of iterations needed for the convergence ofNewton’s

and chord methods respectively.

Table 5.1

-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20

Y12 Y22 rl r2 N C

(- 1.8(-03), 3.5(-02), 1.2(-01), -1.6(-02)) 5 17
(-5.4(-04), 1.4(-02), 6.8(-02), -6.8(-03)) 4 13
(- 1.0(-04), 4.1(-03), 3.0(-02), -2.0(-03)) 4 10
(-6.3(-06), 5.0(-04), 7.5(-03), -2.5(-04)) 4 7

0 0 0 0 0 0
(-6.3(-06), -5.0(-04), 7.5(-03), 2.5(-04)) 4 7
(- 1.0(-04), -4.1(-03), 3.0(-02), 2.0(-03)) 4 10

(-5.4(-04), -1.4(-02), 6.8(-02), 6.8(-03)) 4 13

(- 1.8(-03), -3.5(-02), 1.2(-01 ), 1.6(-02)) 5 17
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-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08

Table 5.2

n’, w !1 N

(-9.2(-07), -2.2(-04), 7.0(-02)) 4
(-6.0(-07 ), 5 (-04), 2.2(-02) 4
(-3.1 (-07), -7.5(-05), 6.9)-03)) 4
(-8.8(-08), -2.1(-05), 1.4(-03)) 4

0 0 0 0
(- 1.1(-07), -2.8(-05), 1.1(-03)) 4
(-5.2(-07), -1.3(-04), 3.9(-03)) 4
(- 1.3(-06), -3.2(-04), 8.1(-03)) 4
(-2.7(-06), -6.5(-04), 1.4(-02)) 4

12
9
7
5
0
5
7
8
8

Table 5.3

, w, w2 la

-5.0 (0, -3.3(-07), -2.1(-03))
-4.0 (0, -7.7(-07), -2.1(-03))
-3.0 (0, -2.2(-06), -2.2(-03))
-2.0 (0, -8. (-06), -2.5(-03))
-1.0 (0, -3.7(-05), -3.4(-03))
0.0 (0, -1.5(-04), -6.0(-03))
1.0 (0, -3.7(-04), -1.1(-02))
2.0 (0, -6.9(-04), 1.8(-02))
3.0 (0, -1.1(-03), -2.6(-02))
4.0 (0, -1.5(-03), -3.6(-02))
5.0 (0, -1.9(-03), -4.6(-02))
6.0 (0, -2.3(-03), -5.7(-02))
7.0 (0, -2.6(-03), -6.9(-02))
8.0 (0, -2.9(-03), -8.2(-02))
9.0 (0, -3.2(-03), -9.5(-02))

2 2
2 2
2 2
2 2
3 3
3 3
3 3
3 4
3 4
3 4
3 5
3 5
3 5
4 6
4 6
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