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ABSTRACT. The Sieve of Eratosthenes has been recently extended by excluding the multiples

of 2, 3, and 5 from the initial set, and finding the additive rules that give the positions of the

multiples of the remaining primes. We generalize these results. For a given k we let the initial

set Sk consists of natural numbers relatively prime to the first k primes, and find the rules

governing the positions of the multiples of the remaining elements.
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1. INTRODUCTION.
One of several algorithms from the Greeks that, has survived the test of time, due to its

simplicity and efficiency, is the Sieve of Eratosthenes. Given an initial set of positive integers

S {2, 3, 4,...,N}, the prime numbers in S can be found iteratively by first crossing out all the

multiples of 2 larger than 2 in S; then, in each subsequent step, the multiples of the smallest

remaining number p not previously considered are crossed out. The process continues while

p < N. It should be noted that only prime numbers are used to sieve, and that the multiples of

any number p are p units apart.
The advent of computers and the electronic transmission of information, with encrypting

and testing techniques based on large primes, explains the enormous attention that the prime

numbers have received during the last twenty-five years. The search for efficient algorithms to

generate large tables of primes have produced impressive results such as Benelloum [1],
Mairson [2], and Pritchard [3]. Several improvements have been made to the Sieve by reducing
the size of the initial set and by avoiding some duplication in the removal process. In this

paper, we will justify and generalize these simplifications of the Sieve, which may prove to be of

particular interest in parallel processing.

The original algorithm can be readily improved, to what we will call the first extension, by
first letting the initial set, denoted Sa, consist of only odd numbers, and then crossing out the

multiples of p from p2 on, starting with p 3. We remark that, in this first extension, the

multiples of any number p can still be found by counting, since their positions in Sa are still p
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,,fits apart. Iu the olh’st ieference to the Sieve commonly available in English, Nichomacus [4]
states that Erato.thens was aware of this idea of starting with only odd numl)ers, and made use

of it. In g’neral, no distinction is found in the literature between the original Sieve and the first

extension (of I,hmth [5]).
In 1989, Xuedoug Luo [6] obtaimd a second extension of the Sieve ly also re,noving the

,nultiples of three f,o,n the initial set. denoted S. Three years later, a third extension was found

by Quesada [7] by further removing the multiples of five from the set Sa. In each extension, the

reductiou in size of the new initial set produces a change in the position of the re,naining

elements; thus, for example 29 changes f,’om being the fourteenth element in S to the ninth

element of S, and the seventh in Sa. As a result, the positions of consecutive multiples of any

given nunber p are no longer p units apart. Instead, they can be obtained by adding cyclically

the elements of a predetermined finite set of differences, depending on p, whose size varies from

one extension to another. For instance, the positions of the nultiples of 7 can be obtained in S
by successively adding the elements of the set {9,5}, while in Sa the corresponding set of

differences between the remaining multiples of 7 is {12,7,4,7,4,7,12,3}.
2. NOTATION AND BASIC DEFINITIONS.

We now generalize this process for obtaining the prime numbers less than or equal to a

given N. First we denote the initial set by S, that is, the set obtained from S by removing the

multiples of the first k prime numbers. Then, for any p in S we determine the rules

govern the positions of the multiples of p in Sk.
k

Let p, p,-.., p,,.., denote the sequence of prime numbers, and let ’, 1-Ipi, k > 1. We
i=l

denote by C the set of positive integers relatively prime and less than h,, i.e., we

let Ck {c :+[ c < rk, (c,rk)= 1}. The cardinality m, of C, is given by the Euler totient

function, that is we let m, [C,[ (b(rk)= lI (Pi-1).
i=l

In order to obtain the k-th extension we choose the set of candidates Sk so that it contains

just those positive integers less than or equal to N and relatively prime to w,, thus we

let S, {n n qh,+c <_ N, q e ;[- ;t-, c C,}. Moreover, we will consider both sets S, and C, to

be ordered in ascending order. Notice that to simplify our notation we have included 1 in S
and we place it in position 0. We remark that Vn S, the multiples on n in S, are obtained as

nsi where

EXAMPLE 1. Let’s consider for instance the third extension. In this case wa 2.3.5

30, ma (30) 8, Ca {I, 7, Ii, 13, 17, 19, 23, 29} and Sa {I, 7, Ii,..., 29, 31, 37,..., 59, ...,
30q+q,..., N}. The multiples of any element of Sa, say 7, are {7, 49, 77,--., 203, 217,...} whith

corresponding ordinal positions {i, 13, 20, 24, 31, 35, 42, 54, 57, 69,-..}.
In any extension of the Sieve, we need to know for any given element n e Sk its position,

the position of its square and of subsequent multiples of n in Sk.

We start by defining a function that maps each element of Sk to its ordinal position in Sk.

LEMMA 2. Let Ck {c c0<c<c<"’<Cmk.1 }. The position of any element of S,is
given by the injection Pos: Sk-* + defined by

Pos(n) mq+i, for n q’k+ci. (2.1)
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PROOF. If ix e Ck, then n c for some i, and Pos (n) i. Otherwise, we can write

Pos (n) kk mk +i. Hence Pos is a well defined function.

To see that Pos is one-to-one, let nr (lrZr +c and n qtrk +ct. Assume that

Pos(n) Pos(nt). If q, < qt then mkqr+r mkqt+t ixnplies that m <mk(qt--q, r-t <m

since 0 < r,t < xnk. This contradiction shows that q >_ qt. Syxnmetrically, q > qt yields a similar

contradiction, hence % qt. It follows that c c and therefore n nt.

LEMMA 3. Let n, Sk where n qnrk+c and qtk+Ct. Then

Pos(nt) mk(q.t+c.qt)+Pos(c,,ct) (2.2)

PROOF.

eos(nt) Pos((qn’k+Cn)t mkqnt+Pos(Cn(qdrk+ct)
mk(qnt+cnqt)+Pos(cnct).

The congruence relation modulo rk partitions Sk into mk equivalent classes, where the

elements of Ck are the canonical representatives, that is,

Sk [.3 [cl, where [c] {x Sk Ix c(mod rk)}-
cCk

We will see that for any n [c] the positions of the multiples of n in Sk can be obtained by

adding cyclically the elements of a predetermined finite set of differences, which in turn depend
upon c. First, to determine the positions of the multiples of any element c Ck in Sk, we need

he following.
DEFINITION 4. Let c nd ci+ be consecutive elements of Ck. Then for ech n Sk we let

Pos(nci+l)-Pos(nci), 1 5 < mk d define D {dn,i 1 5i mk }.d,,i
Pos(n(Zk+l))_Pos(nCmk) mk

That is, D is the set of differences of positions of the successive mk + 1 multiples of n in Sk
3. MAIN RESULTS

LEMMA 5. Let c 6 Ck. The set D contains M1 possible differences of positions between

consecutive multiples of c in Sk, d repeats cyclically.
PROOF. Let n d nj be consecutive elements of Sk such that n k+C d

ni qrk+q. Then either (a) qi and q ci+, or (b) qj +1, c Cmk and q=l.
In the first case, it follows from (2.1) that

Pos(cnj)-Pos(cn) mkc(qj-qj)+Pos(ccj)-Pos(cq)
Pos(ccj)-Pos(cci) de,i.

If (b) holds, then we can write n (ch+l)rk+l. Hence,

Pos(cnj)-Pos(cni) [mkc + Pos(c(’k+l))]- [mkcqi + Pos(Ccmk)l de,ink.
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In either case Pos(cnj)-Pos(cni)
Since, by construction, consecutive elements of Sk are congruent with consecutive elements

of Ck modulo rk, and we have seen that Pos(cnj)-Pos(cni) d.... it follows that D, contains all

the differences of positions between successive multiples of c in S, and that they repeat

cyclically.

Next we extend the previous result to any element n in S.
DEFINITION 6. Let

Ct+I--C,, < nlkd, (Trk+l)-cmk, mk
and define D {d, <i < mk},

that is, Dk is the set of successive differences of the first mk+l elements of Sk.
THEOREM 7. Let n= qTrk+c be an element of Sk. Then, the following statements hold.

(i) The set of differences of positions of consecutive multiples of n in Sk can be obtained as

D D[, + mkqDk (3.1)

where the sum is taken, as in the sum of mk-tuples, over the i-th elements of the sets, < < mk.

(ii) The position of the first multiple of n to be sieved, i.e., n2, is given by

Pos(n2) mkq(n+c)+Pos(c2). (3.2)

(iii) The multiples of n that follow n in Sk are obtained by cyclically adding the elements

of D, starting with dnx for c %
PROOF. (i) Let n qik+C and nj qj%+cj be consecutive elements of Sk. Then

Pos(nnj) Pos(nni) q(nj ni)mk + Pos(cnj) Pos(cni). (3.3)

From Lemma 5 we know that Pos(cnj)-Pos(cni)= de,i, moreover, since n [Ci] and nj e [cj] are

consecutives, then it follows from Definition 6 that nj-n di, hence (3.3) yields

Pos(nnj)-Pos(nni) qdimk+d,i. (3.4)
On the other hand,

d,i= Pos(ncj)-Pos(nci) q(c-ci)mk+POs(cci)-Pos(cci) qdimk+d,i

and the conclusion follows from (3.4) and (3.5).
(ii) This is a dear consequence of Lemma 2.

(iii) Let n and n be consecutive elements in Sk. Letting n n in (3.5), we can write

Pos(ninj) Pos(nini) qdimk+dci, dni,i, thus Pos(ninj) Pos(n) + dr,
i,i.

We remark that this last theorem establishes that once the sets Dk and D, are calculated,

then for any n 6 [c] the set of diferences D, and Pos(n2) are readily known. Then, the multiples

of n from n on in Sk are found by cyclically adding the elements of D starting at d,,i for

c cj. Is now clear, that sieving multiples of elements that belong to different equivalent
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clas.scs are independent processes, and therefore the algorittun is particularly well suited for

parallel processing.

COROLLARY 8. Let t.n Sk be such that n (rood rk). Then D, D[ + mk(qt-qn)D,
where the smi is taken ow,r the i-th elements of the sets, _<i < mk.

PROOF. Since t--n (rood rk), then D[,t D[,-. Hence from the previous theorem, we

obtain

D, D[ (D,’ + mkqtD/)-(D + mkqnDt mk(qt-qn)D. (3.6)

It is well known (see [5]) that the arithmetic complexity of the Sieve of Eratosthenes

is O(n log n). Even though this remains unchanged in the k-th extension, the reduction in

calculations is substantial, as the next Lemma shows.
100LEMMA 9. The k-th extension of tile Sieve of Eratosthenes produces a -pTz0 reduction on

the size of Su_, and a rk-::rk)% size reduction on S.

Proof. We know that (r)=(pk-1)(rk.). Moreover, in Sk each basic interval [qrk+l,

(q+l)rk] contains (rk)elements, while Sk.1 has p(rk_)elements in the same interval, hence

]Sk-l]-lSk] Pk(k-l)--(’k) 1 (3.7)
ISk.l[ pkq(Trk.l) -.

I00-,That is, the reduction in size of Sk with respect to Sk_ is ---z0.
From (3.6) we get [Ski --kllSk.,[, from this we readily see that ISKI "trk)’slrK and the

conclusion follows.

Table 1 below gives an idea of the size reduction of Sk with respect to S and Sk.
respectively. Notice that the reduction on the size of Sk is accompanied with an increase on the

corresponding size of (Trk), and therefore on the number of the sets of differences as well as on

the size of this sets. At the same time, once we pass the fourth extension, the reduction on the

size of Sk seems to be rather small while (rk) becomes too large. This suggests that even for

relative large values of N, the third or the fourth extension may yield the faster results.

k pk r (rk) 10_._0 % 1 (rk) %Pk rk
1 2 2 1 50% 50%
2 3 6 2 33% 67%
3 5 30 8 20% 73%
4 7 210 48 14% 77%
5 Ii 2310 480 9% 79%
6 13 30030 5760 8% 81%

TABLE 1
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