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ABSTRACT. Pointwise estimates for the error which is feasible in simultaneous approximation of a

function and its derivatives by an algebraic polynomial were originally pursued from theoretical

motivations, which did not immediately require the estimation of the constants in such results.

llowever, recent numerical experimentation with traditional techniques of approximation such as

Lagrange interpolation, slightly modified by additional interpolation of derivatives at -1-1, shows that

rapid convergence of an approximating polynomial to a function and of some derivatives to the

derivatives of the function is often easy to achieve. The new techniques are theoretically based upon

older results about feasibility, contained in work of Trigub, Gopengauz. Telyakovskii, and others, giving

new relevance to the investigation of constants in these older results. We begin this investigation here.

Helpful in obtaining estimates for some of the constants is a new identity for the derivative of a

trigonometric polynomial, based on a well known identity of M. Pdesz. One of our results is a new proof

of a theorem of Gopengauz which reduces the problem of estimating the constant there to the question

of estimating the constant in a simpler theorem of Trigub used in the proof.
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1. INTRODUCTION

There are several results which give pointwise estimates of the error in simultaneous approximation

of a function f E Cq[-1, 1] and of its q derivatives by an algebraic polynomial and its corresponding

derivatives, in terms of the modulus of continuity of f(q), which we recall is defined by

w(f(’); )= suPl,-,l<lf(’)(:r,)

One of the first of these results was a theorem of Trigub, the relevant part of which states:
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THEOREM 1. (see Trigub [I]) Let f E C’[ -1, 1] Then .for each n > 2q, there exists a poly,tom,al

P, of degree at most n such that for k O,...,q and for -1 <_ z <_

+ f(q). v/1 x’-’

with M independent of n and f.

,)+ (.)

A theorem of Gopengauz [2], based upon the theorem of Trigub, shows that there is the possibility

of exact approximation at tim endpoints :t:l"

THEOREM 2. Let f E Cq[-1, 1]. Then for each n > 4q + 5, there eztsts a polynom,al

at most n such that for k O ,q and for-1 < x <

(1.)

with It" independent of n and f.

Such results as these were originally pursued for the sake of completing the theory of algebraic polyno-

mial al)proximation. Theoretical interest in similar results has been widespread and sustained, leadig to

a literature too extensive to cite or l)araphrase here. In such a theoretical context, however, the question

of obtaining a value for the constants is not urgent. In fact a close examination of the original proofs of

these results and of those in such related work as that of Telyakovskii [3] shows that the proofs are ex-

tremely uneconomical concerning constants, and the question of estimating auy of tle relevant constants

(obviously difficult) has been little addressed in the subsequent work.

More recently, results such as the theorem of Gopengauz have been used as essential tools in showing

that Lagrange interpolation (and other linear projections, too) can be modified by interpolation of some

derivatives at +1 with good effect: the derivatives of the function being approximated are simultaneously

approximated by the derivatives of the approximating polynomial, at a rate which approaches what is

theoretically feasible. Evidence obtained from computer experimentation indicates that polynomial inter-

polation e.g. on nodes generated by Chebyshev or Jacobi polynomials, when ,no(lifted by the introduction

of interpolation of derivatives at +1, can give numerical results for convergence to many standard "bad"

functions (the infamous Runge function and some others) and their derivatives which a’re very good

indeed. For example, Tasche [4] an(l llaszenski and Tasche [5] have combined these methods with cotn-

putation by a fast algorithm and have developed a method of approximation which seems comparable

in its practical efficiency to cubic spline approximation and seems to give superior approximation for a

comparable number of data points if the function is several times differentiable.

Thus, there is the potential of applying new methods of simultaneous approximation in nunerical

mathematics, but estimates of the error incurred in approximation require reasonable estinates of the

constants in such basic theorems on simultaneous approximation as that of Gopcngauz. l[ere, we begin

to address this problem with the following result:

THEOREM 3. For a function f C(q)[-1, 1] let P,, be a poly,,o,nial satisfy,ng (1.1) for some C

(which may or may not depend upon n or f, as we choose) and also satisfying

f()(-l-1) P,*)(-t-1) for k 0,...,q. (1.3)
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Then (1.2) follows with a constant h" <_ max(,le’C, 7C + 7). In particvlar, the relation between h" and

C is absolute and independent of all other quantities involved.

From our theorem, the theorem of Gopengauz will also follow, once it is shown how to construct poly-

nomials satisfying (1.1) and (1.3). We will complete the proof of (1.2) by giving a new construction for

such polynomials. Thus, (1.2) will be derived directly from Trigub’s (1.1), bypassing a second conclusion

of Trigub’s theorem (not stated here in detail) giving a pointwise estimate for I;?+’)(z)l. There are two

reasons for this innovation. One is that the second conclusion of Trigub, while interesting in itself, is not

needed here. The second is that for both the first and the second conclusion of Trigub’s theorem to hold,

the value of the constant M in the theorem must be large enough to accommodate both conclusions,

requiring the user of Trigub’s theorem to begin his work with a larger value of M. Another fact relevant

here is that the original proof of Gopengauz and also the derivation of a pointwise estimate for p,?+l in

Trigub’s theorem depend upon an inequality of Brudnyi giving such pointwise estimates of derivatives.

To date, no estimate of the constant in Brudnyi’s inequality exists, either. Our proof will permit another

improvement which can have importance in applications: the minimal value of n for which the estimate

is valid can be lowered from 4q + 5 to 2q + 1.

2. A LEMMA

The following result will be useful in proving the Theorem:

LEMMA 1. Let T,(O) be a trigonometric polynomial of deree at most n. Then its derivative

can be written as

(sin) (-1)’+T’.(O)= ---mYT.(O+t,)knsin (-sn- -)-, (2.1)

in which m := 2n and in which

2j- 2j-
t :=

2m
r=

4n
7r. (2.2)

PROOF: Setting m := 2n, we invoke the formula of M. Riesz [6], which gives for an arbitrary trigono-

metric polynomial , of degree at most m

" (-1)+(z) ---m ,(z.= + tl)(sin 1/2tl),
where t (-)" (-t)" Replacement in this identity of (z) by & sin mz gives for z 0 the

2m 4n

useful fct that

1=
=, (sin’$t,)" (2.3)

Having noticed this, we now sume that O.(z) is an arbitrary trigonometric polynomiM of degree at

most n and choose

.,(1 .(z). : i.
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For z 0 we thus obtain

Finally, since , was arbitrary, we may set ,(z) T,,(z + 0), obtaining (2.1), and the proof of the

Lemma is complete, l-I

3. PROOFS

We begin with the proof of Theorem 3, and then we will show how this result can be used in the proof

of Theorem 2.

PROOF: The proof of our Theorem (Theorem 3) divides itself naturally, into two cases: that k q

(including the possibility that k q 0 is one of the cases, and that k < q is the other.

Case 1 (k q): We prove that

If’)(+l) P.’(+I)I 0 and If’(x)- P.c’(x)I < C w f(’); + -implies

vzi’- :)If(’)(x)- ef’)(x)l < C’ to f’);
n

(3.1)

in which C depends only upon C. The special case that q 0 is also covered here.

Clearly, (3.1) holds with any C’ > 6C if i x > or if x -!-1. Therefore we will assume that

0 < /1 x < , and there is no loss of generality in assuming further that x lies near 1. We then may

make the estimates

IfC’)(z) P’)(z)l-< If(’)() ff’)(1)l + IP’)(x)-

and

ql x2) 3.3Iff’)(x)- f(’)(1)l _< to(f(’); x) _< to f(’);
n

A more precise pointwise estimate for IP’)(z)- P’)(1)I is needed which is zero when I. To obtain

such an estimate, we notice first that for arbitrary 6 [-I,I]

IP’)(t)- P’)(1)I < IP’)(t) f(’)(t)l + Iff’)(t)

whence

v/1 )+ + to(f(’); t) (3.4)IP’)(t)- P,’)(1)I < Cw f(’); , ’i

We now define := arccos x and cos for 0 < a < . Then we have 0 < sin # < sin , and

furthermore for n _> we have. Now we define T,(#):= P’)(cos#)- P’)(1), and we note that

IP’)(x)- P’)(1)l S IT:(0)I dO. (3.5)
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Using the inequality (3.,11 in the identity (2.1) and noting (2.3), we can establish a Imintwise estinate

for IT;’,(O)l on the interval [0,0].

1=1

2 lll’X ( [Pq)(cOS (0 + ’J ))-(,!Sill )’2 Pq)(1),) (sin ?1221

+nax f(; sin
0 b (sin )

n sin

A(O)+ (0).

Now we use the fact that w(f(); A) _< (1 + A)w(f(’); 6) to estimate A(O) and then B($). We obtain

( ) (f,); sinO.’ (sin".-t)A(O) < nCmax +lsi’*(O+t’)l+
sinO nsinO* n / nsinu

_< c%x + Ii,, o t,i,,I+o.los i,, t, + ,, i. ; ,, . i,,

Therefore

/o’ ( )A(O)dO < 2nC rnax O + (1 csO*)[cstlsinO + [2sin -t’ cos lt’ + O,

. (f(q); sin0). (sin )
n n sin

and we easily obtain

Z’A(O)dO2nC( 2 ) ( sinO) ( sin 0.)+ + -n + w its);
n

< 7Cw frO; __n (3.6)

We will now similarly estimate B(O) and then its integral. It is helpful to notice that always if

0 < 0 < 0, then
0 tcos >]cosl for all j,

which we will use in estimating one of the terms.

B(O) <_ 2nm]tx 1+ sinO" w
n n

<2nmax l+2n
mn O.

n n

Now we may estimate

fo. ( (0 + sin 0.) sin )B(O)dO < 2nmax O.+2n (1-cos0,)+ (1-cs0*)lsin[2
sin 0

(f(q);
From this we obtain

fo " ( sin 0) (f(); sin 0)" B(O)dO < 2n[ + 2n(lO-6-On + + + Sn)]w f(q); _< 6w (3.7



284 K. BALZS AND T. KILGORE

The estimate for [P’)(x)- Pq)(1)l may now be obtained by combining (3.6)and (3.7):

s,,,o.),,
Now, combining the esti,,,ates (3.2) and (3.3) and (3.8), we have show,, that

[f(q)(x)- P’)(x)[ (7C + 7) f(q);
n

provided that 0 < 1 x g, and clearly this estimate is dominant on the rest of the interval [-1, !]
as well. We have establishe(l (3.1) with a constant C’ < 7C + 7. This completes the argument for Case 1.

Case 2: It remains to show for q that if the polynonials E, satis@ (1.1) and (1.3) with constant

C then for k 0,... ,q- we can obtain

w f();
n

(3.9)

in which C" 4 min{2q-,e}C.

Clearly, (3.9) holds with constant C 2q-C if 1 x , and we need to consider those values

of x such that 0 < 1 x < Without any loss of generality we can assume that x lies near We

then have for k q

(q: .,),-, (1- .,),-, (- #)II(’)(.)-
for some intermediate point z lying between and I. We may further estimate

]l(’)(z)-P’)(z)]. <C f(,); 41-x +

in which we have also used the fact that 1 z 1 x. Therefore

I(’() P()I < ’-C I(’; +

To show that 2-C can be replaced (independently of q) by eC, we repeat the argument, noting that

if0<l-< ((-/9 then

(1-:)-

On the other hand, if v/1 z > ((_),),_-4-r we obtain

+ < +
((q_ k)!),__n -From Stirling’s formula, one may note that

(q- k)! > e-*(q- k)q-:,

whence

((q- k)!),---r
Combining the previous estimates, we have shown

If(k)(x)- P(k)(x)l < min{2q-,e’}C w f(,);
ql- x

(3.11)
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Finally, it is clear that (3.11)i.,l,lies (3.9)if v/1 - _> _.t.,, (), the otl,er hand, if v/I x _< 1/4, tl,en

we may use the well know. fact tlat

b-w(fq);) 2-w(f(q)’) when 0 < <

and the mean value thcoren of Lagrangc to establish

z)- n

from which

II((x)- Pff(x)l < 2mi,,{2,- e}C(l-x),--.n. +--
71 7Z 7

and we have established (a.9).

This argument completes the proof of Case 2.

The constant K in Theorem can be defined as max{C’,C"}, and Theorem a is proven.

Next, we show how our Theoren a can be used to establish the Theorem of Gopengauz (Theore 2):

POON In view of our result (Theorem a), it is only necessary to construct polynomials 1, whid

satisfy (1.1) and also satisfy (1.a). Our method will be, beginning with polynonials Q,, whid, satisfy

(1.1), to construct polynomials ,,..., ,, in reeursive fashion, and for each j 0,..., q the polynomial, will be seen still to satisfy (1.1) (with a new constant M dependi,g on j) and to satisfy

FinMly, he polynomials P. ., re seen to sisfy (1.1) with new constn M replacing the original

consn M nd the sme ime to satisfy (1.3).
We define .,0 by

Then both conclusions surely follow for j 0, and we have M
Before constructing .,..., ,, we denote by m the greatest even integer such that mq < n, and

we let T(x):= eos(m areeosx), the Chebyshev polynomial of degree m. The properties of T whkh we

need here are that T(I)= ;IT,] ;and T;(1)= m;T;’(-1) -m Now, assumi,,g that

a givon j {1,..., q} the polynoial 0,- has already been defined, we let

Q,.,(z)" Q,._(z) + {(-1)’(f)( 1)-o(’).,,_,(1)) + (fo)(1) ,.,_
(-),
j!m.+

(1

Q.,_,(:) + ,,().

It is then seen easily that

II,,.., _< M.,_,(n-l-+)q-a(f(’+) _. ).
j!m+,)=M,_,( .)+wC/(’);n-)’."
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Therefore, we obtain for k 0,...,7 (using the Markov inequality to estiltate the deriwttives of h’,,a)

II II

in which

From the construction of Q-o the state,neat (3.12) will also follow. Only the case k j needs special

ROl has exactly one term in its expansion whiclt is not zero at +1attention we note that the derivative _.,o

nanely

{( 1)’(fO)(1) ....,_,(-1)) +(fO)(1)-OO) ,(1)) }.(-1)’,1
Ill 21

The value of this term at is

(-7;’,,()),.

(fO)(1) O0) (m) fO)(1)- (,) rl)’ ,1

and its value at -1 is

O0 (-1)’(m’)’ 10)(_I 00)_,(_i),(-1)’(/0)(- 1) ""’i-’(-1))

Thus it follows that f0)(4-1) -,,oO0)(+1) 0. As previously stated, we now let I := Q,.. An estimate

for the constant M may now be obtNned by noting that the following relation follows fi’om (3.13)

M,M 1+ (3.1,1)
=0

At this point, the proof of the theorem of Gopengauz is completed by applying the theoren of this

article (Theorem 3), using the value of C := M. Theorem 3 then provides an estimate for the constant

in the theorem of Gopengauz. 0
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