Internat. J. Math. & Math. Sci. 279
VOL. 18 NO. 2 (1995) 279-286

ON SOME CONSTANTS IN SIMULTANEOUS APPROXIMATION

K. BALAZS

Budapest University of Economics
Budapest 5, Pf. 489, I1-1828 Ilungary

T. KILGORE

Division of Mathematics
Auburn University, Auburn, Alabama 36849
(Mailing address of authors)

(Received March 3, 1993 and in revised form February 18, 1994)

ABSTRACT. Pointwise estimates for the error which is feasible in simultaneous approximation of a
function and its derivatives by an algebraic polynomial were originally pursued from theoretical
motivations, which did not immediately require the estimation of the constants in such results.
Ilowever, recent numerical experimentation with traditional techniques of approximation such as
Lagrange interpolation, slightly modified by additional interpolation of derivatives at +1, shows that
rapid convergence of an approximating polynomial to a function and of some derivatives to the
derivatives of the function is often easy to achieve. The new techniques are theoretically based upon
older results about feasibility, contained in work of Trigub, Gopengauz. Telyakovskii, and others, giving
new relevance to the investigation of constants in these older results. We begin this investigation here.
Helpful in obtaining estimates for some of the constants is a new identity for the derivative of a
trigonometric polynomial, based on a well known identity of M. Riesz. One of our results is a new proof
of a theorem of Gopengauz which reduces the problem of estimating the constant there to the question

of estimating the constant in a simpler theorem of Trigub used in the proof.
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1. INTRODUCTION

There are several results which give pointwise estimates of the error in simultaneous approximation
of a function f € C9—1,1] and of its g derivatives by an algebraic polynomial and its corresponding

derivatives, in terms of the modulus of continuity of f(9), which we recall is defined by

w(f9;6) = suppe_yi<sl fO(2) - SO ().

One of the first of these results was a theorem of Trigub, the relevant part of which states:
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THEOREM 1. (see Trigub [1]) Let f € C9[—1,1] Then for each n > 2q, there exists a polynomial

P, of degree at most n such that for k =0,...,q and for -1 <z <1

5 -k 5
|f®(z) = PE() < M (_1_;_15 + %) w (ﬂ“; ——”l"_l + "1 ) (L.1)

n

with M independent of n and f.

A theorem of Gopengauz [2], based upon the theorem of Trigub, shows that there is the possibility

of exact approximation at the endpoints £1:

THEOREM 2. Let f € C[-1,1]. Then for each n > 4q+ 5, there exists a polynomial P, of degree

at most n such that fork =0,...,q and for -1 <z <1

J 7\ ¢ * Vrump )
1O (z) - PO(z)| < K (%) w (fm; _1_“’_) (1.2)

n

with K independent of n and f.

Such results as these were originally pursued for the sake of completing the theory of algebraic polyno-
mial approximation. Theoretical interest in similar results has been widespread and sustained, leading to
a literature too extensive to cite or paraphrase here. In such a theoretical context, however, the question
of obtaining a value for the constants is not urgent. In fact a close examination of the original proofs of
these results and of those in such related work as that of Telyakovskii [3] shows that the proofs are ex-
tremely uneconomical concerning constants, and the question of estimating any of the relevant constants
(obviously difficult) has been little addressed in the subsequent work.

More recently, results such as the theorem of Gopengauz have been used as essential tools in showing
that Lagrange interpolation (and other linear projections, too) can be modified by interpolation of some
derivatives at +1 with good effect: the derivatives of the function being approximated are simultancously
approximated by the derivatives of the approximating polynomial, at a rate which approaches what is
theoretically feasible. Evidence obtained from computer experimentation indicates that polynomial inter-
polation e.g. on nodes generated by Chebyshev or Jacobi polynomials, when modified by the introduction
of interpolation of derivatives at £1, can give numerical results for convergence to many standard “bad”
functions (the infamous Runge function and some others) and their derivatives which are very good
indeed. For example, Tasche [4] and Baszenski and Tasche [5] have combined these methods with com-
putation by a fast algorithm and have developed a method of approximation which seems comparable
in its practical efficiency to cubic spline approximation and seems to give superior approximation for a
comparable number of data points if the function is several times differentiable.

Thus, there is the potential of applying new methods of simultaneous approximation in numerical
mathematics, but estimates of the error incurred in approximation require reasonable estimates of the
constants in such basic theorems on simultaneous approximation as that of Gopengauz. llere, we begin

to address this problem with the followine result:

THEOREM 3. For a function f € CW[-1,1] let P, be a polynomial satisfying (1.1) for some C

(which may or may not depend upon n or f, as we choose) and also satisfying

S®(£1) = PB(£1) for k=0,...,q. (1.3)
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Then (1.2) follows with a constant k' < max{4eC,7C + 7}. In particular, the relation between ' and

C is absolute and independent of all other quantities involved.

From our theorem, the theorem of Gopengauz will also follow, once it is shown how to construct poly-
nomials satisfying (1.1) and (1.3). We will complete the proof of (1.2) by giving a new construction for
such polynomials. Thus, (1.2) will be derived directly from Trigub’s (1.1), bypassing a second conclusion
of Trigub’s theorem (not stated here in detail) giving a pointwise estimate for | P{4*V(z)|. There are two
reasons for this innovation. One is that the second conclusion of Trigub, while interesting in itself, is not
needed here. The second is that for both the first and the second conclusion of Trigub’s theorem to hold,
the value of the constant M in the theorem must be large enough to accommodate both conclusions,
requiring the user of Trigub’s theorem to begin his work with a larger value of M. Another fact relevant
here is that the original proof of Gopengauz and also the derivation of a pointwise estimate for P{#*!) in
Trigub’s theorem depend upon an inequality of Brudnyi giving such pointwise estimates of derivatives.
To date, no estimate of the constant in Brudnyi’s inequality cxists, either. Qur proof will permit another
improvement which can have importance in applications: the minimal value of n for which the estimate

is valid can be lowered from 4¢ + 5 to 2¢ + 1.

2. A LEMMA

The following result will be useful in proving the Theorem:

LEMMA 1. Let T,(8) be a trigonometric polynomial of degree at most n. Then its derivative T),(8)

can be written as

oy si (=1p*
T!(8) = ZT(0+t )( ml) G I (2.1)
in which m := 2n and in which
%=1 21 )
t = o TS T ™ (2.2)

PROOF: Setting m := 2n, we invoke the formula of M. Riesz [6], which gives for an arbitrary trigono-

metric polynomial ®,, of degree at most m

(z)——Z@m( o,

where t; := Q%‘Z = 914;"1)1 Replacement in this identity of ®,,(z) by Lsinmz gives for z = 0 the

useful fact that

4m2 Z (sm 4,y (2:3)

Having noticed this, we now assume that 1,(2) is an arbitrary trigonometric polynomial of degree at

most n and choose

(sin o :
d’m(z) = ll’..(l) — .
\.l Slh 3
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For z = 0 we thus obtain )
m (—-1y+!
' (0) = — .
¥a(0) = Zw"( ) ( nsin J-) (sin Zl,)2
Finally, since 1, was arbitrary, we may set ¥,(z) := T,(z + 8), obtaining (2.1), and the proof of the

Lemma is complete. 0

3. PROOFS

We begin with the proof of Theorem 3, and then we will show how this result can be used in the proof

of Theorem 2.
PROOF: The proof of our Theorem (Theorem 3) divides itself naturally into two cases: that k = ¢
(including the possibility that k = ¢ = 0 ) is one of the cases, and that k < ¢ is the other.

Case 1 (k = q): We prove that

[fO(£1) — PO(£1)] = 0 and | fO(z) - P,f"(x)l <Cuw (f(v); ____.Vln_z’ + i)

n?

implies

(3.1)

1f9(z) - PO(2)| < C'w (f"’: ———“‘) ,

n

in which C’ depends only upon C. The special case that ¢ = 0 is also covered here.
Clearly, (3.1) holds with any C* > 6C if V1 —2% > & or if z = £1. Therefore we will assume that
0 < V1 —2% < &, and there is no loss of generality in assuming further that z lies near 1. We then may

make the estimates
119) - PO < 1£9(2) ~ SO+ 1PO(E) - PO, (02
and
170 = £ < g5 1- ) <0 (105 YEE). 59

A more precise pointwise estimate for |P{)(z) ~ P{)(1)| is needed which is zero when z = 1. To obtain

such an estimate, we notice first that for arbitrary t € [-1,1]
[PAO(1) = PIO(1)] < |PO(E) = FO()] + 119(t) = FO1)),
whence

+w(f9; 1-1). (3.4)

IPP() - PO < Cw (f<'>; AL ;f—)

We now define 8, := arccosz and ¢ « cosf for 0 < < 0. Then we have 0 < sin 8 < sin4, < -, and

furthermore for n > 1 we have & < Z. Now we define T,,(6) := P{¥(cos6) — P{¥(1), and we note that

|P(e) - PO < [ 1m0 do. (25)
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Using the inequality (3.4) in the identity (2.1) and noting (2.3), we can establish a pointwise estimate

for |T.(6)| on the interval [0,6,].

y 1 [P{(cos (8 + ¢,)) = PO(DI (sin 22)?
IT.(0)] < 1—";;( Gin by )( £

nsin 3t,)?

(¢) (¢)
< 2n max [Pt (cos (8 + 1,)) — Pi(1)] (sin yi)g
J (n?sin -1-)2 B
__)_ 2
< 2nmax Cw (f(") ﬂj’_) 2) (sin 5*)* i 5 )
! n n n?sin® 3

0 +1, in 21)?
+2n maxw (j(” 2sin® + ) . (_5'_"__;_‘)
n?sin® 4

< A(0) + B(O).

Now we use the fact that w(f¢); M) < (1+ MNw(f¥); 6) to estimate A(f) and then B(#). We obtain

in(0 41 . nt;\2
A(6) < 2nC max (1 + Lsin(6 +1¢,)] + ! ) w (fm§ s___mﬁ,) _____(sm 22)
J

sin 4, nsinf, n n?sin ‘g-

< 9C max (1 + |sinBcost,| + | cosBsint,| + 1 ) w(f("’; M) ‘ (sin%)'i
)

sin 6, nsin 6, n n?sin’ 511
Thereflore
‘- - t
/ A(0)dd < 2nC max (0, + M + (2 sin 4 | + 6. )
0 J sin @, nsin 8,
(f(") sin 0, ) (sin 22)?
n?sin’ 551 ’

and we easily obtain

0s r sin 0, sin 6,
< r (0. ) ( W, ) .
/o A(8)dd < 2nC (m o + + 3n) (j’ <7Cw|f - (3.6)

We will now similarly estimate B(8) and then its integral. It is helpful to notice that always if
0<6<4,,then

0 [
cos 5 > | cos 3" for all j,

which we will use in estimating one of the terms.

2 0+t . . ont
B(#) < 2nmax (l + 2——————n oo )w (j(v); o 0’) . _..(s'" =)’
J

sin 8, n n?sin? 51

Lain? . st t zo 21
45in° 0 + sin 8| sin 2 cos | 4 cos? ;sin” ¢
5‘2nmax[1+2n(‘1 |sin 7 2+ ')]
J

sin 0,

Now we may estimate

L& 1- 6,)|sin 2| + 1(8, + sin8,)sin? &
/ B(6)d6 < 2nmax [0:_}_2" (%(1—c050,)+( cosf,)|sin 2| + 3(0 + sin ;) sin 2)]
o ]

sin 8,
(f(") sin 0, ) (sin %2)?
n n?sin? g )’

From this we obtain

s T 1 1 sin 8, sin 6,
48 < 2n[ "~ _L ot . ___) ( W, ) )
/0 B0)d6 < 2nly + (st s t e 6112 2n2 Pyl (f f n ) G0
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The estimate for | P{)(z) — P{¥(1)| may now be obtained by combining (3.6) and (3.7):

|PO(@) = PO < (1 + 6 (1) T2 (3.8)

n
Now, combining the estimates (3.2) and (3.3) and (3.8), we have shown that

If@(z) = P{(2)] < (7C + Tw (I(”; -
provided that 0 < /1 — 2% < 5—‘", and clearly this estimate is dominant on the rest of the interval [-1,1]
as well. We have established (3.1) with a constant C’ < 7C + 7. This completes the argument for Case 1.

Case 2: It remains to show for ¢ > 1 that if the polynomials P, satisfy (1.1) and (1.3) with constant
C then for k =0,...,9— 1 we can obtain

gk
F®) - P) < C" (——““) v (!‘”; ——V“) . (39)

n

in which C” < 4min{29-*,€}C.
Clearly, (3.9) holds with constant C"= 200 if VT = 22 > -, and we need to consider those values
of z such that 0 < v/1—2? < 1. Without any loss of generality we can assume that z lies near 1. We

then have for k < ¢

[/ ®)(z) - PM(2)| _ If(k)(z)'Pth)(z)l(M)q—k < ¢ [£9(z) - p'(‘v)(z)l.(%)'_k

VI=eys ~ (e (-

for some intermediate point z lying between z and 1. We may further estimate

o= poar () <o (3 (0 224 L),

n n n?

in which we have also used the fact that v/1 — 22 < /1 — z2. Therefore
JI—zZ\* Vi—z?
[f®)(z) - P¥Y(z)| < 29+C (_l;i) w (j(v); vi-z + _1;) . (3.10)
n n

To show that 29=5C can be replaced (independently of q) by eC, we repeat the argument, noting that

0 < VT=2? < DT ey
|/ () - PH(z)| -+
VI= )t

On the other hand, if 1 - 22 > “’;%E, we obtain

vicz 1\t (vita2\"t 1 -
( +_) S( ) (1( )!)ﬂT)

n n? n (g-k

< i) - Pl (1)

From Stirling’s formula, one may note that
(g-K)2 e (g - k),

whence
1 e

(- = a=F

Combining the previous estimates, we have shown

|f®)(2) = PP(2)| < min{207%,e°}C ( + L) . (3.11)

n n n?

\/1—12)’—" (() V1-12?
vy -r wl| @, X2
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Finally, it is clear that (3.11) implies (3.9) if V1 —2? > L. On the other hand, if V1 =22 < 1, then

we may use the well known fact that
67 w(f9;68) < 2 'w(fW€) when 0 < 8 < ¢

and the mean value theorem of Lagrange to establish

(¢). Y1=£?
———————————U(“(I)— (Gl < 2min{2'7%, ef)}C (\/ITI—Q_ + ! ) L""(j P )

(1 —z2)-* n n?

from which

F(z) - PO < mnanw-*,e*}cm-—?)"'““-"'(”—1—’2+ ) (

n

\/'—_2
n
< 2min{2"",e‘}C(\/i__—ﬁ)v-k(%)q—k—l

and we have established (3.9).
This argument completes the proof of Case 2.

The constant & in Theorem 3 can be defined as max{C’,C"}, and Theorem 3 is proven. 0

Next, we show how our Theorem 3 can be used to establish the Theorem of Gopengauz (Theorem 2):

PROOF: In view of our result (Theorem 3), it is only necessary to construct polynomials P, which
satisfy (1.1) and also satisfy (1.3). Our method will be, beginning with polynomials @, which satisfy
(1.1), to construct polynomials Q. g, ...,Qn, in recursive fashion, and for each j = 0,.. ., q the polynomial

Qn,; will be seen still to satisfy (1.1) (with a new constant M, depending on j) and to satisfy
(SO - QYN (1) =0 for k=0,. (3.12)

Finally, the polynomials P, = @, , are seen to satisfy (1.1) with a new constant M, replacing the original
constant M and at the same time to satisfy (1.3).

We define @, o by

Qna(e) = Qu(e) + (J(-1) = Qu(-1) (52) + U1) = Qa1 (15

Then both conclusions surely follow for j = 0, and we have My < 2M.
Before constructing Qn,1,...,@a,, we denote by m the greatest even integer such that mq < n, and
we let T,,(z) := cos(m arccos z), the Chebyshev polynomial of degree m. The properties of T,, which we

need here are that T,,,(£1) = 1; |||l < 1; and T, (1) = m? ; T,(-=1) = —m?. Now, assuming that for

r>)

agiven j € {1,...,q} the polynomial Q,,_, has alrcady been defined, we let

Qns(@) = Quyms(a) + {17 U1 - @D (-1) (F55) + ) - @) (4

Rl Py Y

jlm2

Qn;-1(2) + Rn,(2).

It is then seen easily that

1 1 2
— )" (). (=—=—
1Ra, Il < MJ-l(nz )y WS n2 jlm2

)= My ) & ()

n?’ 3t \m

=)
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Therefore, we obtain for k = 0,...,n (using the Markov inequality to estimate the derivatives of R, ;)

,—— 9=k 5
fO(z) - Q) < M, ( - = +i> w (fm; vi-e ! )

in which

D J
M, < M,_,- (1 + i, (2) ) ) (3.13)
2! m

From the construction of Q,,, the statement (3.12) will also follow. Only the case k = j needs special

attention; we note that the derivative RY) has exactly one teem in its expansion which is not zero at 1,

n
namely

(0D - @2 0) (F55) + 00 - 0 (B2 - S - nar.

m%

The value of this term at 1 is

U0 - @8- B < oy - g8,

and its value at —1 is

(=1p(m?y

m

(=17 (f9(=1) - Q¥)_,(-1)) - = fO>=1) - Q¥)_,(~-1).

Thus it follows that fO)(+1) — Qf,’;(:!:l) = 0. As previously stated, we now let P, := Qn 4. An estimate

for the constant M, may now be obtained by noting that the following relation follows from (3.13)

2n\’

M,SMIILIO(H-%(;) ) (3.14)

At this point, the proof of the theorem of Gopengauz is completed by applying the theorem of this
article (Theorem 3), using the value of C := M,. Theorem 3 then provides an estimate for the constant

in the theorem of Gopengauz. 8]
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