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ABSTRACT. We prove the existence and multiplicity of periodic solutions for nonlinear Lienard
System of the type

x"(¢) +%[VF(X(I))] +g(x(0) +h(1,x(1)) = e(1)

under various conditions upon the functions g, 4 and e.
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1. INTRODUCTION

LetR" be n-dimensional Euclidean space. Wedefine || x| =[Z}.,|x/| 32

forx = (x3,%,...,%,) ER".

By L%([0,2n),R") we denote the space of all measurable functions x: [0,27] = R" for which || x(¢)] * is
integrable. The norm is given by

» 21/2
o= S150]

By C*([0.27],R") we denote the Banach space of 2n-periodic continuous functions x:[0,25] - R"

whose derivatives up to order k are continuous. The norm is given by
koo
¥l = 315°1.
where || y|| . = sup, e 2] y(t)] which is a norm in C([0,2n],R"). We use the symbol (,*) for the

Euclidean inner product in the space R". For x, y in C([0,2x],R") we define the L*-inner product as
follows

2n
(x,y)= j (e (e), y (1))t .
0

The mean value X of x and the function of mean value zero are defined by x -2—1’- 2*x(t)dt and

X(t) = x(¢) - x, respectively.

We define inequalities in R" componentwise, i.e. x,y ER", x sy if and only if x; sy, for
i=1,2,...,n,andx <y if and oniy if x; < y; fori = 1,2,...,n. In this work, we will study the existence
of periodic solutions and multiple periodic solutions for the problem

(E) x"(t) +d—dt-[VF(x(t))] +g(x)+h(t,x)=e(t)

(B) x(0)~x(2m)=x'(0)-x'(2m) =0
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where F : R" — R is a C*-function, g : R" — R" is continuous, & : [0,27] xR" —» R is continuous in
both variables and 2n-periodic in ¢, and e:[0,2n] —R is in L%[0,2n]},R"). We assume that
g(x) =(g(x)), 8ox3), ..., 8,(x,)) for all x = (x;,x,,...,x,) ER" and h(t,x) = (h(t,x), hy(t,x), ..., h,(t,X))
forall (¢,x) €[0,2n]xR".

Moreover, we assume the following:
(H,) hisbounded; i.e., for each i = 1,2,3...,n, there exists K; > 0 such that

|16, )] <K,

for all (¢,x) €[0,2 ] xR".
(H,) foreachi=1,2,...,n,

dt Ox,- a‘x‘-2 ‘
and there exists C; > 0 such that
8F(x)
2 | =G
0x;

for all x = (x;,x,...,x,) ER".

The purpose of this work is to give existence and multiplicity results for periodic solutions of
coupled Lienard system in R". This paper was motivated by the results in [1] and so our results in this
work extend some results in [1]. To prove our results we adapt Mawhin’s continuation theorem in [2],
and we give appropriate region for the system’s multiplicity by finding an a'priori bound.

2. A'priori Bound
To prove our assertion, we consider the following homotopy:

(E) x"(t)+ k%[VF(x(t))] +Ag(x)+Ah(t,x)=he(t).

Let A €(0,1) and let x(¢) be a possible solution of the problem (E,)(B). Taking L*-inner product by
x'(¢) on both sides of (E,), we have

2x 2%
nor % F(x(t 5
2S [ 5 oaren 3 [ s

0 i =Y

. 2n » 2x

+A 3 I hy(t,x(£))x;(t)dt =\ 3 f e;()x; (e)dt .
i=l i=1
0 0
By the continuity of %—’, (H) and the periodicity of x;(t) in ¢, we have

2x

2n
~ : s [ OF@)
2.6 [woras |5 [ S ot

2

. . \o[ 2% 1” . 2% 1”2 2n 1
szm[zlk] [ |x.-'(r>|’dr] *[.-% | |e‘.~(t)|2dr} [z [ [x,-'(t)]’] :

Hence

||x’I|LzS( : ) [V’Z?[iglq’]ln+||é|| L,] -M,.

minl sisn Ci

. n
I£losy/ g Mo=M.-

By the Sobolev inequality, we have
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Suppose there exist @ = (a,,a,,...,a,),b = (b,,b,,...,b,) in R? such that @ < b; if x(¢) is a solution of
(E)(B)such thata <X s b and | £|| , s M}, then
n 12
Il <] Stmax(al.[])F] M.

Taking L *-inner product by x"'(¢) on both sides of (E,), we have

§ [wwra.} FFG) oy ey
i=1 o il 0 ox,

2n 2n
A3 jg,(x,(t))x/'(t)dux,z j B (¢, x(6)) ;" ()
i=] o i=] 0

2n

- xé;‘ &(t)x"(e)dr .
[1]

Since F is a C*-function, for each i = 1,2, ...,n, there exists i > 0 such that

8*F (x)

<D,
Bx;z ’

and also since g is continuous, for each i = 1,2,...,n, there exists L; > 0 such that
Igi(xi)l sL;.

Hence

12 12

$, [wotas(mso)| 3, [ d}
0 0

2n
< ” 2
[izl J‘o'xi (I), dt]
2 12
< ” 2
5, o ]
20 1”2 2 2 412
*[,-21 fo lé,.(t)]zdt] [2} fo x"(0) dt]

SRRt
+[SK] +lelpmt

" 12 n 12
LR

and thus we have
]

1%, (‘max D,.)Mo +m[ i L,z]
sisn iwl

, F11
I1.<y/% M,

for every solution of the problem (E,)(B) where M, depends on a, b, M, and M.

By the Sobolev inequality

3. OPERATOR FORMULATION
Define
L:D(L)CC'(0,2n),R") = L¥[0,27},R")
by
Cey(8),2x,(2), -, %, (1)) = (6, (£),2) (1), ., %, "' (£))

where D(L) = C¥[0,2n],R"). Then KerL =R?and
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2n
ImL -{e €L%[0,2n),R")| f e(t)dt -0}.
0

Consider two continuous projections
P:C'([0,2n],R") = C'([0,2n],R")

such that
ImP = KerL
and
Q:L%[0,27),R") — L¥[0,2x],R")
defined by
2n
1
Qo)1)= 5= j e(t)r .
Then

KerQ =ImL,C([0,2n],R") = KerL ®KerP
and L%([0,27},R") = ImL ® ImQ as a topological sum. Since
dim[L%([0,27},R")/ImL] = dim[ImQ] = dim[KerL]=n ,
L is a Fredholm mapping of index zero and hence there exists an isomorphismJ:ImQ — KerL. The

operator L is not bijective but the restriction of L on DomL NKerP is one-to-one and onto ImL, so it
has its algebraic right inverse Ky and, as well known, it is compact. Define

N:C'([0,2n),R") — L*([0,2x],R")
by

x(1) > = LIV G- 860 - h(e,5(1) +€0)

where x(¢) = (x,(¢),x,t), ...,x,(¢)). Then N is continuous and maps bounded sets into bounded sets. Let

G be any open bounded subset of C'([0,27],R"), then QN: G — L%[0,2x],R") is bounded and
Kx(I -Q): G —> L*([0,2n),R") is compact and continuous. Hence N is L-compact on G. Now we see
x €D(L) s a solution to the problem (E,)(B) if and only if

Lx =ANx.

4. MAIN RESULTS
THEOREM 4.1. Besides conditions on F, g, e, and (H,),(H,), we assume

(H;)thereexists r = (r, 15, ...,7,), S = (8,52, -.-,5,),A = (A,A,,...,A,)and B = (B,,B,,...,B,)inR"

such thatr <s andA <B

2x 2x
il:': L g(r +%(t))dt *2_11: Jo h(t,% +%(t))dt <A

and
2x 1 2%
ﬁ fo g5 +£OM +5= J'o h(t,% +2(t))dt = B

for every X € R* such that

|7 <L 3 [max(r.[s]Y1",
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and for every £ € C'([0,2n),R") having mean value zero, satisfying the boundary condition (B) and

4=V e [V [ 3] et

Then (E)(B) has at least one solution if

such that

A <ﬁ J;e(t)d¢<B.

PROOF. We construct a bounded open set Q in C'(({0,2x]),R") to apply Mawhin’s continuation

theorem in (2]. Using a'priori estimate, we have

1 » 7]
1= [V 8] 141, =

for any solution x(¢) of (E,)(B), A E€(0,1). Hence || | . =< \/';'_ M, =M,. Define a bounded set Q° by
Q= {x eC'([0,2n),R")|r sX s5,|%|.sM}.
Then, for any solution x(¢) of (E,)(B) lying in €°, we have
N 12
[ s [ Smax(l.[s)F] +h,
and
1”2
2

” n 12
“x”“[,zs (ln;lia‘)f'D‘-)Mo'l-Vz—n[iglL‘-] +|:i§ll(‘,2] +||é||L2 IMZ,

where L; depends on 7, s and M;. Thus x| . s \/ gMz. Define a bounded open set 2 by

Q= {x €C'[0,2nR") | r <X <5, %] o <2M}, || x'] o < %Mz} .

Let (x,\) E[D(L)NaQ) % (0,1) and if (x, ) is any solution to Lx = ANx, then (x, ) is a solution to the
problem (E,)(B),

" 12
Il <[ S[max(rLlsDF| 141 <M,

and there exists some i €{1,2,...,n} such that %,=r, or 5. Take L’-inner product with
+ 13 p

e =(0,0,...,0,1,0,...,0) on both sides of (E,), we have
2x 2% 2x
M [ s+ [ B =2 [ e(oar,
0 0 0

or

2%

2x 2x .
f g ()t + J h(t,x(t))dt - J et)dt =0
(1] 0 0

if x; = r;, then, by assumption
2n

2% 2x
I g + X ()t + J Bt Ty + (O, enn Ty + Z(E )y ooer Xy + X () - I e(t)dt <0.
0 )

o

If x; = s;, then again by assumption,
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2n

2n 2
f (s, +£,(0))dt + f B(6T, 450, oS, + (1), o X, + 5, () - f e(t)dt <0.
) 0

0
Thus, for each A € (0, 1), for every solution of
Lx = ANx
is such that x & 9.
Next, we will show that QNx =0 for each x EKerL N9Q and dz[JON,QNKerL,0]=0

where dg is the Brouwer topological degree. Since J:ImQ — KerL is an isomorphism and
dim[ImQ]=dim[KerL]=n, we may take J to be the identity on R" and hence

2n 2x 2x
1 1 1
VoM @O =g [ s jo x5 | e
with, fori =1,2,...,n,
1 2% 1 2x 1 2x
VON.@0 =g [ seOM =7 [ hexrg [ e

where x(t) = (x,(2), x,(), ..., x,(¢)).
Let x €KerL N3, then x =X is constant in R",
_ . 17
I3 <] $max(rlsDF]
and there exists i € {1,2,...,n} such thatx; =X, = ; or s;. In a similar manner we have (QN); (x) = 0.

Thus QNx = 0 for each x € KerL NJQ. It is easy to see that P = QN KerL =1IT;_|[r,,s;]. Let
P,={x€P|x=r},P/={xEP|x,=5}andx EP,x' EP/,i =1,2,...,n.

Then x =X,x' =X’ are constant with
_ n 12
I, and |7 <[ ZmaxnlIs D7)
andx; =X;=r,x; =X, =s,. Hence
1 2n 1 2n 1 2n
JON =—— Jdt —— ; ceesTiyenny —
UON), ()= -5- jo 8t -5 jo Bt Ty X, ) 45— jo (1)t >0
and
1 2= 1 2n 1 2n
JON), (x") = —— e =— [ Bt nssx M +— [ e, .
UON), () = -5= j gt - f B X, M j (1 <0

Thus (JON); (x)(JON);(x') <0 for i = 1,2,...,n. Therefore, by the generalized intermediate value

theorem, dg[JON,Q2NKerL,0] = 0. Hence, by Mawhin’s continuation theorem, the problem (E)(B)
has at least one solution in D(L)NQ.
THEOREM 4.2. Besides conditions on F, g,e, and (H,) and (H,), we assume

(H4) there exists q =(‘11,‘12,~-~:q,.)» r '(rl’rZ"-"ru)’ N -(slySZ:"',sn)y A ’(A17A27""Au) and
B =(B,B,,...,B,) inR" such thatqg <r <s and A < B such that

2n 2n
1 _ 1 _
o J; g(q +X(t))dt *om L h(t,x +X(t))dt =B ,

2n 2n
1 _ 1 _ .
2 Lg(r +X(O) +— J;h(t,x+x(t))dt <A,
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and
1 2= 1 2n
n fog(S +X(2))dt I J; h(t,x +x(t))dt =B

for every X €R” such that

_ n 12
I3 <| 5 max(al.Irls] Y]

and for every ¥ €C'([0,27},R") having mean value zero, satisfying the boundary condition (B) such

. T 1 n 2
A el | Lo PSR

Then (E)(B) has at least 2" solutions if

that

2n

A<12n j e(t)dt <B .

)
PROOF. We construct 2" bounded open sets in C'([0,2x],R") to apply Mawhin’s continuation

theorem in [3]. Using a'priori estimate, we have

, 1 n 12 .
"x "Lzs ( min;‘s,, C.') [m [;glK‘?] + "ellf] -MO

for any solution x(¢) of (E,)(B),A € (0,1). Hence | %] » s \/E_Mo aM,. Let],J be two disjoint subsets
of {1,2,...,n} such that UJ = {1,2,...,n} and define Q, by Q, = {x €C'([0,2n],R")|g; s x; s7;
fori E1,r; sx; s s; for j €J,| % . s M,}; then the number of such sets is 2" and for any solution, x(¢)
of (E,)(B) lying in QF}, we have
1”
Ix]. = [igl[maxq gl |rDF + 3 Imax(r. 5] )]2] M,

and
a 12 " 1”2
||x"||L2 s (IT‘?"E.D,')Mo +\/-27t[i§lLiz] + [.’%K‘?] +| é||l_2 =M,

where L; depends on q,7,s and M. Thus | x| .= \/g—Mz. Define a bounded open set Q;; by

Q, = {x €C([0,2n),R") | q; <X, <r; for iE€l,r;<X;<s;

for j EJ,]]JE[],<W,,||x"||,<'\/ ——’23“ M,.

Let (x,A) E[D(L)NdKQ;,]x%(0,1) and if (x,A) is any solution to
Lx =ANx,
then (x,A) is a solution to the problem (E,)(B),
12
|71 <[ 3 fmax(ql. IrF+ 3 max(rl.|sDF| 121 =01,
and there exists some i € {1,2,...,n}, such thatx; = g,,7; or s;. By (H,) and assumption we can see for

each A € (0, 1), for every solution of Lx = A Nx is such thatx & 3Q;;. And similarly, we can also see
QNx =0 for each x € KerL N3Qy,. Itis easy to see P = Q; NKerL =TI, ¢ [q;,r]xI;¢,[r;,s,] Let
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P={xEp|x=q} if i€,

-

-{x€plx=r} if jEJ,
P'={x€p|x=r} if i€l,
P/={x€p|x=s} if jEI,
and let xEP,, x' EP; with i €IUJ. Then, for i €I, we have x;=q;, X;=I. Hence

(JON);(x)(JON);(x') <0fori €I. For j EJ, we have x; =r;, x; =s;. Thus (JON); x)JQN);(x") <0
for j €J. Therefore, we have dz[JON, 2, NKerL,0] = 0. Thus, by Mawhin’s continuation theorem,
the problem (E,)(B) has at least one solution in D(L)NQ,. Thus (E,\)(B) has at least 2" solutions.

Corollary 4.3, Besides the conditions on F, g and e, and (H,) and (H,), we assume
(H;) there exists T = (T}, T5,...,T,) >0 in R” such that
g(T+x)=g(x) and A(t,T +x)=h(t,x)

for all (£,x) €[0,2n] xR".
(H,) there exists r = (ry, . .s7n), S = (51,52 .5, ), A = (ApAy,...,A,) and B = (B,B,,...,B,) in
R"suchthatO<s-r<T,r <s,AsB

2x 2x
1 _
%: L 8 + 2O +5= J'o h(,E + £t <A,

2x 2
%, J; g(s +E(t))dt +$ J; h(t,x +%(t))dt =B

for every x € R" such that
. 1”2
11 $maxs =Tl )Y

and for every £ € C'({0.2n], R") having mean value zero, satisfying the boundary condition (B) and

||f||~5\/§(m)[\/—n[zlq] +lel | -

Then (E)(B) has at least 2" solutions if

such that

A <2— I e(t)Mdt <B .
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