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ABSTRACT. If V is a Lyapunov function of an equation du/dt u’ Zu in a Banach space then

asymptotic stability of an equilibrium point may be easily proved if it is known that sup(V’) < 0 on

sufficiently small spheres centered at the equilibrium point. In this paper weak asymptotic stability is

proved for a bounded infinitesimal generator Z under a weaker assumption V’ < 0 (which alone

implies ordinary stability only) if some observability condition, involving Z and the Frechet derivative

of V’, is satisfied. The proof is based on an extension of LaSalle’s invariance principle, which yields

convergence in a weak topology and uses a strongly continuous Lyapunov funcdon. The theory is

illustrated with an example of an integro-differential equation of interest in the theory of chemical

processes. In this case strong asymptotic stability is deduced from the weak one and explicit sufficient

conditions for stability are given. In the case of a normal infinitesimal generator Z in a Hilbert

space, strong asymptotic stability is proved under the following assumptions Z* + Z is weakly

negative definite and Ker Z 0 }. The proof is based on spectral theory.
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Section 1. Introduction
A well-known theorem of A. M. Lyapunov see 4 or 11 for example, asserts that zero

in R is an asymptotically stable equilibrium point of an evolution equation

du
--(t) Zu(t) t>0 (1.1)
dt

if V(x)> 0 for x : 0 V(0)=0 and
V’(x)=(Zxlc3V(x)) < 0 for x:0 (1.2)

where V R --> R is a suitable Lyapunov function and 0V is its Frechet derivative

notation is further explained in the beginning of Section 2 asymptotic stability is recalled in

Section 3 ). R. Datko in 5 and 6 extended A. M. Lyapunov’s theory to infinite-dimensional

Banach spaces under a stringent assumption

W’(x) Zx I/)W(x) < -ct( Ilxll (1.3)

where ot 0, +o,, ---> 0, +,,o or(x) > 0 for x > 0 and ct(0) 0, see also remarks and papers

quoted in 18 ). If V(x) x lGx ), where G is a symmetric operator, then the above inequality

means strict negative definiteness of the operator Z*G + GZ, where Z* is the adjoint of Z. One is

compelled to use assumptions as this by the fact that bounded sets in a Banach space are precompact if

and only if the space is finite-dimensional, see 7 However, if one manages to find a Lyapunov

function that satisfies a weaker condition

V’(x)=(ZxlOV(x)) > 0 for x 0 (1.4)

then Lyapunov’s theory yields only ordinary stability even in the finite-dimensional case 4].

Essential information on asymptotic behavior of solutions under (1.4) is given in LaSalle’s

invariance principle, see 13], according to which all the solutions converge to the maximal invariant

subset M of R x V’(x) 0 }. Today this principle is a standard tool of investigation of asymptotic

stability in Banach spaces, see 12], 11 I, 18] (the context of wave equation) and 9 ], 2 ], 3

(the context of functional differential equations).

Using LaSalle’s invadance principle J.P. Miller and A.N. Mitchell, see 14 proved in

1980 an extremely interesting fact stability for a linear system in a finite dimensional case under (1.4)

is equivalent to observability of the pair (Z, OV’ ), observability is explained at the beginning of

Section 3 ). This idea proved fruitful in theory of retarded differential equations, see 2 1, 3

Strong compactness of trajectories is characteristic for wave equations, functional differential

equations and parabolic equations. This is related with the fact that the generators are unbounded and

in this aspect bounded generators, with weak damping, are not easier to treat than unbounded ones if

compactness of the resolvent is lost then only weak asymptotic stability may be obtained. However,

strong asymptotic stability may be easily deduced from the weak one if strong compactness of

trajectories may be proved independently of compactness of the resolvent.

Evolution equations (1.1) in Banach spaces with a linear bounded infinitesimal generators Z

are considered in this paper. Weak asymptotic stability is proved with the help of a Lyapunov function

with non-strictly negative time derivative. Section 2 deals with omega-limit sets. It is shown that the

LaSalle’s maximal invariant set coincides with the unobservable space of the pair Z,/)V’ and the

weak invariance principle is proved. Weak asymptotic stability is proved in Section 3 if, moreover,

the pair Z,/)V’ is observable. By means of a simple example it is shown that observability is not a

necessary condition of weak asymptotic stability. The theory is applied to equations with Volterra

integral operators in the right-hand sides that arise in the theory of chemical processes, see ]. For

this type of operator the kernel of /)V’ may be of codimension one and observability is unexpected.

Simple conditions on the kernel of the integral operator that ensure strong stability are stated. Normal

operators in Hilbert spaces are considered in Section 4 without the technique of invariant sets and

compactness arguments It is also shown with the help of an example that under weak damping

considered in this paper trajectories tend to equilibrium mucfa more slowly than in the case of a strong
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damping corresponding to (1.3). R. Datko proved that for strictly negative definite generators in Hilbert

spaces trajectories tend exponentially to zero. It is proved in [21] that exponential weak asymptotic
stability implies exponential strong stability (the adjective exponential is omitted in [21] ).

Section 2. Weak invariance principle and non-observability.
We consider a linear evolution equation

du
--(t) Zu(t) > 0 (2.1)
dt

where Z B ---) B is a bounded linear operator in a Banach space B. See 16 for existence and

uniqueness of solutions and for the proof that u(t) eZ(t-t0)(u (to)) for every solution u and all t, to:, 0.

We shall use frequently the following notation. B is a Banach space over the field C of

complex numbers, B* its adjoint space and (. I. B x B* C the duality mapping. If x B then

its norm is denoted as Ilxll. We assume that (ZlX Izzy) =zlg2(xly) for all z,z2 C and all

x B, y e B*, where the bar denotes conjugation. A sequence zn n 1,2 B converges
weakly to z** B if limn._,**( z z** y 0 for all y B* and this will be written shortly as

z** w-limn._,** zn

Definition 2.1. Let u 0, +o,, B. Then x B belongs to the weak omega-limit set of u,

shortly x wo)ls(u) if

liminft._,,,,,l(u(t) x y )1 0 for all y B* (2.3)

and belongs to the strong omega-limit set ofu, shortly x smls(u) if liminft_,**ll u(t) x 0.

We need two lemmas in the proof of the invariance principle.
Lemma 2.2. ON OMEGA-LIMIT SETS. Let u C( (0,+o,,), B be a bounded soh,tion of an

evolution equation (2.1) with a bounded infinitesimal generator Z in a reflexive Banach .space B.
Then wo)ls(u) is a non-empty weakly compact invariant subset of B, so)Is(u) is a non-empty strongly

compact invariant subset of B and so)Is(u) wo)ls(u).
The proof of this lemma is omitted since it is similar to the proofs of the corresponding

statements in 11 and 18 ]. The second lemma is quite elementary and its proof is omitted, but it

supports an essential step of the proof of the invariance principle.
Lemma 2.3. If f cl((0,-o), 0,-t-oo f’ df/dt < 0 in O,+,,o and f" is unifirmly

continuous in (0,+o,,) then limt_,**f’(t)=0.

In order to formulate precisely the invariance principle we recall the following notions.
Abounded linear operator A B B* in a Banach space B is called synmetric if

x Ay y Ax )- for all x, y B, where the bar denotes conjugation, hence x Ax is real.

A symmetric bounded linear operator A is called weakly negative (positive) definite if

y ,y < >_ 0 for all y B, and is called strictly positive if y Ay _> II y 2 for all y e B
Let G B -- B* be a symmetric bounded linear operator. Let u C(( 0, +** ), B be

a solution of (2.1) and let V(x) x lGx Then the time derivative of V(u(t)) may be expressed
as follows

dV(u)
V’(u(t)) (t) (u(t) (Z*G + GZ)u(t) (2.5)

dt
where Z* B* ---> B* is the adjoint of Z. V(x) --) R for all x in B by synmaetry of G, similarly

V’(x) R hence V B ---> R may serve as a Lyapunov function.

The major advantage of the result below over Theorem 2.3 in 18 is that the Lyapunov
function may be only strongly continuous and needs not be weakly continuous.

Theorem 2.4. WE,d( INVARIANCE PRINCIPLE. Let u CI((0,+,,,,), B be a solution of (2.1)
with a bounded infinitesimal generator Z in a reflexive Banach space B Let G:B B*
be a symmetric bounded strictly positive linear operator suchfhat the operator Z*G + GZ B -- B* is
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weaily negative definite. Let M be the maaimal invartant set of (2.1) contatned tn

Ker(Z*G + GZ). Then u(t) approaches lVl in thefollowing sense
inf{ liminft_,,,,l/u(t)-xly)l x M }=0 for all y B* (2.6)

Prmf Let us te V(x) x Gx as a Lyapunov function. Then

u(t) I1 < V(u(t) < V(u(0) < + since V’(u(t) < 0 by (2.5) and weak negative definiteness f

Z*G + GZ, so u(t) is bounded. All the other assumptions of Lemma 2.2 are also atisfied hence

wtols(u) is a non-empty and we’,ffdy compact nvariant set. If we01s(u) Ker(Z*G + GZ) then (2.6)

follows from (2.3) since wools(u) M by the definition of M and invariance of wools(u) Therefore

the proof will be complete if we show that wools(u) Ker(Z*G + GZ).

So, let x w-limn._,,,u(tn) wools(u) Using (2.5) we obtain the following identity

V’(u(tn)-X)=( u(tn) I(Z*G+GZ)u(tn) + x I(Z*G+GZ)x

-( u(tn) l(Z*G+GZ)x (xI(Z*G+GZ)u(tn)

=V’(u(tn)) + V’(x) 2Re(u(tn) I(Z*G+GZ)x)
The left-hand side is non-positive by the weak negative definiteness of Z*G + GZ The first term in

the right-hand side converges to zero by Lemma (2.3), for V’(u(t) is a non-positive and uniformly

continuous function of t, thanks to boundedness of G and Z. The third term converges to

2Re( x (Z*G + GZ)x =-2V’(x), where Re denotes the real part. Thus taking limsup of both sides

we obtain that 0 >_ V’(x) 2V’(x) -V’(x) hence V’(x) > 0. This, together with V’(x)< 0, which

follows from (2.5) and the weak negative definiteness of Z*G + GZ implies V’(x) 0.

Let us consider the following function of a real variable

g(s)=V’(x+ys)=(x+ysl(Z*G+GZ)(x+ys))
where x, y B are fixed. Since V’ takes only non-positive values by the weak negative definiteness

of Z*G + GZ then g <_ 0. It was shown above that g(0) V’(x) 0, thus g attains its maximum

value for 0, hence 2Re( y (Z*G + GZ)x g’(0)= 0. Replacing y with /(-l)y we obtain

in a similar way 2Im( y Z*G + GZ )x 0, therefore y Z*G + GZ )x 0, which implies that

(Z*G + GZ)x 0, for y may be any element of B. Thus we have showed that wools(u) is a subset of

Ker(Z*G + GZ). Q.E.D.
Remark. If B is separable then formulas (2.6) and (2.3) may be given a metric form as in

18, Corollary 2.1 ].
The maximal invariant set from LaSalle’s invariance principle may be described precisely using

the notion of non-observability from control theory. Let W "B B* and Z B -- B be two bounded

linear operators. Then the closed subspace of B

Nobs( Z, W I’nO Ker WZ (2.7)

is the non-observable space of the pair (Z, W). (Compare this definition with the sufficient

condition of observability (3.1) in Section 3 ). It seems that the following simple fact remained

unrecorded till this time.

Lemma 2.5. ON MAXIMAL INVARIANT SET If Z and W are bounded then

Nobs( Z, W coincides with the maximal invariant subset of (2.1) that is contained in Ker W.

Proof. In the first part we prove that Nobs( Z, W is an invariant subset of Ker W. By its

definition Nobs( Z W is a subspace of W, hence it remains to show invariance that is,

eZtx Nobs(Z,W) for all e R if x e Nobs(Z,W). This follows from the fact that for a bounded
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operator Z, ezt lmK_ (Zt) k! in the sense of the uniform operator topology, see 17 ], hence
=0

K

by (2.7) WZneZtx=limK__,=y(zt)/k! =0
k=t.

Second part" maxmallty. Let M denote the maximal invariant subset of Ker W Maxmalty
of M implies that Nobs(Z,W)

_
M It remains to show the conver,,,e inclusion. Let us cm,,tler an

arbitrary element x of M Then WeZtx 0 for M is invarant and M c:: KerW. The function

WeZtx is infinitely many times differentiable since Z and W are bounded, hence all its derivatives

are equal zero for > 0, that ts WZneZtx 0 for all n > 0 and > 0. Taking 0 we conclude that

x e Nobs(Z,W), thus M c: Nobs( Z, W ), for x was arbitrary. Therefre M Nobs( Z, W ).

Corollary 2.6. ON LASALLE’S MAXIMAL INVARIANT SET. Under the assumptions of Theorem

2.4 the maximal invariant set M coincides with Nobs( Z, Z*G+GZ).

Proof. This follows from Theorem 2.5 with W Z*G + GZ.

Section 3. Weak asymptotic stability and observability.

Weak asymptotic stability for the evolution equation (2.1) is proved in this secuon with the

help of observability. The pair Z, W is called observable if for every solution u of (2.1) the

condition Wu(t)= 0 for all > 0 implies that u(t) 0 for all > 0. A necessary and sufficient

condition for observability for bounded operators is that see 19, first part of Theorem 5.1.1

Nobs( Z, W [’n>0 Ker WZ 0 (3.1)

In order to make communication precise, let us maintain the following well-known

terminology. Zero in B the equilibrium point of (2.1), is

a)

c

stable if for every e > 0 there exists a > 0 such that for every solution u we

have that Ilu(t)ll < for all > 0, whenever Ilu(0)ll < 8 This is called also ordinary stability.
asymptotically stable if limt_.,**llu(t)ll 0 for every solution u

This is called also strong asymptotic stability.
weakly asymptotically stable if w-limt._,**u(t) 0 for every solution u

The principal result of this paper is as follows

Theorem 3.1. ON WEAK ASYMPTOTIC STABILITY. Let u C( (0,+,*,), B be a solution of
(2.1) with a bounded infinitesimal generator Z in a reflexive Banach space B. Let G:B -- B*be a symmetric bounded strictly positive linear operator such that the operator Z*G + GZ B --+ B* is

weakly negative definite and the pair Z, Z*G + GZ is observable. Then zero in B is a weakly

asymptotically stable equilibrium point of (2.1).
Proof. All the assumptions of Theorem 2.1 are satisfied, hence u(t) converges in the sense of

formula (2.6) to the maximal invariant subset M of Ker( Z*G + GZ ). Corollary 2.6 implies that

M Nobs( Z, Z*G + GZ hence M 0 by the observability assumption. Therefore, by (2.6),
we have that for every solution u of (2.1) liminft__l(u(t) y )1 0 for all y B*. Suppose that for

some y B*
limsupt_,,,.l(u(t) y )1 > 0 (3.2)

Then there exists a sequence tn, n 1,2 as in Definition (2.1) such that limn._,_(u(tn) yl

exists and is equal to r. Now boundedness of u, reflexivity of B and the Eberlain-Shmulyan
theorem imply that there exists a subsequence tnj, 1,2 such that u** w-limj._,,,.u(tnj) exists

and then I( u**l y )1 : 0 by (3.2) hence u** : 0. But u** is an element of wtols(u) which is a

subset of M. Thus a non-zero u.,, belongs to M, which, by observability, consists of zero alone

a contradiction. Therefore w-limt._,**u(t 0. Q.E.D.

Remark 3.2. J. P. Miller and A. N. Mitchell proved-in 14] that, under (1.4), observability
is a necessary and sufficient condition of asymptotic stability. Theorem 3.1 asserts only sufficiency of
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this condition for weak a,ymptotic stability It follows from the Example below that oh.ervahthty is

not a nece.ary condttton of wealt a.ymptotic ,tabtlity Theorem 3.3 sht,ws h,wever that strong

asymptotic stability implies observabilty.

Example Let B*=B=L 10,11, C and let Zx(,,) "4(-I ).s.x(s),

G(x,y) Jlo.l x(o)y(ojdo. Let us consider an equation 0tu(t,s) Zu(s) "/(-1 ).s.x(s). Then

W(x) G(x,x) x x -II x J[0,zi 12do
may serve as a Lyapunov function. Next Z*G + GZ 0, hence V’(u(t) 0 by (2.5). Therefore all

the solutions are bounded. The solution of the above equation is given by the following formula"

u(t,s) u(0,s)e q(-), therefore

limt-,**,[IO.l u(t,s).v(s) ds limt..,...[[0,1 u(0,s)e( 4(-)st )-v(s) ds 0 for every v e B,

hence w-limt_.,,u( t,. )= 0 thus zero is an asymptotically stable equilibrium point However the

observability condition (3.1) is not satisfied for in this case

Nobs(Z,Z*+Z)=(’nzoKer(Z*+Z)Zn=Ker(Z*+Z)=H{0}
Theorem 3.3. ON OBSERVABILITY FROM ASYMPTOTIC STABILITY Let G" B-B*

be a symmetric bounded strictly positive linear operator. If Z is a bounded operator on a Banach

,wace B such that the operator Z*G + GZ" B B* is weakly negative definite and zero in H is

a strongly asymptotically stable equilibrium point of (2.1) then the pair Z, GZ + Z*G is

observable.
Proof. Let 0:x Nobs(Z,GZ+Z*G).Then u(t)=eZtx Nobs(Z,GZ+Z*G) for

Nobs(Z,GZ+Z*G) is an invariant subspace of (2.1) by Theorem2.5, hence

d(Gulu)
(ul (GZ + Z*G)u) 0 since Nobs(Z, GZ + Z*G c: Ker(GZ+Z*G) hence

dt

(Gu(t)lu(t)) (Gu(0)lu(0)). Thus u(t) does not tend strongly to zero. This contradicts the assumption

of strong asymptotic stability. Q.E.D.
Section 4. Strong stability for integral generators.

If we take a Hilbert space H as the Banach space B in Theorems 2.4 and 3.1 then

B* H by the Riesz representation theorem and the duality mapping coincides with the inner

product. We take G to be the identity operator so that V(x) x x x ’ Theorem 3.1 is now

applicable if the operator W Z*G + GZ Z* + Z is weakly negative definite and the pair Z, W

satisfies the observability condition (3.1). We apply this theory to simple operators. A subspace S of

a Hilbert space is an invariant subspace of a bounded linear operator K" H H if KS S. A
bounded linear operator K H H is called simple if K and K* have no common invariant

subspace on which they coincide. K is simple if and only if the following controllability condition

holds

closure tn Ran Kn( K- K* H, see 8, chapter 1, section 7, point 1, property 3 This, by

duality (see 19 ], the proof of Theorem 5.1.1), is equivalent to an observability condition

(’nz,O Ker K- K* )K*n 0 (4.3)

The following special case of Theorem 3.1 is of some interest in the theory of integro-

differential equations.
Theorem 4.1 ON ASYMPTOTIC STABILITY FOR SIMPLE GENERATORS if the infinitesimal

generator Z of the evolution equation (2.1) is a bounded weakly negative definite operator in a

Hilbert space such that K 4(-1)Z* is a simple operator, then zero in H is a weakly

asymptotically stable equilibrium point of (2.1)
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Proof. K ",,(-I)Z* is smple hence (4.3) mples the following observability ctntlititn

(’n) Ker(Z+Z*)Zn= 0 ,thus the pair (Z,Z+Z*) is )bservable. All the assumptms f

Theorem 3.1 are satisfied if one takes the identity operator as the operator G the result fi)llows.

Q.E.O.
In the proof of the next theorem we shall need a theorem on approximations by compact sets. If

X, Y are two bounded strongly closed subsets of a Banach space B then their

Hausdorff distance 0(X,Y) sup x inf y x-y + sup y inf e x x-y

is well defined and it induces a metric topology in the family of bounded closed subsets of B.

Lemma 4.2 ON COMr’ACT SETS. The family of compact sets is a closed subset of the

topological space of closed sets equipped with Hausdorffmetrics
The idea of proof. The definition "a subset of a metric space is strongly compact if fir every

positive there exists such a finite set of balls of radius : that covers it" means that the center.,, of the

balls approximate the set in Hausdorff metric, therefore the family of compact sets is the closure under

Hausdorff metric of the family of all the finite sets, hence a closed set.

Theorem 4.3 ON ASYMPTOTIC STABILITY FOR INTEGRAL GENERATORS Let z(x,s) be

a measurablefunction definedfor all s, x [0,1] such that z(x,s) 0 for > x and z(x,x) : 0 for

all x [0,11 and let the integral operator in L2( [0,1l, C) given by Zu(x) JlO.xlz(x,s)u(s)ds be

weakly negative definite. Then zero in L2( [0,1l, C) is a weakly asymptotically stable equilibrium

point of
)tu(t,s) Jt0,xlZ(X,S)U(s)ds. (4.4)

If, moreover, z(x,s) is continuous with respect to s,/)xZ(X,S) is a rneasurablefunction (for < x) and

the operator

u ,v )--.> f[O,xlZ(X,S)U(s)ds ftO,xltgxz(x,s)u(s)ds + z(x,x)J’10,xlV(S)ds (4.5)

is also weakly negative de,hire, then zero is strongly asymptotically stable.

Proof. Since Z is weakly negative definite, then weak stability follows from Theorem 4.1 if

we prove that K /(-1)Z* is a simple operator. From Theorem 7.1 ,secdon 7 of 8 it follows that

K is simple if Jto.xlZ(X,S)U(s)ds + Jtx.wlZ(S,X)U(s)ds 0 for all x, w [0,11 implies u(s) 0 for all

[0,1 ]. Taking w x we obtain that the first term has to be zero, hence the second has to be also

zero. The continuity assumption and the requirement z(x,x) # 0 imply that u(s) 0 for all s [0,1],

hence /(-1)Z* is simple and weak asymptotic stability is proved.

Now let us consider (4.4) in another Hilbert space

H u e L2( [0,1], C :/)u e L2( [0,1], C ), u(0) =0 }.

The equation (4.4) in this space is equivalent to a system of two equations in

L2( [0,11, C @ L2( [0,1], C consisting of (4.4) and an equation for the derivative

)tOxU(t,s) j’tO,xl/)xz(x,s)u(t,t)do + z(x,x)j’tO.xl/9,tu(t,oMo.
Therefore zero in L2( [0,1], C @ L2( [0,1], C is a weakly asymptotically stable equilibrium point of

the system by the already proved part on weak stability, hence also in H. Trajectories are bounded in

H hence by Sobolev imbedding theorem these are precompact in the strong topology of

L2([0,1], C), so they tend to their strong omega-limit sets in the sense of strong topology of

L2( [0,1], C ). But the strong omega-limit set is contained in the weak omega-limit set that consist of

zero alone. Thus strong asymptotic stability is proved provided the trajectory starts from H. Now let
x L2( [0,1], C ). Since H is dense in L2( [0,1], C ), then there exists a sequence xj H for

1,2 which strongly converges in L2( [0,1], C to x and therefore eZtxj converges strongly to

eZtx for eZt is bounded independently of t. Thus the sequence of trajectories converges under

Hausdorff metric in the topological space of closed subsets f L2( [0,1], C to the trajectory starting
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from x. Each trajectory starting from an xj is strongly precompact and hence also the trajectory

starring from x is strongly precompact by Lemma 4.2. Q.E.D.

Proposition 4.4. ON NEGATIVENESS. The operatorfrom (4.4) is weakly negative definite iffor
allfinite non-decreasing sequences x, 1,2,3 N+N det(M+M*) _> 0, where Mtj z(x, ,xj for
< < < N and Mj 0 for < < < N. Similarly, the operatorfrom (4.5) is weakly negative

definite if det(L+L*) > 0 where L,,j Ml,j for _< i,j < N, Ltj OxZ(X ,xj for N < N+j <_ < N+N

and ,j=Ofor N<i<N+j<N+Nl,LaJ=0 for <i<N and N<j<_N+Nl,La,J=z(x,,x,) fir
N<j<i<N+N and Lij=0 for N<i<N+j<N+N

The conditions for negativeness of the operator from (4.5) are satisfied if the operator from

(4.4) is negative-definite and the kernel z(x,s) is independent of the first argument.
Section 5. Strong asymptotic stability for normal generators.

Equivalence of asymptotic stability and observability for equations (2.1) with weakly

dissipative normal infinitesimal generators Theorem 5.3 is proved in this section The proof is

decomposed into three parts two of these are interesting in themselves and are stated as separate

theorems. The first one of these is independent of normalness.

A bounded linear operator Z is normal if it commutes with its adjoint Z*Z ZZ*. The

second step of the proof of Theorem 5.3 on equivalence of asymptotic stability and observability for

normal operators is a simplification of observability condition

Theorem 5.1. If Z is a normal bounded linear operator then the observability condition (3. l)

with W=(Z*+Z) is equivalent to Ker(Z*+Z)={0}.
Proof. If Z is a normal linear bounded operator then

Ker Z* + Z )Zn Ker Zn( Z* + Z : Ker Z* + Z for all n > 0. (5.2)

To show the reverse inclusion we argue as follows. Let x Ker Z(Z*+Z). Then by normalness of Z
we obtain II(Z*+Z)xll2 (xlZ(Z*+Z)x)+ (Z(Z*+Z)xlx) 0. Thus x Ker Z* + Z Hence
Ker (Z*+Z) :2 Ker Z(Z*+Z) Ker(Z*+Z)Zn This and (5.2) imply Ker(Z*+Z)Zn Ker(Z*+Z) for all

integers n_>0. Q.E.D.

The third step of the proof of Theorem 5.3 is asymptotic stability for selfadjoint operators. The

proof is based on the theory of spectral measures, see 15 ].
Lemma 5.2. ON ASYMPTOTIC STABILITY FOR SELFADJOINT OPERATORS. If A is a weakly

negative definite bounded selfadjoint linear operator in a Hilbert space H such that Ker A 0
then limt..,**ll eAtx 0 for all x H

Sketch of the proof .The spectral measure I.t of the operator A is projector-valued measure on

the set of all Borel subsets of -IIAII, 0 (since A is weakly negative selfadjoint operator) such that

eAtx [-IIAII, 0 e;t [t(d)x (5.6)

Regularity property of spectral measures implies that for every e > 0 there exists a natural

number N(x,e) such that

VJ’(-Un .o )(l.t(dC,)x, x )= .[(-,/n. o )l.t(dC.)x x- ]’[-,,A,, .-Un l.t(dC)x 11-< whenever n > N(x,e).

Using this and (5.6) we approximate u(t) with

Un(t) eat.[[-,,A,,.-l/n It(d;) x .It-,,A,,.-l/n e;t .(d;) x

Therefore limt_. Un(t) 0. The proof follows easily from this. Q.E.D.

The following theorem generalizes the interesting result of R. K. Miller and A. N. Mitchell on

evolution equations in Hilbert spaces with bounded normal infinitesimal generators.
Theorem 5.3 ON EQUIvALENCE OF OBSERVABILITY AND ASYMPTOTIC STABILITY FOR NORMAL

OPERATORS. Let Z be a normal bounded linear operatbr in a Hilben space H such that Z*+Z
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is weakly negative definite. Then the pair (Z,Z*+Z) is observable if and only if zero in H is

a strongly asymptotically stable equilibrium point of (2.1).

Proof. Strong asymptotic stability implies observability by Theorem 3.3 and observability is

equivalent to Ker Z* + Z 0 by Theorem 5.1. It remains to show that this condition implies
asymptotic stability. So let x B be arbitrary. By normality of Z, eZt also commutes with its

adjoint ez*t see 17 ], hence

eZtx e( (z-z*)t/2 (z+z*)t/2)X (e (Z-Z*)t/2 e(z+z*)t/2 )x efz+Z*)t/2x II,
for e(Z-Z*)t/2 is a unitary operator since (Z-Z*)t/2 is skew-symmetric. But (Z+Z*)/2 is selfadjoint
and its kernel is zero, hence by Lemma 5.2 limt_,**ll eZtx limt_,**ll e(Z+Z*)t/2x 0, which means

asymptotic stability, for x was arbitrary. Q.E.D.
Remark 5.4. R. Datko proved in [5 and [6] that in Hilbert space strict negative

def’miteness of Z* + Z implies an exponential decay of solutions to zero. Under the assumptions of

Theorem 5.3 where only weak negative definiteness is required, solutions may decay to zero much

slower. This is illustrated below.

Example. Let us consider an equation of the form (2.1) in H=L:([0,1I,C) with

Zu(s) K + 13s )u(s) where K is a nonnegative real number and a is complex with Re(13) _> 0. The

solution may be easily found u(t,s) u(0,s)e-(K + Is)t. It follows that Z*u(s) (K + [3*s)u(s) where

13" is the number conjugate to 13 The operator Z* + Z is strictly negative definite if K > 0 for

Z* + Z )u(s) -2( K + sRe(13) )u(s) In this case Datko’s theory is applicable hence norms of all

solutions tend exponentially to zero. Indeed

u( t,. e-Ktx/{ Ji0,1le-2Re(13)stl u(0,O)12do < u(0,. II e-Kt

Let K 0. Then Z*+Z is weakly negative if Re(13) > 0, but it is not strictly negative definite, hence

Datko’s theory is not applicable, since zero belongs to the spectrum of Z* + Z. However Z* and Z
commute. Therefore Theorem 5.3 implies strong asymptotic stability in this case. Let us take for

example u(0,s) --a where 0 < o < 1/2, as initial data. Then the tollowing is correct

limt_,. TM u( t,. )112 limt.. t-2a Jto.] e2Re(l)st s’2ads

(Se())2a-1 limt_,,, ft0,ge(l;)tl e-Zs s-2a ds (Re(l]))2a- to,--I e-2s s-Za ds

thus u( t,. tends to zero like ta-l/2 Convergence may be arbitrarily slow if x is close to 1/2.

If Re()= 0 then the above estimates break down and one obtains weak asymptotic stability as was

shown the last example in the section 2, despite that observability is lost.
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