Internat. J. Math. & Math. Sci.

p 2
VOL. 16 80. 2 (1995) 237--244 37

WELL-POSEDNESS AND REGULARITY RESULTS
FOR A DYNAMIC VON KARMAN PLATE

M. E. BRADLEY
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF LOUISVILLE

LOUISVILLE. KY 40292
(Received April 26, 1993 and 1n revised form September 20, 1994
Abstract. We consider the problem of well-posedness and regularity of solutions for a dynamic von Kdrman plate
which is clamped along one portion of the boundary and which experiences boundary damping through “free edge”
conditions on the remainder of the boundary We prove the existence of unique strong solutions for this system
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1. INTRODUCTION. In this paper, we consider the well-posedness of the von Kirman
system given by

we = 7 Awe + A%w = [w, F(w)] in Q=0 x(0,T)
AN

w(0,-) = wo; w:(0,:) =w; in Q

(1.1) w=$w=0 on o=1T9x(0,T)
Aw + (1 - y)Blw = —Z;?‘;wt on 21 = Fl X (0, T)
0 7] 9?
5—‘;Aw + (1 = p)Byw — 72-8—';w“ = w; — -a?wt on L,

where we assume 2 C R?, with sufficieritly smooth boundary ' = [ UT;. Here, 0 < p < %
represents Poisson’s ratio and the boundary operators B, and B, are given by

(1.1)(d)

Biw = 2nnyw,y — nfwy, — ndw.,
Byw = 'a%’ [(n} = nPwsy + mina(wyy — wis)]

Also, F(w) satisfies the system of equations

AF = ~[w,w]

(1.2) F=2F=0 on$=l‘><(0‘00)}

where

0% ? 8%¢ 0* ¢ 0?
o= LET  PoPy B 2o
dz2 dy 0y? 0z O0zdy 0z0y

The well-posedness and regularity of such a system is both a delicate and interesting problem.
Such results are important in solving the problem of stabilization for system (1.1). Usual PDE
techniques require the existence and uniqueness of “smooth” solutions to justify computations used
in determining the stability and controllability of dynamical models. The stabilization of thin plates
(and particularly the von Kirmén system) is of current interest in the literature (see ([1), 12, [3},
(4], [5])). The von Karman nonlinearity poses many difficulties in obtaining the well-posedness and
regularity results we seek. Difficulties also arise from the higher order boundary conditions on .
To handle these difficulties we adapt abstract results proven in [6] to our more difficult boundary
conditions.

This paper will proceed as follows. In Section 2 we state the main results of our paper. After
this we state the appropriate abstract results from [6] which will be useful in the proofs of our results.
In Section 3 we prove the results stated in Section 2.
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2. STATEMENT OF RESULTS. Before stating the results we intend to prove, we define

the meaning of “wecak solutions™ through a variational equality. Let
a(w.r) = /(AwAv + (1 = ) (2w Ury — WrVYY — Wyt ) )dQ.
i

We define the spaces

”?O(Q) = {u' e H Q) :w = % =0on Fo}
with norm
”U'”;lgo(n) = a(w.w)
and
Hrl‘o(Q) = {w €H' (Q):w=00n Fo}
with norm

ey o) = /ﬂ(w? +92(Vae[?)dR.
We define the solution space H = HE (Q) x H} (Q).

DEFINITION 2.1. A function pair (w,w;) € C((0.T); H) is said to be a weak solution to system
(1.1) if (w(-,0),w,(-,0)) = (wo,w1) and w satisfies the variational equation

0 = (wu,») + 72 (Vw, V) + a(w, w) = ([w, F], o)

(2.1) F<w - P o> 4 < dey Vo € HE (Q),

where here and throughout the paper (-,-) denotes either the L*(Q)-inner product or the duality
pairing between HE (Q) and [HE (RQ))', as is appropriate by context, and < -,- > represents the
L*(T)-inner product. We note that (2.1) holds in H1[0,T].

THEOREM 2.1. Given initial data (wo,w;) € H, there exists a unique weak solution to system
(1.1), (w,w) € C([0,T), H) for any T > 0.
THEOREM 2.2. (Regularity): Assume in addition to Theorem 2.1 that the initial data satisfy
(1) wo € H3(Q);  wy € HE (s
(2.2)

-
(ii) Bwo+ (1= p)Biwo = =gy } on Ty

&3——:,”“ + (1 = p)Bawo = wy — 'ag;iw]
Then the unique solution to (1.1) has the regularity
(i) (w,w;) € C((0,T); (H(Q) N HE () x HE(Q));

(ii) wy € C((0,T); HE,(Q))
(iii) equation (2.1) is satisfied for everyt € [0,T).

THEOREM 2.3. (Strong Regularity): In addition to Theorems 2.1 and 2.2 we assume that

(1) wo € HY(Q); w € H(Q)N HIZO(Q)'
(2.3)
(i) ;&Awo+ (1= p)Biwy = _Q%Ql Pune(0) } on Ty,
28 4 (1 — ) Bawr = wu(0) — =55
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where wy(0) s derived from the cquation (1.1). Then the unique solution gquarantced by Theorem

2.1 has the following regularity properties:

(i) (w.we) € C(0.T): (I1'(Q) N IR () x (HY(Q) N TR ()));
(ii) wu € CU0.T): HE(9));
(iii) wy € C((0,7): HE ().

Moreover, equation (1.1) holds in the L*-sense for cach t € [0,T).

The proofs of Theorems 2.1-2.3 will be based primarily on the work of Favini and Lasiecka [6].
That paper deals with abstract problems of the form

(2.4) {AMMU+AMU+AmeMn+Awwmn=fwm)

w(t =0) =we; w(t=0) =,

which will be described in detail shortly. Our intention in this paper is to recast system (1.1) in the
abstract framework of (2.4). We will then show that the results of [6] may be applied directly to or
may be adapted for our system. For the purpose of self-containment, we now state the necessary
background and results from [6] which will be useful in this present context.

Let A be a closed, positive self-adjoint operator on a Hilbert space H with D(A) C H. Let V
be another (appropriately chosen) Hilbert space such that

D(AY?) cV C HCV C[DAV?).
We assume that M : V — V' is both bounded and boundedly invertible so that the restriction
M = M|y with domain D(M) = {u € V : Mu € H} gives that V = D(M/?).
The operator G is defined on another Hilbert space, U. It is assumed that G : U — H is a

bounded linear operator such that G*A € L(D(AY?); H).
Finally, the nonlinear term F : D(AY?) — V' is assumed to be Frechét differentiable with

derivative, denoted DF, satisfying
IDF(u)h|lv: < Cllullparzy)|bllparrz)-

We note that for our purposes, f = 0.
We now state the results from [6] which form the framework for Theorem 2.1-2.3.

THEOREM 2.4. (F-L Theorem 2.1): For each initial data (wo,w;) € D(AY?) x V, there exists
To > 0 such that there exists a unique weak solution (w(t),wy(t)) to (2.4).

THEOREM 2.5. (F-L Theorem 2.4): In addition to the hypotheses of Theorem 2.4 we assume
that for all W = (w,w,) € C(0,To; D(AY?) x V) and such that G*Aw, € L*(0,To; U) the following
inequality holds for all t € [0,Tp):

t t
(25) [ Fwn wdmar < G [ Qe + it dr
+  Co(ll(wo, w1)llpearrzyxv) = Co.
Then the weak solution (w(t),w(t)) is global for any T > 0.
THEOREM 2.6. (F-L Theorem 2.2): Assume that the initial data (wo,w;) satisfy

(2.6) (i) w, € D(AY?)
(ii) A(wo + BGG* Awy) € V.

Moreover, assume that

(2.7) A~ 2DF (w)h|lg < C|[wllparrm))A]lv-
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Then the solution satisfics (2.4) in the scnse of the [D(AY )] topology for cach 1" € (0.7T).
(w(0),10,(0)) = (wy.wy) and has the Jollowing regularity:

(wow) € C(0.T: D(AY?) x D(AV?)).
wy € C(0.T:10).

By showing that system (1.1) can be formulated in the framework of the abstract equation (2. 1)
while satisfyving the hypotheses of Theorems 2.5 2.7, we will have proven Theotems 2.1 and 2 2.
For the additional regularity given in Theorem 2.3, we wiil need an additional proof which does not
follow directly from results of [6].

3. PROOFS OF THEOREMS 2.1-2.3. Let | = [} (Q). H = L*(Q) and U/ = (L*(T))*.
We define A on HZ (Q) by

Aw = A% with domain

(3.1) D(A) {weH*(Q)OHEO(Q):_\U'+(1 —1W)Bwe =0

Il

and iAw + (1 = p)Bw =0 on Fl},
dv

which is well-defined, positive and self-adjoint. By the results of Grisvard [7], we see that D(A!Y/2) =
HE (). We also define the Green maps, G, : H*(I') — H3/***(Q), G, : H*(T') — H™/?**(Q) and
Gs: H*(T) — H5/**(Q) by

Gih=v+= AW=0 in @
%)
v=50v=0 on Y,
(3-2) Av+ (1l —p)Biv=nh on 3
2Av+(1-p)Bw =0 »
Gh=v<e AWw=0 in Q
v=20v=0 on Y
v 0
(3.3) Av 4 (1—pu)Bio=0 on 3
2Av+(1-p)Byw=h b
and
dh
(34) G3’I = Gza
A straightforward computation shows that for w € D(A),
dw
(3.5) GlAw = Eh\,
G Aw = —wlr,.
. ow
GAe = S,

Let @ € [L*(T)]3. Define G = —Gyu; — Gaup — Gg(%"f). Then G : [L¥(T)]®* — L*(Q) is bounded
and G*A € L(HE (Q); [LX(T)P).

We now introduce the operator M : D(M) C H*(Q) — L%().
7]

Muw = (I — Ay + 4 AG, 'w.
dv

We observe that for v,w € H} (Q),

(Mw,v) = (w,v)+v4Vw,Vv)
dw dw
200 e gy 20
(3.6) 15, GaA) =35 0)

I

(v,w) 4+ v3(Ve, V),
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where we have interpreted the A,zAGg%-: term in the sense of duality. Using (3.5). we see that

M : HE (Q) — [H} (Q)] is an isomorphism (by the Lax-Milgrani Theorem).
By a straightforward computation, we see that

(3.7) (Aw.p) = a(w, )
and that

- - Dy Jdwy Op
(3.8) <G Aw. G Axp >= (lL't - '51—_,—2-,39) + (W W)

Defining F(w) = [w, F(w)] and using (3.6) - (3.8). we can now rewrite system (1.1) in the form
of (2.4).
To see that the von Karman nonlinearity is Frechét differentiable, we define the operator

(3.9) Apw = Aw with D(Ag) = H*(Q) N HX(Q).

Then F(w) = —Aj'[w.w] so that F(w) = —[w, Ag'[w,w]). By straightforward (but somewhat
lengthy) computations we see that

(3.10) DF(w)h = [h, A5 [w, w]] + 2[w. Ag[w, h]].

To prove that ||D.7-'(w)hl|[”%om)], < C(||w||,,go(ﬂ))”h“,,lgom,, we use the following lemma, which is
proved in [3].

LEMMA 3.1. The mapping (u,v,w) — [u, Ag'[v,w]] is continuous from [H*(Q)P> — H~¢(Q)
for0<e<1/2.
Consequently, we have
IDF ()l @y < IDF(w)hlim-@) < C”“’“:lgo(m”h||H,zo(n)-
Remark. An interesting estimate which arises in the proof of Lemma 3.1 is

(3.11) 45 [w, v)llm-<qa) < Cllwllgzayllvlizza)-
This will be useful to us later in the proof.

PROOF OF THEOREM 2.1. To complete the proof, it suffices to show that (2.5) holds.
Let (w,w;) € C([0,T]; HZ,(Q) x H} (). Then

/oz /n [w, F(w))wdQdt = /0‘ /ﬂ [0, w,) F (w)dQdt
= /()'/n% (%[w,w]) F(w)dQdt

= —% / ' Ji (%(AQF(w))F(w)det
1

- _Z/o']n%(AF(w))zdndt

1
<5 [(AF (w0 = ClIF (wo)laqa
< Cllwollrey,
where the last inequality holds by (3.11). Hence, (2.5) holds with C; = 0.

PROOF OF THEOREM 2.2. It suffices to verify (2.6) and (2.7) and to apply Theorem 2.6.
We note that (2.6)(i) is satisfied by hypothesis (2.2)(i) in Theorem 2.2. As for (2.6)(ii), we see that
in p.d.e. form this is equivalent to

Alwo € [HE, (Q))
wy = %{? =0 on Iy
Awo + (1 — p)Bywo = — 2

v on I';.
%%+u—m&%=m—%%} '

But then if wo € H3() N HE () and (wo,w,) satisfy the compatibility relation (2.2)(ii), we see
that (2.6) must hold also.
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We now prove (2.7). We need to show that for w e HE (), h € 1] () and p € 1} () that
[(DF () 2 < CUlellg )l @2l o
Recalling (3.9) -(3.10). we compute
(3.12) ([heAG Pecw])o ) = (e )] )
S Wl o ll b= o)l oy
< Ml il A e =«
< ('(||“‘||i/'zo(m)||/'“Il,‘om)H»?“u,-’Om)-

where we have used Lemma 3.1.
We now compute

[([eee AG e R])e @) = ([ )y AG e 2])
(313) < e olll=r—eqanll Az e Bl v
)+.=/4[

_(1
< Cllellnz @l @lido w. L)

ALK ~ Q).

where we have again used the results of Grisvard [7] to give us D( :
31-¢/4y 5o that (again by Gris-

We now examine the term ||A63/4+!/4[u', Bl r2q). Let v € D(A
vard’s results) we have ¢ € H3~¢(Q) N HZ(Q). Then

1/2
(318 (B = el ]S Cllell ([0, + v+ i)
But then since h € H'(Q) C L9(), 1 < ¢ < 0o, and by Hdlder’s inequality, we have, for example,

1/p 1/q
/‘2)) 2q )
([ wzza) ™ ([ wrae

[yy ”i?»(n) [I2 ”i?vm)
ClltullF24eo @yl T2y

IN

[ wipzan

Il

IN

Using the Sobolev imbeddings (see [8], Theorem 7.58 p. 218), this implies

¥yyhllZza) < ClldllFzve @ lhlFma)

where ¢, = Pt Substituting back into (3.14), we obtain

(3.15) ([, o], i)l < Cllwllrz@llelmzs@llkllm )
< Cllwlliz@llvl gs-«cay 1Bl 1oy

Putting (3.13)-(3.15) together implies

(3.16) ([, A5 [w, A]}, @)l < C||w")2qgom)||hl|§l,‘.o(n)|l‘r”||ﬂ,2.o(m-

Then taking (3.12) with (3.16) gives us the estimate in (2.7). Applying Theorem 2.6, we have the
result.

PROOF OF THEOREM 2.3. Here we would like to use the following strong regularity result
from [6].

THEOREM 3.2. ([6] Theorem 2.3 ~ Regularity Revisited): In addition to the assumptions of the
previous theorem (our Theorem 2.6) assume that F is twice Frechét differentiable D(AY?) — V.
Moreover, assume

(3.17) M~ € L(H; D(AV?))
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(3.18) Fluwy) € I

and

(3.19) (i) wo+ 3G Awy € D(A)

o (i) Alwy + 1GGEA{ =M Ay + 3GGAwy) = Fluo)] D) € V7.
Then,

(3.20) (wps ) € CO.TEDAYY) x V):

(3.21) A(w + 3GG= Aw,) = Fw) € C([0.T): 1),

- Awy + 366G Awy) — DF(w)wy € C[0.T]: V).

and the equation
(3.22) Mwy + A(w(t) + 3GG Aw(t)) — F(ae(t)) =0
holds for all t >0 on II.

Unfortunately, system (1.1) fails to satisly hypothesis (3.17), since for general L?-functions,
M1 cannot recover both houndary conditions on I'y. However, to follow the proof of the theorem
given in [6], we need only

(3.23) M7 A(wg + BGG* Awy) + M~ F(wo) € D(AY?),

which, in terms of system (1.1) requires w,(0) € D(AY?). By virtue of hypothesis on wp, w €
D(AV?), it suffices that A~': L*(Q) — H2(R). But this follows directly from the definition of M.
Consequently, system (1.1) satisfies the weaker, but sufficient, hypothesis (3.23). We now show that
under the hypotheses of Theorem 2.3, we may apply the modified version of Theorem 3.1 to system
(1.1).

By straightforward computations one can see that the von Kdrman nonlinearity is twice Frechét
differentiable with

D*F(w)(h,v) = [-245"[w,h),v]
+ [—245v, h),w] + [k, =245 w, v]].
By Lemma 3.1 we see that for w,h,v € HIZO(Q) with ¢ < 1/2,
'|D2,7-'(1Lv)(/1, v)“[H}O(ﬂ)]' < ”D2,7-'(w)(h,v)||H-.(m
<

C||“’||H,20(n) [h ||H,2°m) ||1'||H,20(m-

By hypothesis (2.3)(i), we see that F(wo) € L?(f) is trivially satisfied.
In terms of the p.d.e., (3.19)(i) is equivalent to (2.3)(i) with (2.2)(ii). We also observe that by
(2.4)

—MA(wo + BGG” Awy) — F(wo)] = wy(0),
So that the p.d.e. equivalent of (3.19)(ii) is
A%y € [Hl!o(ﬂ)]'

wy = %1 =0 on Fo
Awy + (1 = p)Bywy = —%u’u(?) } onT
ﬁ%—:ﬂl + (1 = p)Bawy = wy — ;—,;ll’u(o) .

But these are precisely satisfied by hypothesis (2.3)
Applying the results of Theorem 3.1, we obtain the regularity results of Theorem 2.3.
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