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ABSTRACT. In this paper, we classify 6-dimensional almost Hermitian submanifolds in the
octonians O according to the classification introduced by A. Gray and L. Hervella. We give new
examples of quasi-Kédhler and = Einstein submanifolds in @. Also, we prove that a 6-dimensional

weakly =-Einstein Hermitian submanifold in O is totally geodesic.
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1. INTRODUCTION.

Let (M®,:) be an oriented 6-dimensional submanifold in the 8-dimensional Euclidean space
R®. Throughout this paper, we shall identify R® with the octonians O (or Cayley algebra) in the
natural way. Taking account of the algebraic properties of the octonians, we may observe that
M?® has an almost Hermitian structure. A. Gray and L. Hervella defined the sixteen classes of
almost Hermitian manifolds ([6]). In §3, we classify 6-dimensional almost Hermitian
submanifolds in O according to the classification given by A. Gray and L. Hervella.
Consequently, the number of different classes (in the sense of A. Gray and L. Hervella) of almost
Hermitian submanifolds in O is six. Last of this section, we give examples of quasi-Kéahler (or
(1,2)-symplectic) submanifolds in O which are not nearly Kéhler and normal connections are not
flat. In §4, we shall investigate the weakly *-Einstein submanifolds in O ([13]). We see that any
Einstein Kahler manifold is necessarily a weakly *-Einstein manifold. First, we give some
examples of *-Einstein submanifolds in O whose *-scalar curvature vanish. Also we shall show
that a weakly *-Einstein Hermitian submanifold in O is a totally geodesic submanifold (Theorem
4.6). This result is a slight generalization of Chern’s result ([4]) for n = 4 in our situation.

In this paper, we adopt the same notational convention as in [1], [10] and all the manifolds
are assumed to be connected and of class C* unless otherwise stated.

2. PRELIMINARIES.

First, we shall recall the formulation of the Spinor group Spin(7) given by ([1], [8]). Let
S®={u€ImO| <u,u> =1} where ImO is the purely imaginary octonians. Then, for any
ueS® wehaveu= -7 and u? = —ufi = — <u,u> = —1. So, we may use u € $° to define
a map J,0—0 such that J (z) = zu for any £ € O. Each J, is an orthogonal complex structure
on O. It is known that Spin(7) is isomorphic to the subgroup of SO(8) generated by the set
{Ju|lu €S8} Also Spin(7) is isomorphic to the group {g € SO(8)| g(uv) = g(u)x(g)(v) for any
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u, v € O}, where \ is the map from SO(8) to itself defined by \(g¢)(v) = g(g ™ "(1)0) for any v € O.

Then we may observe that \ | gpny  Spat(7)—SO(T) is a double covering map and satisfies the

following cquivariance; g(u) X g(v) = \(g)(uxv) for any ¢ € Spin(7), where x is the vector cross
product defined by uxv = (Fu—-wrv)/2. Now., we shall 1ecall the stiucture equations of an
otiented  6-dimensional submanifold wm (O.Spin(7yy It 1~ konown that the octonmans O s

considered as the algebra H.& H where H is the quarternions  We put a basis of €O by N,
E, =N, E,=jN, E;=kN, N, E,=:1N, E,=)N, E,=kN where ¢=(0.1)e HdH.
N=(1-vV-1g)/2,N =1+V-15)2eC rO and{l.:,j,k} is the canonical basis of H. We
call this basis the standard one of C® RO and a basis (n.f., f)of CHRO is said to be
adnussible, if (n,f, 7, f)=(N,E,N,E)g for some g€ Spunl7)C Mg,4C). We shall identify

Spn(7) with the admissible basis. Here, we may note that the Grassmannian manifold G,(0) of

the oriented 2-planes in O is isomorphic to the homogeneous space Spin(7)/U(3). So, we can set

F (M ={(pi(n. f. 7. F))| =2V —1nAR = T, M for any p € M%),

Then z:F,(M®)—MC is a principal U(3)-bundle over M®. The induced almost complex structure
is defined by:

L(JX) = (LX)(nx§) (2.1)

for X € TPMG, where ¢, 7 are an orthonormal pair of the normal vector fields and
n= %({ — v/ =17) (for details, see [1], [10]). By making use of the properties of Spin(7), we may
observe that this almost complex structure is an invariant of Spin(7) in the following sense; let
M?® be an oriented 6-dimensional manifold and ¢, (: M°—QO be isometric immersions. If there
exists g € Spin(7) such that "= g o ¢ (up to parallel displacement) then J = J" where J and J’
are the almost complex structures on M® induced by the immersions ¢ and ¢, respectively. Also,
we can easily see that T9°= spanc{fy, fa, f3} where T is the subbundle of the complexified
tangent bundle TM®® C whose fibre is v/ — l-eigenspace of the almost complex structure J.

Then we have the following structure equations:

di=futfo, (2.2)
df = —n'f +fe—7 9 + 6], (Gauss formula) (2.3)
dn=n(v/—=1p)=fn+f0, (Weingarten formula) (2.4)
d(vV=1p) =T An+'0AT, (Ricci equation) (2.5)
dn=—nA(V-1p)-xAn—[F]AF,
_ (Codazzi equation) (2.6)
di=—kNO+OA(V —-1p)—[6]AT,
de =nA'T —kAk+0AG —[0]A[8], (Gauss equation) (2.7)

where p:R-valued 1-form, 7,6:M;,, (C)-valued 1-forms, and k:Mj,5 (C) valued 1-forms on
F (M®) which satisfy £ +'% =0 and tre + v/ —1p = 0. Here, [4] is defined by
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0 6 -6
0)=| -6 0 o
# 6 0

where 8 = (6',6%,6°). By (2.2) and (2.3), the second fundamental form [ is given by

M= -2Re{('"bow+"'80T )n}. (2.8)

Applying the Cartan’s lemma, we may conclude that there cxists 3 x3 matrices of functions
A,B,C on F(M®) (with complex values) satisfying

A='4, C='C,

B-(52)©

Hence, we have the following canonical splittings:

% =(—twoAwin, M"' = (- o'Bw—two Bo)n, I¥? = (-G o C& )n.

More explicitely, let {e;,Je;,eq Jey €5, €3} (resp. {€,J€}) be the orthonormal basis of T, M*®
(resp. Tpl M®) at p € MS. Then we have

f,=%—(e,—y/—l]e,) for 1 =1.2,3,
(2.10)
n=3(¢-v=17¢)
By (2.9) and (2.10), we have
<H(fx7f])1 n>= _%A”v
< H(fn_f ])7 n> = _% B;J~ (211)
<H(?:771)7 n>= _%a:]'

for any 7,7 =1,2,3.
Next, we give the representation of Ricci tensor p, scalar curvature 7, Ricci *-tensor p*, and

x-scalar curvature 7# by A, B and C which are defined by

6 6
plz,y) = > <Rle,z)y,e,>, T= Y ples€)s
1=1 i=1
(2.12)
1 6 6 *
p*(:l‘, y) = b zgl < R(e,,Je,)Jy,:c >, T* = lz:lp (6., e-)v

for any z,y e T,MS%,pe M 6, where {e,} is an orthonormal basis of T .M 6. Then, we have
PROPOSITION 2.1. Let M®=(M®J, <,>) be a 6-dimensional almost Hermitian

submanifold in O. Then, we have the following

(1) p(z,y)=2trB(‘aCﬂ+‘a'PB +‘a‘ﬂ+'5713)
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+2trB('aCh+'a'B3 +'a B3 +'aAp )
~[*a(AB + BC+AB + BC)) 3+ 'a(AA + B'B +'BB+CC) 7
a(AA+B'B+'BB+CC)3+'a(AB+BC +(AB+BC))7 |
(2) r=4(4|trB|*~trAA —2tr'BB - :CC ),

(3)  px(z,y)="'a(AB - BC-(AB —BC))3~'a (A4 - B'B ~‘BB+CC)3

~ta(AA-B'B-'BB+CC)B+'a(AB-BC -4 AB-BC))B,
“

(4) 1= —4(trAA —2tr'BB +trCC ),

where z = fa+ fa,y=fB+f 8.
PROOF. (1). By Gauss equation and (2.11), we get

plz,y)

= <6H, Il (z,y)> -2 Zl{<ﬂ (@ f), I(f,y)> + < O(g,F,), T(foy) >}

= —4<trB-n+trB -7, U (fa+fa,fB+78)>

-2 Zl{<ﬂ(fa+fa,f) O(f.f8+78)>
7=

+ < O(fa+fa,f,), 0(f,fB+FB)>},

By (2.8), we get them desired equality. From (1), we have (2). (3): By (2.9), we get

px(z,y) = — 2V — Z <R(f,f )y, >
1=1

= —2v/—1 2:1<Rf.,f)(¢_(fﬁ 7B)) fa+Fa >

By Guass equation, we get (3). From (3), we get (4). u}
3. SOME CLASSES OF (MS, ;).

In this section, we adopt the same notational convention as in [6]. First, we recall the
following.

PROPOSITION 3.1 [1]. An almost Hermitian submanifold M® = (MS,J,g) in O is a semi-
Kahler manifold, i.e., 62 = 0.

By Proposition 3.1, we easily see that W, = the class of Kihler manifolds. Hence we see
that, formally, the number of different classes is eight =

PROPOSITION 3.2 [1). Let M®=(MSJ,g) be a 6-dimensional almost Hermitian
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submanifold in O@. The following conditions are equivalent:

) MS is a Kahler submanifold in O( < > VJ=0)
) M°® s an almost Kdhler submanifold in O( < 0> A =0),
3) AM°® belongs to the class W,
)  M® is a minimal submanifold in O and satisfy (*** = 0.
5) M® is (locally) a complex hypersurface in C* = (0, J,) where u € S C ImO (fixed).

PROPOSITION 3.3 [10]. Let M®=(MS%J,g) be a 6-dimensional almost Hermitian

submanifold in O. The following conditions are equivalent:

(1) M® s nearly-Kéhler submanifolds in O ( < > (V xJ)X =0 for any X € TM®).

(2) M5 belongs to the class W .

(3) II"'= (I, and M*? = 0.

(4) M s (locally) a complex hypersurface in C* = (0, J ) or is locally isometric to a 6-
dimensional round sphere in some 7-dimensional Euclidean space and the immersion is
totally umbilic.

PROPOSITION 3.4 ([1), [3], [5]). Let M®=(MSJ, <,>) be a 6-dimensional almost

Hermitian submanifold in O. The following conditions are equivalent:

(1) M® is a Hermitian submanifold in O,

(2) mh'=o,

(3) M(z,y)+1I(Jz,Jy) =0, for any z,y € T,M°,

(4) JoAg+AgoJ =0, for any £ € T M°,

(5) M?® belongs to the class W,

REMARK. There are many examples of 6-dimensional oriented Hermitian submanifolds in
O which are not Kahler ([1], [3]).

PROPOSITION 3.5 ([4], [9], [10], [15]). Let M®=(M°®J <, >) be a 6-dimensional almost
Hermitian submanifold in O. The following conditions are equivalent.

(1) M® is a quasi-Kahler manifold (< = > (V xJ)Y +(V ;xJ)JY =0)

(or (1,2)-symplectic).

(2) daV?*=da>'=0.
(3) m»*=o.
4) M(z,z)-M(Jz,Jz) £ 2J(z,Jz) =0, for any = € T ,M°®.
(5) MS belongs to the class W, & W,.

We give examples of quasi-Kihler submanifolds in O which are not nearly Kahler and their
normal connections are not flat, in the last of this section.

Next, we shall define two classes of almost Hermitian manifolds.

DEFINITION 3.6. An almost Hermitian manifold M?" = (M?",J <, >) belongs to the
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class G =W, W3 if (V xJ)X = (V ;xJ)JX =0 for any z € £(M°®). M?" belongs to the class
G=W,®W, if & (<(Vy/)V.Z> - <(V,J)Y.Z>)=0 for any X,Y.Z€E(M")
where G is the cyclié suni.

The inclusion relations are given by

C A%
C Q% C 3%
Cc N%
% cG
c¥
CcG
(C A%)

First, we prove the following:

PROPOSITION 3.3. Let (MS,:) be a 6-dimensional almost Hermitian submanifold in O.
Then we have

(1) M®eq, if and only if M® € N%,

(2) M®€q,if and only if trlI""! = 0,i.e., M® is a minimal submanifold in O.

PROOF. (1). By (2.2), we have

(VxD)X =2V =1 {f[b(2)la - {0 (x)]a }, (3.1)
for any X = fa+ fa € E(M®). By (3.1) and (2.9),, we get

(V xJ)X = (V ;xJ)JX = —4/—1{f[Caja — T ['Bala} = 0.

From this, we get [Caja = 0,['Ba]a =0 for any a € M3, (C). From the definition of [-], we see
that C = 0,B = AI;. Hence we get (1).
(2) Ifweput, X =f,Y =f,Z=f, Then we get

X’g’z{ <(Vx)Y,Z> - <(V ;3 )WY, Z>}=4y/—1 .,,G,k <V Nfpfi> =0
If we put, X = f, Y = f»Z = fr. Then we get the identity. From the above conditions, (2.2),
(2.8) and Theorem 3.3 in [1], we have trB = 0. ]

Summing up, we have

PROPOSITION 34. Let (M%) be a 6-dimensional almost Hermitian submanifold in O.
Then, (M®,:) belongs to one of six classes, %, N%, 15, Q%, 3%, G, of the sixteen classes of almost
Hermitian manifolds introduced by A. Gray and L. Hervella. The inclusion relations of the six
classes %, N9, 36, 3%, 9%, G, are as follows:

% &0 S 8% C 9%,

THEOREM 3.5. Let (M%) be an almost Hermitian submanifold in O. If the shape
operator A, commutes the almost complex structure J for any normal vector £ at any point, i.e.,
J-Ag= A¢-J. Then we have

(1)  MS is locally isometric to R and ¢ is totally geodesic
or

(2) M®is locally isometric to S° and ¢ is totally umbilic

or
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(3) M® is locally isometric to S *xR' and +  is  locally  of the form

7

= pxd:SExR'SRE xR~ R7) € O where R? is a 3-duncnsional Euclidean space closed under
the vector cross product of O and (S2,%) is a 2-dimensional splLere in R® with totally umbilical
immersion .

REMARK. Theorem 3.4 is a generalization of the results of Yano-Sumitomo [15] and A.
Gray [5].

PROOF. By the assumption, we see that M® is a quasi-Kihler submanifold in Q. From
([10], p 84), it follows that the rank of Bis 3 or 1 or 0. If the rank of B is 3, then A® is totally
umbilic by Theorem A in [10]. Hence we get case (2). If the rank of B is 1, we sec that the
normal connection of M® is flat. By Theorem B in [10], we get case (3). If the rank of B is 0, by
Proposition 3.4, we have J - A¢ + A¢-J = 0 for any £ € v,(M®). Hence we get case (1). o

We shall give examples of quasi-Kéahler submanifolds in O whose normal connections are not
flat.

EXAMPLE. Let ¢: M*—S* be the super-minimal, full, immersion (or real isotropic harmonic
map) from the Riemann surface M? into the 4-dimensional sphere S* Let 7 € S*\«(M?) and

T :S'\{P }—>R* be the stereographic projection. We consider the following product immersion:

(m - ) xid: M xR'=H & H = O.

Then the induced almost Hermitian structure is quasi-Kahler. In fact, we see that
J(T,M?) = T,M?,J(T RY) = T R, (3.1)

for any (p,q) € M*xR*. By (3.1) and id:R*—H is totally geodesic, we may show that LRy

satisfies the following condition

O(z,z) - (Jz,Jz) + 2J1(z,J ) = O, (3.2)

for any z€ T ,M 2, We note that the induced almost complex structure of M? and the almost
complex structure of the normal bundle depend only on the conformal structure of the induced
metrics. Also, we see that the condition (3.2) is equivalent to the ellipse of curvature of the
immersion 7y -¢ being a circle. If the ellipse of curvature is a circle, then it is a conformal
invariant [7). On the other hand, since the immersion ¢ is a super-minimal immersion, the ellipse
of curvature of the immersion ¢ is a circle. Also since Ty is a conformal mapping, we see that

the immersion 7, - ¢ satisfies the condition (3.2).

P
REMARK. In [2], Bryant proved that any compact Riemann surface can be immersed in $*

as a super-minimal immersion. Hence there exist many examples. In particular, the Veronese

immersion is a super-minimal immersion.

4. *-EINSTEIN SUBMANIFOLD IN O.

In this section, we shall study weakly *-Einstein submanifolds in O and give some examples.
First, we shall give the definition.

DEFINITION 4.1. An almost Hermitian manifold (M?",J, <, >) is called weakly *-
Einstein if px = % <, > where T* is a function on M?". A weakly *-Einstein manifold is called
a *-Einstein manifold if 7* is constant on M?".

REMARK. In general, 7+ is not constant. T. Koda [12] proved that (CP*#CP?2J,g) is a
compact Einstein, weakly *-Einstein Hermitian surface whose x-scalar curvature is a non-constant

positive function, where g is the Berald-Bergery’s metric.
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We shall give the equivalent conditions for weakly =-Einstein 6-dimensional submanifolds in
0.

PROPOSITION 4.1. Let (M®() be an oriented 6-dimensional submanifold in @. AM® is a
weakly *-Einstein submanifold in O if and only if,

(1) ‘BB+DB'B-AA-CC =—I—513 and AB — BC ='(AB - BC)
or

(2) J-Ag-J-Ag+J A J-A, = —%Ie-
PROOF. By (3) of Proposition 2.1, we get (1). By Gauss equation, we get (2). n]

Next, we shall give examples of =-Einstein submanifolds in O.

PROPOSITION 4.2. Let (M3 f) and (N3 g) be two oriented hypersurfaces in the
quaternions M, with respective immersions f and g, and let fx g: M3 x N> SH®H ~ O be the
product immersion. Then the induced almost Hermitian structure is *-Einstein and its *-scalar
curvature vanishes.

PROOF. In [9], the induced almost complex structure on M3 x N3 is given by

J(&) = —(m)e, J(&) = —(ni)e, J(Ek) = —(nk)e,
J(me) =& J(mie)=¢&5,  J((nk)e) = &k,

where £,7 are unit normal vector fields of M3 N3, respectively, and £ = (0,1) € H®H. From
this, we can easily see that A,-J-A;= A, -J A, =0. We get the desired result. n]

COROLLARY 4.3. There exists Einstein, *-Einstein almost Hermitian structure on
S3(r) x S3(r) which is not a quasi-Kahler structure.

PROOF. By Theorem B in [9], the induced almost Hermitian structure on $3(r)x $3(r) is
not quasi-Kéhler.

REMARK. The complex structure on S%x S* which is defined by Calabi-Eckmann is never
=-Einstein [13]. Also the 3-symmetric space Sp(1)x Sp(1)x Sp(1)/Sp(1) =~ S*x S* is a nearly-
Kilher Einstein, *-Einstein manifold where Sp(l1) 1is embedded diagonally in
Sp(1)x Sp(1) x Sp(1). Hence the induced almost complex structure is different from the above
two almost complex structures.

Next, we shall study fundamental relations between x-scalar curvature and the second
fundamental form of M®.

PROPOSITION 4.4. Let M®=(M®%J, <, >) be an almost Hermitian submanifold in O.
M?® is a minimal submanifold in O and 7 = 7+ if and only if M® is a Hermitian manifold.

PROOF. By (2) & (4) of Proposition 2.1 and Proposition 3.4, we can easily get the desired
result. n]

PROPOSITION 4.5. Let M®=(M?%J <, >) be an almost Hermitian submanifold in O.
M?8 is a minimal submanifold in O and 7 4 7+ = 0 if and only if the immersion is totally geodesic.

PROOF. From (2) & (4) of Proposition 2.1, we see that tr[I"' = 0,4 = C =0. By (4) of
Proposition 3.2, M® is a Kihler submanifold in O. Hence we have A = B = C = 0. Hence we get
the conclusion. 8]

Lastly, we shall prove the following.

THEOREM 4.6. Let M® = (M® J, <, > ) be a 6-dimensional almost Hermitian submanifold
in O. MS is a weakly *-Einstein, minimal submanifold in O which satisfy 7 = 7«, if and only if
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the immersion is totally geodesic.
To prove Theorem 4.6, we prepare three Lemmas. We define the corresponding 2-form ¢ of

the Ricci *-tensor as follows:

=/1

1

< R(e, Je) oy x>
1

Y(z,y)

I Mo

for any 2,y € T,M® Then we have the following
LEMMA 4.7. v =V —1( An—'0AF)
=V —1(‘“(AB - BC)Aw+'w(AA —'BB-B'B +CC )A® —'w(AB-BC)AD )
PROOQF. By (3) of Proposition 3.1 and (2.9). we get the desired result. 0

From Lemma 4.7 and (2.4), we have

dyp = =2/ —1{' A[6) A~ A[6] A 7). (4.1)
LEMMA 48. Let M®=(MS,J, <, >) be a Hermitian, weakly *-Einstein submanifold in O.
Then dvy = 0.
PROOF. Since MS is a Hermitian submanifold in O, we have
b=Aw,0=Cw. (4.2)

By (4.1) and (4.2), we have dv € A>* @ A2,
On the other hand, by (1) of Proposition 4.1 and Proposition 4.7, we have

dy = —d(%—*ﬂ)eA”’@A“

Hence, we get the desired result. 0O

We recall the following.

LEMMA 4.9 ([1], Prop. 3.7). Let M®=(M®J, <, >) be a Hermitian submanifold in O.
Then we have rankC(p )<1 and that if rankC(p) =1, then there exists a neighborhood U of p
such that C =‘cc and A = o) (ac+ tca), where a,c are M, 3(C)-valued functions on F(U) which
are well-defined up to sign.

We are now in a position to prove Theorem 4.6. If rankC = 1, by Lemma 4.8, we have

d(r*Q):dT*A(@'w/\w)+@T*(‘wl\[w]/\aw -'w /\[cT;]/\Cw):O. (4.3)

By (4.3) and w'AWAB3WAWATLWIAWAD! are linearly independent, we have
C!=C%=C3=0. By Lemma 4.9, we have C = 0. This is a contradiction. From this argument,
we see that rankC' =0. Therefore M® is a Kihler submanifold in @. A *-Einstein Kahler
manifold is necessarily an Einstein Kahler manifold. ~Hence M® is an Einstein Kahler
submanifold in C* ~ (0, J,). By Chern’s theorem in [4], we get the desired result. 0

ACKNOWLEDGEMENT. The author would like to express his hearty thanks to Professor
Sekigawa and the referee for their valuable suggestions.

REFERENCES

1. BRYANT, R.L., Submanifolds and special structures on the octonians, J. Diff. Geom. 17
(1982), 185-232.

2. BRYANT, R.L., Conformal and minimal immersions of compact surfaces into the 4-sphere,
J. Diff. Geom. 17 (1982), 455-473.



10.

11.

12.
13.

14.

15.

H. HASHIMOTO

CALABI, E., Construction and properties of some 6-dincnsional manifolds, Trans Amer.
Math. Soc. 87 (1958), 407-438.

CHERN, S.S., On Einstein hypersurfaces in Kiahleiian manifold of constant holomorphic
sectional curvature, J. Diff. Geom 1 (1967), 21-31.

GRAY, A., Vector cross products on manifolds, Trans. Amer. Math. Soc. 141 (1969). 465-
504.

GRAY, A. and HERVELLA, L., The sixteen classes of almost Hermitian manifolds, Ann.
Math. Pura ed Appl. 123 (1980), 35-58.

GUADALUPE, I.V. and RODRIGUEZ, L., Normal curvature of surfaces in spaces forms,
Pacific J. of Math. 106 (1983), 95-102.

HARVEY, R. and LAWSON, H.B., Jr., Calibrated geometries, Acta. Math. 148 (1982), 47-
157.

HASHIMOTO, H., Some 6-dimensional oriented submanitold in the octonians, Math. Rep.
Toyama Unw. 11 (1988), 1-19.

HASHIMOTO, H., Oriented 6-dimensional submanifolds in the octonians . Geometry of
manifolds (edited by Shiohama), Academic Press, (1989), 71-93.

HASHIMOTO, H., Characteristic classes of oriented 6-dimensional submanifolds in the
octonians, Koda: Math. J. 16 (1993), 65-73.

KODA, T., A remark on the manifold CP?#CP? and Berard-Bergery’s metric (preprint).

TRICERRI, F. and VANHECKE, L., Curvature tensors on almost Hermitian manifolds,
Trans. Amer. Soc 267 (1981), 365-398.

SEKIGAWA, K. and VANHECKE, L., Four-dimensional almost Kéhler Einstein manifolds,
Ann. Math. Pura ed Appl. CLVII (1990), 149-160.

YANO, K. and SUMITOMO, T., Differential geometry on hypersurfaces in a Cayley space,
Proc. Roy Soc. Edin. 66 (1964), 216-231.



