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ABSTRACT. In this paper, we classify 6-dimensional almost Hermitian submanifolds in the

octonians O according to the classification introduced by A. Gray and L. Hervella. We give new

examples of quasi-K/thler and *-Einstein submanifolds in O. Also, we prove that a 6-dimensional

weakly ,-Einstein Hermitian submanifold in O is totally geodesic.
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1. INTRODUCTION.
Let (M6, t) be an oriented 6-dimensional submanifold in the 8-dimensional Euclidean space

IRs. Throughout this paper, we shall identify IRs with the octonians O (or Cayley algebra) in the

natural way. Taking account of the algebraic properties of the octonians, we may observe that

M has an almost Hermitian structure. A. Gray and L. Hervella defined the sixteen classes of

almost Hermitian manifolds ([6]). In 3, we classify 6-dimensional almost Hermitian

submanifolds in O according to the classification given by A. Gray and L. Hervella.

Consequently, the number of different classes (in the sense of A. Gray and L. Hervella) of almost

Hermitian submanifolds in O is six. Last of this section, we give examples of quasi-K/iller (or
(1,2)-symplectic) submanifolds in O which are not nearly Khler and normal connections are not

flat. In 4, we shall investigate the weakly ,-Einstein submanifolds in O ([13]). We see that any

Einstein Khler manifold is necessarily a weakly ,-Einstein manifold. First, we give some

examples of ,-Einstein submanifolds in O whose ,-scalar curvature vanish. Also we shall show

that a weakly ,-Einstein Hermitian submanifold in is a totally geodesic submanifold (Theorem
4.6). This result is a slight generalization of Chern’s result ([4]) for n 4 in our situation.

In this paper, we adopt the same notational convention as in [1], [10] and all the manifolds

are assumed to be connected and of class Co unless otherwise stated.

2. PRELIMINARIES.
First, we shall recall the formulation of the Spinor group Spin(7) given by ([1], [S]). Let

S6= {u E ImOI < u,u > 1} where ImO is the purely imaginary octonians. Then, for any

uES, we have u= -g and u2= -ug <u,u> -1. So, we may use uS to define

a map J,,:O---O such that J,,(x) xu for any x O. Each J,, is an orthogonal complex structure

on O. It is known that Spin(7) is isomorphic to the subgroup of SO(8) generated by the set

{J,, u e S}. Also Spin(7)is isomorphic to the group {g e SO(8) lg(uv)= g(u)x(g)(v)for any
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,,,,,. O}, wh,’r’ \ is the map from SO(S)to itself ch’fin,xl by (9)(c)-9(g-(1)e’] for any ’
Then we may observe that k Sp,,(r)"$p(7)-S0(7)is a doul)h, covering map and satisfies the

fl,llowing equivariance" 9(u)x g(c) X(g)(u x ,’) fo any 9 S1,,(7). where x is the vecov cro.s

prodact defin’d by u x’=(Yu-g’)/2. Now, we shall txll the structure equations of an

olicnted 6-diu(’nsional submanlfold n (O, SI)17I It , kiown that

considered ab the algebra H,SH where H is the quartenions We put a 1)asis of C

E- N, E-jN, Ea-kN, N, E-N, E= iN, E-kN where e =(0,1)HPH,
N (1 - le)/2,2 (1 + - 1)/2 e C @ RO and{1, ,, j, k} is the canonical basis of H. We
(all this basis the standard one of C@RO and a basis (.f.K, f)of C(aO is said to be

admtsszble, if (n,f,, f )= (.V,E,N,E)g for some g Spz,(7)C Max,(C). We shall identify

Spzn(7) with the admissible basis. Here, we may note that th(’ Grassmannian mani%ld G(O)of
the oriented 2-planes in O is isomorphic to the homogeneous l)ae Spn(7)/U(3). So, we can set

,(M) {(: (. f, ,7 ))1 -. r2 for .y p e M}.

Then z:ff,(M)M is a principal U(3)-bundle over M. The induced almost complex structure

is defined by:

t.(JX) (t.X)(r/x ) (2.1)

for X ffT,M6, where , r/ are an orthonormM pair of the normM vector fields and

n ((- v/’- 1,) (for details, see [1], [10]). By making u,e of the properties of Spn(7), ,ve may

observe that this almost complex structure is an invariant of Spin(7) in the following sense; let

M be an oriented 6-dimensional manifold and t, ’:M--,O be isometric immersions. If there

exists g Spin(7) such that t’= g (up to parallel displacement) then J J" where J and d"

are the almost complex structures on M6 induced by the immersions and t’, respectively. Also,
we can easily see that T’= sanc{f,f,f where T’ is the subbundle of the complexified

tangent bundle TM6 G}C whose fibre is --eigenspace of the almost complex structure d.

Then we have the following structure equations:

dt f + f -,
df n t-ff + fx n tff + -f o],

dn n(v[- lp) fr/+ f 0,

d(v/’- p t-q Ar/+t0A,

d,=-,^(V- e)-^,-[]^,
dO= , A O + O A (v/- lp) [ Ag

d=,’ -+0 -][0],

(.)

(Gauss formula) (2.3)

(Weingarten formula) (9..4)

(Ricci equation) (2.5)

(Codazzi equation) (2.6)

(Gauss equation) (2.7)

where p: N-valued 1-form, r/, O: M31 (C)-valued 1-forms, and n: Ma a (C) valued 1-forms on

,(Ms) which satisfy + tg 0 and tr + v/- lp 0. Here, [0] is defined by
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O 0 -0 /[]-- - o o
0 _0 0

where O ’(Ol,0,Oa). By (2.2) and (2.3), the second fundam,nt,,l tbrm llis given by

II 2Re{(tb + tO - )n}. (2.8)

Applying the Cartan’s lemma, we may conclude that there exists 3 x 3 matrices of functions

A,B,C on ,(Me) (with complex values)satisfying

A=tA, C=tC,

Hence, we have the following canonical splittings:

(2.9)

II2’=(-twoAco)n, H"’=(-t otBw-twoB)n, II’a=(-t o)n.

More explicitely, let {,,a,,=,a=,,a} (resp. {,J(}) b the orthonormal basis of TpMe

(resp. Tff Ms) at p M. Then we have

for = 1.2,3,

By (2.9) and (2.10), we have

< II(f,, f,), > 1/2 A,,,
II(f.,y ,), > -21- B,,,

n(/,,?,), > -1/2 e,,.

for any i,j 1,2,3.
Next, we give the representation of Ricci tensor p, scalar curvature r, Ricci *-tensor p., and

,-scalar curvature r, by A, B and C which are defined by

6 6
,o(z,v) . < R(.,,.)v,., >, ,

=1 =1

6 6
p.(x,y) 1/2 .- < R(e,,Je,)Jy, x >, T. , p*(e,,e,),

z=l =1

for any x, y ca TpMe, p ca Ms, where {e,} is an orthonormal basis of TpM. Then, we have

PROPOSITION 2.1. Let Me=(Me, J, <, > be a 6-dimensional almost Hermitian

submanifold in O. Then, we have the following

(1) p(x,y)= 2trB (’aC3 + tat- + ’-5 + ’ 7t- )
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+ .5(A+B/B +C)3+-(B+BC +(B+3))],

(2) 7 4 (4[/rB[ 2- trAfI 2trt-B- trC ),

(3) p.(z,y) ’c (A[1 BC -’(A BC)) 3 -’a (Aft. B’ -’B +C

.5 fi A B B + ’ C 3 + .5 f4 B B C 4 B B C -(4) r. -4 (trAf4 2tr’ t3 + trC ),

where x fc + f ,y f/3 + f/3.
PROOF. (1). By Gauss equation and (2.11), we get

(,)
3

<6H, II(x,y)> -2 y {<II(x,f,), II(--],,y)> + < II(x,--],), n(f,,y)>}
z=l

-4<trB.n+trB.-i, II(fa+f-5,f/3+ffl)>

3
-2 < II (fc+y.5,f,), II (7,,f3+f3)>

z=l

+ < II(fc+f,f,), II(f,,f/3+f/3)>},

By (2.8), we get them desired equality. From (1), we have (2). (3): By (2.9), we get

3
p,(x, y) -2/-L-- )’ < R(f,,f,)Jy, x >

z--1

3
=-2v/-Z-f E <R(f,,Y,)(v/’-l(f-f )), fa+7: >

z--I

By Guass equation, we get (3). From (3), we get (4). [-1

3. SOME CLASSES OF (M, ).
In this section, we adopt the same notational convention as in [6]. First, we recall the

following.
PROPOSITION 3.1 [1]. An almost Hermitian submanifold Ms (MS, J,g) in O is a semi-

Kihler manifold, i.e., Sf 0.

By Proposition 3.1, we easily see that W the class of Kihler manifolds. Hence we see

that, formally, the number of different classes is eight 2.
PROPOSITION 3.2 [1]. Let Ms =(MS, J,g) be a 6-dimensional almost Hermitian
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submanifold in O. The following conditions are equivalent:

(1) M is a K/4hler submanifold in 13( < d! > V J 0),

(2) /I is an almost K/ihler submanifold in O( < a-1 > (l 0),

(3) M belongs to the class

(4) M6 is a minimal submanifold in 13 and satisfy Q0, 0.

(5) M is (locally) a complex hypersurface in C (O, Ju) where u E S6 C Irn13 (fixed).

PROPOSITION 3.3 [10l. Let M6=(M6, j,g) be a 6-dimensional almost Hermitian

submanifold in 13. The following conditions are equivalent:

(1) M is nearly-K/ihler submanifolds in O < dV! > V xJ)X 0 for any X TM).

(2) M belongs to the class W.
(3) II’ (trII’ 1)13 and II’ 0.

(4) M is (locally) a complex hypersurface in C (G,J) or is locally isometric to a 6-

dimensional round sphere in some 7-dimensional Euclidean space and the immersion is

totally umbilic.

PROPOSITION 3.4 ([1], [3], [5]). Let M6= (M6,J, <, >) be a 6-dimensional almost

Hermitian submanifold in t3. The following conditions are equivalent:

()

(2)

()

(4)

()

M6 is a Hermitian submanifold in 13,

ii1,1 O,

II(x,y) + II(Jx, Jy) 0, for any x,y C= TM,
JoAe+AeoJ=0, for anyfiTM6,

M6 belongs to the class W.
REMARK. There are many examples of 6-dimensional oriented Hermitian submanifolds in

O which are not K/ihler ([1], [3]).
PROPOSITION 3.5 ([4], [9], [10], [15]). Let M6= (M6, J <, > be a 6-dimensional almost

Hermitian submanifold in O. The following conditions are equivalent.

(i)

(2)

(3)

(4)

(5)

M is a quasi-K/ihler manifold < > V xJ)Y + V sxJ)JY O)

(or (1,2)-symplectic).

dgt, dfl2,1 0.

II’ 0.

II(x, x)- II(Jx, Jx) -t- 2JII(z, Jx) 0, for any x TvM.
M belongs to the class W @ W.

We give exaxnples of quasi-Kfdaler submanifolds in O which are not nearly Kh_ler and their

normal connections are not flat, in the last of this section.

Next, we shall define two classes of almost Hermitian manifolds.

DEFINITION 3.6. An almost Hermitian manifold M2= (M",J <, > belongs to the
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class 01 W Y W if K7 xJ)X 7 jxJ)JX 0 for any a’e (,I6). 12n belongs to the class

0 W V if < xJ)Y,Z > < jA.J)JY, Z > 0 for any X,I" Z G (i6)
X, Y, Z

where is the cyclic sum.

The inclusion relations are given by

C A
cQc ]%

c
C 1c
c 2

(c)

]rst, we prove the following:
PROPOSITION 3.3. Let (M,) be a 6-dimensional alnot Hermitian submanifold in O.

Then we have

() M e if and only ]f M e

() M e if and only if’ 0,i.e., M is a minimal submanifold in O.

eoo. (). r (.), wee

V)X V- ( [()] ()]a } (.)

o= r X + 7 a (). (.) a (.9), we e

(V )X-(V)X --(I[C]a -7 [’]) 0.

om i, we e [C] 0,[’] 0 o r ,(C). om e aeiiio o [. ], we ee

that 0, B M. Hence we get (1).
() we pu, X L,Y , . hen we e

x,,{ < V xJ)Y, Z > < V x)JY, Z > - ,,, < V ,J)L,I > 0.

f we pu, X ,,Y , . hen we e he ]den]. rom he above conditions, (.),
(.) a eom . i [], wee 0.

Summing up, we have

PROPOSITION A. Let (M,) be a 6-dimensional most Herm]t] subman]fold ]n O.

hen, (M,) belon to one of six classe, , %, , , 3, of the ]xteen clae of mot
Herm]fian man]fold introduced by A. Gray and L. Hervella. he inclusion relations of the

classes , %, , , , e as follows"

C % CQ
C C C.

BOM .. Let (M,) be an almost Hermitian submanifold in O. If the shape
operator A commutes the most complex structure J for any normal vector at any point, i.e.,

J.A A. J. hen we have

(1) M is locly isometric to R and is totally geodesic
or

() M is locly isometric to S and ]s totally umb]lic

or
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(3) 3,I is locally isometric to S x [R an(t is loallv of the form

, zd:S2 [___[3 x t( [7) C O where ’ i> a 3-dl:ncns,,n,,1 Euclidean space closed nder

the vector cross product of O arid (oca,/,) is a 2-dmensional ,phere in [Ra with totally umbilical

immersion

REMARK. Theorem a.4 is a generalization of the result, of Yano-Sumitomo [15] and A.

Gray [5].
PROOF. By the assumption, we see that M is a quasi-Kthler submanifold in O. From

([10], p 84),it follows that the rank ofBis3or or0. If the rank of Bis 3, then Mistotally
un-bilic by Theorem A in [10]. Hence we get case (2). If the rank of B is 1, we see that the

normal connection of M is fiat. By Theorem B in [10], ve get case (3). If the rank of B is 0, by

Proposition 3.4, we have J.A + A a 0 for any G up(M6). Hence we get case (1).
We shall give examples of quasi-KXhler submanifolds in O whose normal connections are not

flat.

EXAMPLE. Let : M:S be the super-minimal, full, immersion (or real isotropic harmonic

,nap) from the Riemann surface M: into the 4-dimensional sphere S4. Let ’’ ( S4\(M) and

r7.S4\{, }N4 be the stereographic projection. We consider the following product immersion:

(Try ) x id: M x 4--,H (R) H O.

Then the induced almost Hermitian structure is quasi-K/ihler. In fact, we see that

J(T,M) T,M,J(TqR4) Tq[4, (3.1)

for any (p,q) Mx[R. By (3.1) and id:[R4--+Hl is totally geodesic, we may show that r
satisfies the following condition

II(x,x)- II(Jx, Jx) + 2JII(x, Jx) 0, (3.2)

for any x T,M. We note that the induced almost complex structure of M and the almost

complex structure of the normal bundle depend only on the conformal structure of the induced

metrics. Also, we see that the condition (3.2) is equivalent to the ellipse of curvature of the

immersion ry. being a circle. If the ellipse of curvature is a circle, then it is a conformal

invariant [7]. On the other hand, since the immersion is a super-minimal immersion, the ellipse

of curvature of the immersion is a circle. Also since r,, is a conformal mapping, we see that
p

the immersion r,,- satisfies the condition (3.2).
REMARk. In [2], Bryant proved that any compact Riemann surface can be immersed in S

as a super-minimal immersion. Hence there exist many examples. In particular, the Veronese
immersion is a super-minimal immersion.

4. ,-EINSTEIN SUBMANIFOLD IN O.

In this section, we shall study weakly ,-Einstein submanifolds in O and give some examples.

First, we shall give the definition.

DEFINITION 4.1. An almost Hermitian manifold (M:",J, <, > is called weakly ,-

Einstein if p, r,- <, > where r, is a function on M". A weakly ,-Einstein manifold is called

a ,-Einstein manifold if r, is constant on M".
REMARK. In general, r, is not constant. T. Koda [12] proved that (CP#--:, J, 9) is a

compact Einstein, weakly ,-Einstein Hermitian surface whose ,-scalar curvature is a non-constant

positive function, where 9 is the Berald-Bergery’s metric.
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We shall give the equivalent conditions for weakly *-Einstein 6-dimensional submanifolds in

PROPOSITION 4.1. Let (A’/6, t) be an oriented 6-dimmslonal subinanifold in O. AI is a

weakly ,-Einstein submanifold in O if and only if,

(1) ’B B + B’/ A -C r,]I and A3 BC ’(A BC)
or

(2) J. Ae. J A + J. A,. J. A, -Y 16.

PROOF. By (3) of Proposition 2.1, we get (1). By Gauss equation, we get (2). []

Next, we shall give examples of *-Einstein submanifolds in O.

PROPOSITION 4.2. Let (Ma, f) and (Na, g) be two oriented hypersurfaces in the

quaternions H, with respective immersions f and g, and let f g:Ma Na--H@H "-O be the

product immersion. Then the induced almost Hermitian structure is ,-Einstein and its ,-scalar

curvature vanishes.

PROOF. In [9], the induced almost complex structure on Max Na is given by

J({i) (li)e, J(j) -(oj)e, J((l)
J((rli) i, J((rlj)e) j, J((Tk)e) k,

where {,q are unit normal vector fields of Ma, Na, respectively, and e (0,1) H H. From
this, we can easily see that A. J.A A,. J. A, 0. We get the desired result.

COROLLARY 4.3. There exists Einstein, ,-Einstein almost Hermitian structure on

S(r) x Sa(r) which is not a quasi-Kthler structure.

PROOF. By Theorem B in [9], the induced almost Hermitian structure on S(r)x S(r)is
not quasi-K/ihler.

REMARK. The complex structure on SSx S which is defined by Calabi-Eckmann is never

,-Einstein [13]. Also the 3-symmetric space Sp(1) x Sp(1) x Sp(1)/Sp(1) S x S is a nearly-
K/ilher Einstein, ,-Einstein manifold where Sp(1) is embedded diagonally in

Sp(1) x Sir(l) x Sp(1). Hence the induced almost complex structure is different from the above

two almost complex structures.

Next, we shall study fundamental relations between ,-scalar curvature and the second

fundamental form of M.
PROPOSITION 4.4. Let Ms (MS, J, <, > be an almost Hermitian submanifold in O.

M6 is a minimal submanifold in O and r r, if and only if Ms is a Hermitian manifold.

PROOF. By (2) & (4) of Proposition 2.1 and Proposition 3.4, we can easily get the desired

result.

PROPOSITION 4.5. Let M (M,J <, > be an almost Hermitian submanifold in O.
M is a minimal submanifold in O and r + r, 0 if and only if the immersion is totally geodesic.

PROOF. From (2) & (4) of Proposition 2.1, we see that trH’= O,A C O. By (4) of

Proposition 3.2, M6 is a Kghler submanifold in . Hence we have A B C 0. Hence we get
the conclusion.

Lastly, we shall prove the following.
THEOREM 4.6. Let Ms (MS, J, <, > be a 6-dimensional almost Hermitian submanifold

in O. M is a weakly ,-Einstein, minimal submanifold in O which satisfy r r,, if and only if
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the immersion is totally geodesic.
To prov(, Theorem 4.6, we prepare threc Lem,.nab. We d{’fin{’ the correst)onding 2-form , of

the Ricci ,-tensor as follows"

e,(., )_ 4-2 < R(,, J,),.,. z >
i=1

for any x,y TvM Then we have the following
LEMMA 4.7. g, v/- 1(’ A q O A a

’w(A BC) A w + ’,(A. -’B B B’/ + Ce A -’ (, B B () A ).
PROOF. By (3) of Proposition 3.1 and (2.9), we get the &’sired result. []

Front Lemma 4.7 and (2.4), we have

dga 2v/- {’O A [0] A r/- O A [O] A q}. (4.1)

LEMMA 4.8. Let M (M,J, <, > be a Hermitian, weakly ,-Einstein submanifold in O.

Then db 0.

PROOF. Since M is a Hermitian submanifold in O, we have

b A,0 C. (4.2)

By (4.1) and (4.2), we have d A’ A’
On the other hd, by (1) of Proposition 4.1 and Proposition 4.7, we have

d= -d()A"A’’
Hence, we get the desired result.

We recall the following.
LEMMA 4.9 ([1], Prop. 3.7). Let MS= (MS, J, <, > be a Hemitian submanifold in O.

Then we have rankC(p) and that if rankC(p)= 1, then there exists a neighborhd U of p

such that C *cc and A (*ac + ’ca), where a,c e M xa(C)-valued functions on (V) which

are well-defined up to sign.

We are now in a position to prove Theorem 4.6. If rankC 1, by Lemma 4.8, we have

2 r* (’wA[wlAVW--’W A[wlACw)= 0. (4.3)

By (4.3) and 031 A 03= A a, wa A 03 A 2,w A 033 A are linearly independent, we have

C] C] C] 0. By Lemma 4.9, we have C 0. This is a contradiction. From this argument,
we see that rankC--0. Therefore MB is a Khler submanifold in O. A .-Einstein Khler

manifold is necessarily an Einstein Kghler manifold. Hence M is an Einstein Kdaler

submanifold in C
_
(O,JD. By Chern’s theorem in [4], we get the desired result. Fl
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