
Internat. J. Math. & Math. Sci.
VOL. 18 NO. (1995) 179-184

179

A SELECTION AND A FIXED POINT THEOREM AND
AN EQUIUBRIUM POINT OF AN ABSTREACT ECONOMY

T. HUSAIN

Department of Mathematics and Statistics
McMaster University, Hamilton, Ontario

Canada L8S 4K1

and

E. TARAFDAR

Department of Mathematics
University of Queensland

St. Lucia, Brisbane, Australia 4072

(Received March 24, 1992 and in revised form June 15, 1992)

ABSTRACT. A selection theorem and a fixed point theorem are proved. The fixed point theorem

is then applied to prove the existence of an equilibrium point of an abstract economy.

KEY WORDS AND PHRASES. Selection and Fixed Point Theorems; Equilibrium Point of an

abstract economy.

1991 AMS SUBJECT CLASSIFICATION CODES. 90A14.

1. INTRODUCTION.
Bewley [1] proved the existence of an equilibrium point of an abstract economy with infinite

dimensional commodity space.

In recent years, a number of authors [e.g., Yannelis and Prabhakar [9], Woussaint [8], Warafdar

[7] and Ding, Kim, and Tan [3]] have established the existence of an equilibrium point of an

abstract economy with infinite dimensional commodity space and infinite agents.
The object of this paper is to prove a selection theorem from which we derive a fixed point

theorem that is different from the one due to Tarafdar [7] in that the compactness condition is

relaxed to some extent at the expense of assuming locally convex topological vector spaces in place
of topological vector spaces.

According to Debreu [2] and Sharer and Sonnenschein [5], an abstract economy or a generalized

qualitative game is , {Xa, Aa, Ua:a e I} in which I is finite or infinite (countable or uncountable)
set of agents of players and for each a e I,Xa is the choice set or strategy set; Aa:X I-IaXaiot.-}2Xct
is the constraint correspondence (set valued mapping) and Ua:X-,R is the utility or pay-off
function. Xa is a subset of a topological vector space for each a e I. The product I-I x is

denoted by x_ a and a generic element of x_ a by z_ a.

We note that an abstract economy {Xa, Aa, Utr:a . I} may also be given by

{Xtr, Ptr, Ua:aI} in which for each a el, Pa:X-2Xa is the preference correspondence. The

relationship between the utility function Ua and the preference correspondence Ptr can be exhibited

by the definition

P() { e x:u([,_ ]) > uA)},
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where z_ a is the projection of onto X_ a for each a and [Va, Z_a] is that point of x which has va
as its ath coordinate.

A point 6 X of an economy = {Xa, Aa, Ua:al is called an equilibrium point or a

generalized Nash equilibrium point of if

Ua( Ua[ a,’ -a] sup V[za, -a]
Za Aa(’

for each a in which a and a are respectively projective of onto Xa and X_ a" In this case

an equilibrium point is the natural extension of the equilibrium point introduced by Nash (1950).
If g {Xa, Aa, Ua:a . I} is an abstract economy and for each l,Pa is defined as above, then it is

easy to see that a point fi X is an equilibrium point of g if and only if for each

a I, Pa(’ )N Aa( ) and a 6 Ac( )- Thus if an abstract economy is given by {Xa, Pa, Aa:a G I},
then its equilibrium point can be defined as follows: A point X is an equilibrium point of the

abstract economy {Xa, Pa, Aa:aq I} if for each aq l, Pa()t3Aa() 0 and aE Aa(), where ia is

the projection of onto xa.

Given an abstract economy g {Xa, Pa, Aa:a . I}, for each z fi X, we define

I(x) {a 6_. I: Pc(x) t3 Aa(x # ).

We assume that for each z X, a cPa(z), the convex hull of pa(z) for each a I. For each

a I, we define the set valued mapping Ta: X-,2Xa by

It is easy to see that x is an equilibrium point of the economy if and only if is a fixed point

of the set valued mapping T:X--,X defined by T(z)= Ha ITa(z)
2. SELECTION AND FIXED POINT THEOREMS.

Here first we prove a selection theorem from which we derive fixed point theorems. One of

these results contains Theorem 1 due to the second author [7].
THEOREM 2.1. Let x be a nonempty paracompact Hausdorff topological space and Y a

nonempty convex subset of a topological vector space. Let F: X--2Y be a set valued mapping such

that

(i) for each z X,F(x) is a nonempty convex subset of Y;

(ii) for each y Y,F- l(y) {z E X:y F(z)) contains an open set Oy;
(iii) o 0v X.

yEY
Then there is a continuous selection I of F (i.e., there is a continuous mapping I:X--.Y) such that

f(z) F(z) for each z X.

PROOF. Since x is a paracompact space, by (iii) there exists an open locally finite refinement

{Ua:a A} of the family {Oy:y Y} (see Lemma 1 of Michael [10]) in which A is an indexing set

and each ua is an open subset of x. Hence by Proposition 2 of Michael [10], there is a family

{fa:a6_ A} of continuous functions fa:X[O, 1] with fa(Z)=0 for z C.Ua and r,
a e Arc(z)-1 for all

z X. Since is a refinement of {Oy:y Y}, for each a E A we can choose Ya - Y such that Ua c Oya.
We define .f:xY by

f(z)=a Afa(z)ya’ zG X.
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Since is a locally finite refinement it follows that for each E X, fa(x is nonzero for at most

finitely many aE A. So f is well defined and is evidently continuous. For each x E X, f(x)#0

implies x E Ua c Ova c F- l(ya) i.e., Ya e f()" Since F(z) is convex, it follows that f() F(x).

COROLLARY 2.1. Let X and Y be as in Theorem 2.1. Let S:X--2Y be a set valued mapping

such that

(i) for each z X,S(z) :/:

(ii) for each Y,S- 1() is open.

Then there is a continuous selection of the set valued mapping T:X-2Y defined by T(z)=co

S(z),z e X.

PROOF. Set O=S-1() for each yY. Then for each

S(,) c co S(z)= T(z) for each z X. AlsoO X because if z X then S(z)# implies there is_
S(x) and so z S- 1() Oy. Now the corollary follows from Theorem 2.1.

Note Corollary 2.1 contains Theorem of [3] as a special case.

LEMMA 2.1. Let D be a nonempty compact subset of a topological vector space. Then cod is

paracompact.
See [3] for a simple proof.
THEOREM 2.2. Let {Xa:a

_
I} be a family of nonempty convex sets, each in a Hausdorff

locally convex space Ea, where ! is an indexing set. For each a I, let Da be a nonempty compact
subset of Xa and To:X I-[ Xa-2D a set valued mapping such that

aq.l

(i) for each z E X, Ta(z is a nonempty convex subset of

(ii) for each a Do, Ta- 1(Vet) contains a relatively open subset Oa of x;
(iii) UD,Oa coD, where D l-I Da.
Then there is a point e D such that T()- I’I T(), i.e., T() for each I

where is the projection of onto X for each I. In other words, is a fixed point of T.

PROOF. By Lemma 2.1, coD is a paracompact subset of X because D is compact by the

Tychonoff Theorem. For each e I, let denote the restriction of Ta to coD. Then clearly for

each I and each z E coD, (x) T() is a nonempty convex subset of Da and for each u D,

c- l(yc) {x ( coD:yo .
{x

_
coD:yo = Ta()}
--1

cod T a(Ya) Oya, say.

Clely bya is a relatively open subset of coD. Hence by Theorem 2.1, for each

continuous selection a:co D--D of a, i.e., a(z) a(z)= Ta(z) for each z co D. Now we define

7:coDeD d T:co D--2D respectively by 7(z)= a(z) d T(,)= a(r)= Ta(,), q co D.
I_ I Itere exists aClely 7 is continuous d so by Threm 4.5.1. of Smut (1974), point D such

that 7( T( ).
COROLLARY 2.2. Let {Xa:a fi I} be a fily of nonempty convex sets, each in a Hausdo

locly convex space Ea, in which I is an indexing set. For each a I, let Da a nonempty
compact subset of Xa d Sa:X xa2Da be a set vMued mapping such that

(a) for each x, sa(z)
(b) for each ya Da, S l(ya) is relatively open in X.

Then there exists a point q D Da such that q T(z)= co Sa(z),i.e., i a co Sa(x) for
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or -]c.o[.

To assu-e that each orDit of any Glow rom FI(4) crosses the set oG

0dinEs oG E, e assume a00itionailv that there exist a’,b’ SUCh that

branched

a
(4.3)

wrere is OenCined in Example 3.3.

DEFINITION 4.5

We say that a vector Eield v is a mdLfctLo of and rite v--MOD(U.)v i
0 0

tere exist , n, 2, as aove ucn that v =v outsie U and v = in U in local
0 i

coordinates given Dy 2.

To analyze properties o v note that f has Fc-Dropertv: or any @Fl(u), it

generates the low

9(t, tx,y))=(x+t, @(I (x+s)Os,y))
0

Vector fields <I,0> and f are different only inside te rectangle . It is easy

to see that ]aD[x(u) is the set oG -strong branched points. Condition

(4.3) implies that the orbits o% any flow generated by , which pass across

have nonempty intersection with the set 2. It is easy to see that flows genera-

ted by % which are of the form (4.4) are conjugate with the unit flow I by the

following homeomorphism A:

A(x,y) (x, @(I c(x+s)ds, y)), {or (x,y)c-[R.
DEFINITION 4.6

We say that a vector field V has -prope’y if for any point pea(v) there exists

a connected neighborhood U(p) and a local map 2:U(p)--,2(U(p))I]Bz such that V has

the coordinates <i,0) in the map 2.

Observe that if a vector field V has the o-property, p and U(p) are as in the

above definition, then MOO(U(p) ,q)V has the o-property. The operation

MOD(U(p),rl) depends on the Onoice of the local map 2. We can choose 2 in such a

way that (MOD(U(p),R)V). In the following we shall always choose such a ;t.

STEP 2

We choose a countable dense set P={p n[N} in and start from the vector

field V with coordinates <i,0> which obviously has o-property. Let V denote
i

the vector field obtained in n-th iteration. As the next iteration we take

Vn+i=MOD (U (pn),Rn)V if p -(V and V --V otherwise.

LEMMA 4.7

Parameters q of the MOD-operation can be chosen small enotlgh, so that

a) the sequence (V) converges Llniformly on (in the sense of the uniform

convergence of coordinates in the canoRical map in ).

b) each of V has the Fc-property.
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We note that the first inequality follows from the fact that for each vc E D,
pff l(y) C (coP)- l(y) because P(x) c (coPa)(x) for each z x. Furthermore, by virtue of (iv), for

each y D,Tff l(y) contains a relatively open set Oya of X such that 0 co D. Hence

by Theorem 2.2 there exists a point { } such that a e T( for eac e I. By condition (v)
and the definition of T, it now esily follows that

COROLLARY 3.1. Let {X,Pa, Aa; I} be an abstract economy such that for each e I,

the following conditions hold:

(i) X is convex;

(ii) Da is a nonempty subset of X;
(iii) for each e X,A(z) is a nonempty convex subset of Da;
(iv) the set G { e X: P(z) A() # } is a closed subset of x;
(v) for each ya Da,P l(ya) is a relatively open subset in Ga and A l(ya) is a relatively open

subset in X;

(vi) for each z {za} x, za co Pa(,) for each a 6 I.

There there is an equilibrium point of the economy g.

PROOF. Since P l(ya) is relatively open in Ga, there is an open subset Ua of x with

pff l(ya) GaOUa. Hence for Ya Da,P l(Ya) Fa (GaOUa)U ra X O(Ua ra). Thus

{P l(ya) Fa}A l(ya)= (VaU ra)A l(ya) Oya, Say,

is a relatively open subset of X for each Ya Da, since Ua, Fa and A l(ya) e open subsets of X.

Now it follows (e.g., see Remark 3.1 in Tarafdar [7]) that Oy co D. The corolly is thus a
ya Da

consequence of Theorem 3.1.

THEOREM 3.2. Let F {Xa, Pa:a I} be a quMitative ge such that for each I, the

following conditions hold:

(i) Xa is convex;

(ii) Da is a nonempty compact convex subset of

(iii) for each a6 Da,{Pffl(za)UFa} contMns a relatively open subset Oa of co D such that

Oa =co D, where

r { e X: p() };

(iv) for each x {xa} e x,za co pa(z).
Then there is a mimal element of the game r.

PROOF. For each a e I, we defiae the set valued map Aa:X2Da by Aa(x Da for each

z e X. Now Theorem 3.1 applies.
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