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AIISrl’llAC’I ’. in this not(, xe consider several types of gliding h,.p properties for a sequence space E

and we consider he various implications between these properties. By means of exa.=ples we show that

mos! of the implit-ations are strict and they afford a sort of structure between solid sequence spaces and

those wit h weakly sequentially complete /-(tuals. Our/nain result is used to extend a result of Bennett and

Kalton which characterizes the class of sequence spaces E with the properly that E C S, whenever F is

a separable FK space containing E where SF denotes the sequences in 1," having sectional convergence.

"I his, in t,rn, is used to identif,v a gliding humps property as a s.llicient con(lilion for E to be in this

class.

KEY WORDS AND PtlRASES. Gliding hunp properties, weak sequential completeness of the f/-dual,

sectional convergence in FK spaces, Theorem of Schur, Theoren of tlahn.
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1. INTRODUCTION.

Over the past eighty years the "gliding hump" technique has been a frequently used tool to esta-

blish results in summability and sequence space theory. Among the more familar examples would be the

Silverman-Toeplitz theorem which gives necessary and sufficient conditions for the regularity of a sum-

mability method [22], the Mazur-Orlicz bounded consistency theorem ([6], [12] and [13]), the theorem

of KSthe and Toeplitz on the weak sequential completeness of the KSthe dual of a solid sequence space

Ill] and the theorems of Schur on the characterization of coercive matrices and the equivalence of weak

and strong convergence in [19]. Whereas the first three of these have subsequently been argued using

functional analytic techniques (see e.g. [24] and [10]) no such "soft" proofs of Schur’s theorems are known.

Various authors have considered sequence spaces enjoying certain gliding hump type properties. See for

example, [8] for extensions of Schur’s theorems, ([4], [5], [20]) fo Mazur--Orlicz type theorems and ([5],

[14]) for weak sequential cmnpleteness results. The gliding hump technique has also proven to be a key

ingredient in the solution to problems related to the Wilansky Property ([1], [21], [15]).
In section 3 of this note we introduce various types of gliding hump properties and discuss the im-

plications between them. We give examples in section 5 to show that most of these implications are strict

and they are, in some sense, affording a structure to the set of sequence spaces between the solid spaces

and those with weakly sequentially complete -duals.
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In [2.’l’l,eoret6],llenell a,l i(allolcllara(le,’ized ll,(lanfs,(i(,ll((,slm(es /’.’ forwllicl E C,S’.

whenever /’" is a separable I"K sl>a((’ conlainig E (here. ,s’ (]eiloll’n IlIa olellleliis of !" ]laillg lional

convergence). In ’i’leorem 3.6 we extend lheir rosull l.v showinN Ileal it suffices o onnider nlv lhe cane

where /" is acovergene dotai of a nalrix. (onbining lhis obnervation ith or ain resll ’l’heoren

3.5 we obtain in orollary 3.7 the nore raclablo poinlise weak glidinK hump properly {see dofinion 3.1

below) as asufficien ondilion br E o belong t(this class. In soclion weapply lhe techniges of this

paper to oblain shorl proofs ()f soe classical resulls.

2. NOTATION AND Ptll’;I,IMINAlllES.

I,et c denote the linear space of all scalar (real or complex) sequences. By a sequence space /:’ we

shall mean any linear subspace of . A sequence space E endowed with a locally conw,x topology is called

a h’-space if the inclusion map E cv is continuous where has the topology of coordinatewise

conwrgence. A h’-space E with a Fr6chet topology is called an FK-space. If, in addition, the topology

is normable then E is called a BK-space. We assune throughout this note familarity with the standard

sequence spaces and their natural topologies (see e. g. [24], [9]).
For a sequence space E the multiplier space of E and the fl--dal of E are given by

.M(E) {xw xy E for each y E}
and

where xy denotes the coordinatewise product. For x w, u Ibl the nh section ot .r is

x[n] xe
k-1

where e ($,) is the kt coordinate vector. For any positive term sequence # (/) let

If (E, F) is a dual pair then a(E, f), r(E, F) denotes the weak topology and the Mackey topology

respectively. For a sequence space E and a linear subspace F of E (E,F) is a dual pair under the

natural bilinear form

{x, y) ,
If E is a K-space containing , the space of finitely non-zero sequences, we let

{: + E is bounded in E}
+W

SE {x E x["l--x inE}
where E’ denotes the topologicM dual of E. A K-space E containing with E SE is ced an

AK-space.

If A (a,) is an infinite matrix with scMar entries the convergence domMn
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adnits a tal,ral I"h lOl>oiogy [2 I]. i"or .r E ca we wrile li .r li ,I.r.

If C CA let o -lint z,, and delia,,

AA IA IK by AA(.r) lim,a .r a.re (where IK or IK IR) and

Furtherif Cca wewrite La,IVa,Sa insteadof L,W a,S. in this case Wa LaOA (seee. g.

[4]).

3. TIlE GI,II)ING IIUMP PI{OI)ERTIES.

We begin by introducing several types of gliding hump properties.

DEFINITION 3.1. ,A sequence (y(n)) in w \ {0} is called a block sequence if there exists an index

sequence (kj) such that y") 0 for any n,k IN with k ]k,,,_,k,,] where k0 := 0, and it is called a

1-block sequence if furthermore y(k’ for each k ]k,,_,k,] and n

Let E be a sequence space containing .
E has the gliding hump property (ghp) if for each block sequence

and any monotonicly increasing sequence (n) of integers there exists a subsequence (m) of (n)
with y(,)

_
E (pointwise sum).

E has the pointwise gliding hump property (p_ghp) if for each z E, any block sequence (y("))
satisfying sup I1-11 < o0 nd any monotonicly increasing sequence (n) of integers there exists

nell

subsequence (mk) of (n) with E zy(",) E (pointwise sum).

E has the uniform gliding hump property (u_ghp) if the sequence (ro,) in the definition of the p_ghp

may be chosen independently of z E.

E has the pointwise weak gliding hump property (p_wghp) if the definition of the p_ghp is fulfilled

for each 1-block sequence.

E has the uniform weak gliding hump property (u_wghp) if the definition of the u_ghp is fulfilled for

each 1-block sequence.

We say that E has the strong p.ghp (u_ghp, p_wghp or u_wghp) if xy(’,) . E (pointwise sum) holds
=1

for any subsequence of (rn) in the above definitions; in this case, we use the notation sp_ghp, su_ghp,

sp_wghp and su_wghp, respectively.

REMARKS 3.2. Let E be a sequence space containing

(a) Obviously, the definition of the ghp corresponds with the definition given in [20],[4] and the definition

of the p_wghp corresponds to the weak gliding hump property considered by D. Noll [14].

(b) E has the u_ghp if and only if 4(E) has the ghp.

(e) su_ghp == su_wghp u_wghp p_wghp;

su_ghp sp_ghp : sp_wghp =: p_wghp;

su_ghp u_ghp p_ghp ==:, p_wghp;
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(I. the last section we irovi<le ,xa,lle.,.. to sl,w that tot of tl,ee i,,plicatiotts re strict.)

(d) Each soli! sla’ la tle s_ghl al each nootoe space has tle _wlp. (Note. each olid eqe.e

(e) l’[xanl,l,,sofspaces E such that ,(E) I,as thegl, p n)ay be found i, [I, l{e.,)ark 1].

(f) I. [.1] T. l,eiKer an! tl’ first, author proved the validity of theore, of Nlazur Orlicz tyi’ u.der the

asnunptio thal ,I is a seqence space such that .(M) has the glp, that is, I has the _ghp. Actally,

each instance only the fact lhat ;(,1) has the p_ghp was used in theargl.ents.

"I’IIEOI{EM 3.3. l,et E be an Fh" space containing @. Then S.: has the stro,g php; in particular,

E is an l"h’-A h space then E has the 8[rong p_ghp.

i>ROO!:. The Fh" topology of E may be generated by seminorms

p,.(rE IN) such that p,(x)_<p,.+l(x) (rEIN and x E E). (o)

Si,ce S: is an l"h’--Ah" space we may assume that E is an FK-AK-space.

Now, let x E E be givcn. Then

supp,. ( xke 0 (n oc and ’rEIN). (,)
u>_n k=n

Further let (U0)) be (a subsequence of) any block sequence satisfying M := sul,,n IlU)I[,, < . There

exist index sequences (u) and (I’,) such that u p., < u+ (j I) and

yO) y,)e, thus y’)= 0 for k [,,p,].

On account of (o) it is sucient to prove zyO) 0 in E. For that end let r IN be given. Then we

P"(xYO)) P"(-]x’Y(’i)e’)\k=,,
have

by (,) which proves xyO) 0 in E. []

REMARK 3.4. In general, WE fails the p_wghp. [Example: Let E be the summation matrix and

E := c-,. Then WE fails the p_wghp since x := e Z es E WE (pointwise sum) and (ns) (2/) does

not have any subsequence (m) such that , := e (pointwise sum) E since E- fi m0 c.]
THEOREM 3.5. Let E be a sequence space contning , and let B be a matrix such that E C cn.

Then E C Sn if E h the p_wghp.

PROOF. Suppose E has the p_wghp. We know from Threm 6 of D. Nell [14] and Remark 3.2(a)
that (E, a(Ea, E)) is weakly sequentiy complete. Therefore, by an inclusion threm of G. Bennett

and N. J. Kton [2, Theorem 5] we get E C W, in particar E C Ln and E C A.
Now, sume E C Wu and E Sn, that is, there ests x fi E C Wn L A with x Sn, thus

ma X bx, sup b.x < and sup bx O.
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’l’loroforo wo .,av I,oo.,,o ... ! > 0 a.! i,lex seq.e. es (). (,) a.l (.) wil I, b n.cl lhal

Now we onil)lov a gli(lin hulli I) arRlimoni, l,(,l k()"- and (’li()os(, n; sllcll lhal

Thon tliere exisi a Yl IN with n, > n; and a kl >/J. such tllltt (nolo m /#

max

po k=K k=h

(’hoose n 2 n, such that

k=l

and a k7 :> ki such that

K>ka
p_-lo k=K h

l)roceeding inductively, we get index seque.ces (k.). (3). (’) w it h

(n <

and

fulfilling

and

max b,, x: bx < 2-"
K>,, if v is even and
p.-lto k=K k:K

Now, we define a subsequence (y()) of a 1-block sequence by

if % < k <
yV) :=

0 otherwise

and consider

yz where y := y(’) (pointwise sum).

Since E has the p_wghp we may assume that yx E (otherwise we switch over to a subsequence (y(’"))
and adapt the chosen index sequences). For a proof of Theorem a.5 it is sufficient to prove x .
For this let u >_ 2 and n := n. Then (note, bz exists)

k=l k=l

/=1 k=otjv r=v+l

>_ r/-2--2-----*r/>O forvo.
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_<_ 2 + 2 0 (u _).

Allogelh(’r w(, have l)rov(’(l yx q[ ct. []

Now, an ol)vious (leslion is whether the slalenlolll ill Theorom 3.5 remains true if we replace

(lonain rt t)y any sel)aral)l(’ 1" space F wilh E C i". A positive answer is a conseq,(,nce of the followig

heore,.

TIIEOREM 3.6. l(,l E I)e a sequence space containing . Then lhe following statements are equi-

valerlt:

(i) (E,r(E,E)) isan A/f-space and E is (E,E) sequenliallycoml)lete.

(ii) If b’ is any separable FK-space with E C F then E C

(iii) If A isany matrix with ECca then EC

I’ROOF. The equivalence (i)o(ii) is Theorem 6, (i)o(ii) of G. Bennett and N. J. Kalton [2]. The

implication (ii) (iii) is obviously vafid since domains ca are separable FK-spaces.

are going to prove (iii)(i). Let (iii) be valid. Then E is (E,E)-sequentially complete by [2,

Theorem 5, (iv) (i)].

Assume, (E,r(E, Ea))is not AK. Thus, we may choose an z E and an absolutely convex a(E,E)
compact subset K of Ea such that

pK(x[hI -z)O(n) where p(z) := sup Iaz*[ (z ).
ah"

Therefore we may choose an index sequence (n,) and a sequence (aO)) in h" such that

Since K is (a, -compct, (,) nd (a,) coincide on K nd (Ea,)is metrizable we may

nssume that (a(’)) is a(Ea, E)-convergent to an a K. (Otherwise we switch over to subsequence of

(a0)) .) If A denotes the mtrix given by

a, a’) (i, IS)

then -in summability language- the last assumption tells us

ECCA (even EcA).

From (,) we get z Sa which contradicts the assumption that (iii) is true. []

COROLLARY 3.7. Let E be a sequence space containing and F be a separable FK-space with

E C F. If E has the p_wghp then E C

PROOF. Theorem 3.6 and 3.5. []

COROLLARY 3.8. Let Y be a sequence space and E be an FK-space with C Y 91 E and B be

a matrix with Y 91SE C co. Then Y 71SE C So if Y has the p_wghp.

The statement remains true if we replace co by any separable FK-space F.
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IRO()I:. Corollary 3.7 anl the fact that Y ,%: has lhe p_wghp.

COI{()I,I,ARY 3.9 l,et E I)e a separable l"E space ontaining such that S: WE Then

fails the p_wghp (whereas SE has the slrong p-ghl).

I)IO()1’. ’l’hooren 3.3 and Corollary 3.7.

4. AI’PIJlCATIONS.

REMARK ,t.1. l,et A- (an) be amatrix with C ea and let x ( ca. Then

z Sa e== a.x converges uniformly in n

This observation gives us a short proof of the following theorem containing a, Toeplitz-Silvernan

theorem.

THEOREM 4.2 (matrices being conservative for Co ). For matrices A (a,,) the following state-

ments are equivalent:

(a) Co C ca.

(b) Co C

(c) p C CA and Ilall := sup y] la.l < .
n{l k=l

PROOF. The implication (a)(b) comes from the AK-property of Co and the monotonicity of

FK-topologies. (This statement follows also by Theorem 3.5 since Co obviously has the p_wghp.) Using

standard estimations we may prove (c):: (a). We are going to prove the essentiaJ part (b) (c).

Let Co C Sa. Therefore, we can apply the above remark to any z Co.

If ]IA]] oo wemay choose asequence (Ha)in IN and index sequences (%) and (/3j) with

(j I) such that

Defining y Co by

we get

la.,,I > j (j e IN).

sgna., if% _<k_<:--
0 otherwise

E a,,,.y[ - E la",’]>-j (J ,N)"
k=o k=o0

Thus a,y does not converge uniformly in n I which contradicts c0 C Sa.
k=l

Using the same method we get Mso a proof of a threm contorting a theorem of Hahn (equivMence

of (a) and (c)). However, we should mention that the proof of ’(a) (c)’ presented in [18, Threm 4.1,

p. 110] is more elegant.

TtIEOREM 4.3 (matrices summing each absolute summable sequence). For matrices A (a,) the

following statements are equivMent:

(a) ca.

(b) e C S..

(c) cca and sup [a=[ < .
n,k
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PROOF. (a) = (b) follows fron lhe coniinity of the in(’lusion map and lhe facl lhat is an FK .IK--

space and the monotoniciy of l"h" lop<flogies whereas (c) (a) may be prove<l with classical estination.

’(b)(c)’: l:et t C S. Ths. obviosly, C ca is lrue. We assume up ]a,.] . Then we nay
k

choose seq,enes (n) ad (k) in IN with k < L’;+ (d I) such that

la.,,[ >_ ( IN)

Defining y (Vt) by

we obviously get

y sgna,,, if k= ’0 o! herwise

The last estimation gives us y

_
SA that contradicts g C SA []

In the next step we use this method to reprove both the well-known Schur theorem and the Hahn

theorem. (The Schur theorem characterizes the matrices summing all bounded sequences, the Hahn theorem

tells us that a conservative matrix which sums all x X sums also all bounded sequences where X denotes

the set of all sequences with 0 and .) Moreover, we take an extended version of Schur’s theorem (see [3])
into consideration.

THEOREM 4.4 (Extended theorem of Schur, theorem of ll,hn). Let A (a..) be a matrix. Then

the following statements are equivalent:

(a) m c CA.

(a*) m c

(b*) 3V=(U,),0<V, / m. CS.

(c) X C CA that is m0 C Ca.

(C*) X C Sa that is m0 C

(d) C cA and [a.[ converges uniformly in n IN.

(d*) c0 C c and fimsup [a. a 0 where a denotes the fimit of the k-th column.
k=l

(e) Cc and 3,=(,),0<, / ,aa. converges uniformly in n
k=l

(e*) c0 C CA and , (,), 0 < ,a nmsup ]a.t aaJ 0.
k=l

Thereby, we can choose in (b), (b*) and (e) a common sequence ,.
REMARK 4.5. Originay, Schur proved ’(a)(d*)’ and nm z ax (x m) if (a) or (d*) in

4.4 is vd.

In ce of conservative matrices the equivalence (a)(c) is Hahn’s theorem.

PROOF of 4.4. We are going to check the foowing chain of impcat]ons:

(b) ( (b*) ( (a*) ( (a) ( (c) ( (c*) ( (d) ,) (d*) ( (e*) (e) (:) (b).

The implications (2), (3) and (4) and the equivalences (7) and (9) are obviously true.

The implications (1) and (5) are immediate corollaries of Theorem 3.5 since m, and m0 have the p_wghp.
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l,’or a proof of () al,l (1(I) we refer to [3].

Now, we give a proof of (6). l"or thal we ass.me thai ,1 is a ,alrix with real entries. [in the general case

of complex entries we have to .ore that [a,.] converges .niformly in . E I if and o,,ly if this is true

for the real part of a,., and the imaginary part of a. .]
Let (c*) be true. Then C c,t.

If [a.[ does not to.verge .niformly in n E I then we may choose an 1 > 0, a seq.ence (n) in I
k=l

and index seq,ences () and () with % g < a+ s.th lhal

_, la,,l >_ ’1 (: E IN).

We define y E m0 by

SiIice

sgna.,. ifo <k
:--

0 otherwise

the series a,,y does not converge uniformly in n I. Therefore y S which contradicts X C S.
k=l

5. EXAMPLES.

The aim of this section is the presentation of some examples distinguishing almost all of the gliding hump

properties. For that purpose we collect known connections between gliding hump and related properties of

sequence spaces in the following graphic.

Figure 1:
Each arrow stands for
’implies’ and the corre-
sponding number in the
circle gives the number of
the example in 5.1 pro-
ving the strictness of the
implication.

[(E, o(E, E)) sequentmlly complete]

[(E, r(E, E)) has AK and (Et, a(E, E)) aequenttally complete]
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EXAMI’IES 5.1 (!) m is ,,o,olone space, ll,,s il has all oftho w,ak gliding hu,lp proi.’rlies

??_wghl. llow,w,r, i1 1’ nol have lh, l_ghp, lhls llo ??_ghp a,d it is nol solid.

(2) "l’ht’ sctie,ce spate f. of all seq,ences almost convergent Io 0 has all of lho glidi,g hump propcrlies.

]"irther,lore, it is nol a ]loolo.o space.

l"or a proof of the, lirst slalcn,nt we may prove that f0 has the suNhp by modifying Snyders proof of [20,
’l’h,or,m 7].

(3) E:= f,(c)(,, wilh te k (k IN) ha,sthe,_ghpsince M(E) has lhe gliding hump property(see

[23, Theorem 3.3 and 3.,1]). }Ve don’t know whether E has lhe su_ghp. Therefore, il may be a candidate

to distinguish lhe properties s._ghp and ,hp.

(4a) E := ec. has the sp_ghp (th,s all ?p_?ghp) since it is an Fh" Ah’-space (Theorem 3.3). Furthernm-

re, with [17, Corollary ,t.,l] we get that E is a sum space. Thus, by definition of a sum space (E) := E

Therefore, (E) E e + csl e + by C c. From this and the fect that e E (E) we may derive

that E cannot have the u_wghp (thus ?u_?ghp).

(4b) Considering the James space we get firther sequence spaces having the same gliding humps properties

as the example in (4a). For that let be the space of all real sequences and let

XN(x) sup x. -x, + .+,

where the supremum is taken over all positive integers n and finite increasing sequences of integers

p,...,p,+. Then

(together with its naturN nortoN) is a BK-space and the closure d S of in S is cMled

James space (see [161). W’U make use of the fonowing facts:

(i) ss is a BK-Ngebra with identity e.

(ii) J Ss O c0.

(iii) (e,E) is a shrinking basis for J so, in particular, J is AK thus AD.

(iv) S JO(e) J.

Now by (i) and (iv) we get (j1l) =jll and by (iii) we get (J) (J) (see [7, Proposition 3.4]).
Therefore by (ii) and (iv) we have

(J) (J)= J, () c . (,)

As in (4a) we conclude that J h the sphp (thus ?p_?ghp) since it is an FK-AK-space. Furthermore,

by (.) and e e (jl) we get that j1 cannot have the u_wghp (thus ?u_?ghp).

From (.) we know that J is a sum space. Thus by [17, Coronary 4.4] J n E will be a sum space too if

E is any FK-space with unconditionM bis (e). Then

Now, let E be any FK-space with unconditionM bis (e) such that E1 C c. Then, above we may

conclude, jl E h ?p_?ghp and no ?u_?ghp.



GLIDING HUMP PROPERTIES AND SOME APPLICATIONS 131

Ilowever it is k.ow I1.1 (b.,. r(b.,b’.)) i. an lh" .l)C’ ad (b’o.a(bo,b.)) is sequ,.lially complete.

(6) l,et !" be a,y separable I"A" space, with Sv g I1’ (for exa.iple, the do.iai, of a co..ill matrix

()I ntrolly (’o.Jll) a.d h,l I’.’ := [l’v. "1 he. E, (/’;. E)) i elUe,tiallv col)lel, ((’e I. ’l’h’ore

2]) bul (E,(k, I’;)) is oI a. ,IA" laC i.ce olherwie h’o. ’l’heor,. 3.6 ’ wo,ld ’I ’F D E II)..

CIoi. llle paper we me.lion, lhat we dorl’ know whether there is a differece belween lhe ?_?Khp

.d he correpo,diK ?_?lp (see l"iKlre nd Example .1()).
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