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ABSTRACT. Vector fields generating more than ore flow on a mamfold are
constructed. For one-dimensional case a complete description of the set of flows
1s given. For dimensions larger than one a method of constructing vector fields
with dense or open branched sets sets 1s given. Density of vector fields with
nonempty sets of branmched points 1s studied.
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1. INTRODUCTION.

There are many elementary examples of vector fields for which the
corresponding differential eguation has non—unigque solution of the Cauchy prob-
lem. The examples, as a rule, do not define flows on the underlying mani1fold.
The reason 1s that considered vector fields have singularity at 1solated points.
In the present paper we show, mainly on examples, how to construct vector fields
which generate more than ore flow.

The basic sections i1n this paper are Section 3, 4 and 5. Section 3 descri—
bes the orme-dimensional case. It occurs that the set of singularities (1.e.
zeros) of the vector field has to be of special type, namely, 1t must contain
the support of a nonatomic measure satisfying some additional oconditions. The
set of all flows generated by a given vector field can be completely described
by means of class of measures supported on the set of zeros of the vector field.

Two and more dimensional case is considered in section 4. Situation is much
more complicated. The points i1n which the non—uniqueness of the flow takes place
(called branched points) are no longer zeros of the vector field. Another pheno—
menon 1s that the set of of branched points can be dense or open. We are not
able to give a complete description as in Section 3, but some methods of
constructing examples based on combining one dimensional examples with a
constant vector field are given. Approximation methods developed in this section
are use in Section S for a study of density properties of the set of vector
fields generating more than orne flow.

2. GENERAL PROPERTIES OF FLOWS AND QUASI-FLOWS.

DEFINITION 2.1
Let X be a Hausdorff space.
(i) A continuous map p:RxX—X, such that p (O,x)=x for xeX, satisfying the
group property: g (t+s,x)=p (t,p (5,x)) and for all t,selR and xeX will be

called a flow on X.
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(11) If a map p:Pxx—x satisfies the group property and for all xex the map

p C,x):R—x 15 continuous, then p will be called a guasi—flow on X.

DEFINITION Z.2
Let ¢ be a guasi—flow on a Hausdor++ space X.
(1) Tne set (g (t,x):telR} 1s called p—ordbirt of x and 1s denoted by (D\P(X)'
(11) A point xeX 1s called p-fixed point 1f p-orbit of x 15 trivial 1.e.
,DlP (x)={x>. A set of p~+ixed points will be denoted by S(yp).

EXAMAPLE 2.3
For any given i1integer n, let ¢ be the map RxR"—R" def1ned by
Lp(t,xl....,xn)=(x1+t,x2....,xn). It 1s easy to see that ¢ 1s a flow on ﬂ?n; we

denote 1t by 1n.

DEFINITION 2.4

Let U be an open subset of a Hausdorff space X, and let ¢,y be flows on X. we
say that ¢ and ¢ are equal on U 1f the following condition 1s satisfied: for any
(t,x)eRxU 1 $(t,x)eU and ¢ (t,x)€U then d(t,x)=y (t,x).

DEFINITION 2.5
Let X and Y be Hausdor ff spaces, UcX be a nonempty subset. Suppose that p and w
are the flows on X, Y respectively. We say that ¢ and y are conjugate on U 1f
there exists a homeomorphism f:X—Y, such that:

w(t, fx))=Fp (t,x))
for all xeX and telR such that p (t,x)eU. If U=M, then we say that the flows ¢,y

are conjugate.

Elementary properties of flows on one dimensional connected manifolds are

described in the following two propositions.

PROPOSITION 2.6

Let p be a quasi—flow on R. Then ¢ is a flow on R, and for any point xe&R exactly

ore of the following conditions 1s satisfied:

(a) x is a p—Fixed point,

(b) the orbit O‘P(X) is an open i1nterval containing the point x. Moreover, if a
set © is a nontrivial p—orbit then the restriction ¢ '[Rxo of p to the set RxO
is conjugate with the unit flow 1‘, i.e. there exists a homeomorphism
0:R—0, which satisfies the equality: ¢ (t,x)=0(t+0 '(x)) for all x€© and
teR.

A similar result can be formulated for the flows on the one dimensional sphere:

PROPOSITION 2.7

Let ¢ be a quasi—flow on S’, then p is a flow, and for any point xeS* exactly
one of the following conditions is satisfied:

(@) x is p—Fixed point,

(b) the orbit containing x is equal S,

(c) the orbit OlP (x) is diffeomorphic to R, i.e. O‘P (x) is an open arc.

The proof is elementary and will be omitted.
The following definition introduces a notion very useful in further considera-

tions: the time measure of a flow on R. This notion is a special case of the
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Lime measure Ot A quasl—+low on A Hausdor++ space (see (2] p. 191).

DEFINITION 2.8
Let B denote the family of Borel sets on R and P cernote Ruk+x), let p be a fiow
on R. The time measure of the flow p 1s a Borel measure pip—F ocefired as
follows:

(@) 1¥ x 1s a p-fixed point then P ({(x})=+x,

(b) 1¥ xeS(p) then for any Borel subset AC'Dq:(X)
w@=p @@= (el p (TL0eA))

where B 1s the Lebesgue measure on the real line R,

(c) for any Borel set A:

A= ZM(W)w(N”S(lp)) ,

el
wnere I' 1s the family of all nontrivial g-orbits.

PROPOSITION 2.9
A necessary and sufficient condition for a Borel measure p on R to be the time
measure of a flow on R 1s that for each point xR exactly one of the following
conditions 1s satisfied:
(1) | ({x})=+ax,
(11) there exist y,56; —-o<p<6<+a, such that xe€ly,6( and the restriction of p to
the i1nterval 1y,68( 1s a nonnegative Borel measure with the properties:
1. If A 1s a nonempty open subset of 13,60 then u (A)>0,
2. The measure of any compact subset of ly,8C 1s finite and
n (Jy,cl)=u (Jc,80)=+0 for each cely, (.
The proof 1s easy and will be omitted.

3. VECTOR FIELDS AND FLOWS ON ONE-DIMENSIONAL MANIFOLDS.

DEFINITION 3.1

Let M be a n—dimensional smooth manifold, V be a vector field and ¢ be a flow on
M. We say that V generates the flow ¢, if for any point xeM V(x) 1s the tangent
vector to the curve t—npt(x) at t=0. The set of all flows gernerated by the
vector field V will be denoted by F1(V).

An analogous definition may be formulated for quasi—flows. The set of all quasi-
flows generated by a vector field V will be denoted by qu(V).

DEFINITION 3.2
Let m be a cardinal nrumber. We say that:
(1) a vector field V on a differential manifold has Fm—property if the
cardinality of the set F1(V) is egual m.
(11) a flow p on differential manifold has Fm—property 1f it 1s generated by
the vector field with Fm—property.
From standard theorems of the theory of ordinary differential eguations <follows
that any smooth and bounded vector field on finite dimensional manifold genera-
tes exactly ore flow, 1.e. it has Fl-property. The following example shows that
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even on a one-dimensional manifold there exi1st vector +1elds which have
Fc—property.
EXAMPLE 3.0
Let C denote the Cantor set 1n the 1nterval [O,1],ana let ) :P—F be a nonneua-
tive continuous function on F with period 1| such that <xel0,l]i: yx)=0;=C. It 1s
easy to see that the map

t

c:R—-R, crlt)=f y\s)ds

]

1s a homeomorphism of R onto R. It 1s also obvious, that the velocity of the

flow p=0l1 1, 1.e. p(ty)=at+a T(x)) for telR ana xeP, 1s equal

(E ,X)—X -1
Vo) = lim BRELX0TX o % (U,X) = (T (X))
] € ot

€ —0
for any point x<P. we shall show that the vector field V‘P generates uncountable
many flows on [P. Let “‘P denote the time measure of the flow . The set Z(V'P) of

critical points of VtP 1S equal:

Zv r=(xelR: y 0 tx)r=0¥=xeR: 5 ) e U kelr=o U kD)
? xeZ keZ

Let v be a measure concentrated on the set 0—1( U k+C) of critical points of V\p'
keZ
One can take for example the measure generated by the Cantor function as

follows. First, let us define a function f:C—[0,1] in the following way: 1f

+00 +00
r=3 rl-3_L. where rle(0.2}, then f(r) =3 rl~2_l. It can be shown that f is a
=1 v=1

continuous surjection, moreover, 1t has a unique extension to a continuous
function F on [O,1]. The derivative of this function vanishes on (0,11-C, and
does not exist on C. Let F* denote the following function: F’(x+k)=F(x)+k for
all xel0,1] and keZ. It is obvious that the measure v defined for any compact,
nonempty interval («,p] as:

- »
v ([e,p)=F (o(R))—F (o))

1s a continuous nonnegative Borel measure concentrated on the set of critical
points of the vector field le' Let us return to gereral considerations of this
example. It is easy to see that for any positive number T, the measure u=ulPH:-v
satisfies the conditions (1), (1i) of proposition 2.9 and therefore is the time
measure of a flow a flow l; on R. Now it is sufficient to show that this flow
(i.e. the flow with the time measure 4 is generated by the same vector field VlP
i.e. the flows p and ¢ have the same velocity V‘P'
1) The set !R—Z(V‘P) is open. Consider any of its points x and take a positive
number n >0 such that Jx—2Q,x+2n)dR-Z(V‘P). It means that p;([x,xw Julx+e ,x1)
_i_s equal up([x,xw Julx+e,x]1) for €<2n, and this fact implies the equality
p (£, x)=p (£,x) in a neighbourhood of the point t=0. It means that the flows ¢
and !F have the same velocities at the point x.
€

2) If er(V'P) then V?(x)=0, and Elx—r:D P‘P([X,X"'GJUEX"'E,XJ) =0

It follows from definition of the measure p that
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(B +Tv) ([x,x+€ JIx—€ ,x])
Iim = +
€—0 el

which 1s equivalent that the velocity of the flow l; at the point x vanishes.
- -
Therefore the vector field V‘P = y(o ) generates the flows p and .

In Section 4 we shall use vector fields with compact sets of critical points and

sim1lar properties.

EXAMPLE 3.4
Let ¥’ be any any smooth nonnegative +function p’:R—[R, such that »’=1 on
R-[-1/2,3/2) and ¥’=y on [0,1], where ¥y denotes the function from the last

x
example. It 1s clear that the vector field V'=y’ (¢° %), where c’(x)=f ¥y’ (s)ds,
o
has the Fc-property.

Example 3.3 suggests that there 1s a one to one correspondence between flows
generated by a given vector field on R and some measures concentrated on the set
of critical points of this field.

In further considerations, let V be a continuous, bounded vector field on R, and
let Z(V) dernote the set of 1ts critical points. First note that if Xy 1S nmt a
critical point of the vector field V on R, then there exists a neighbornood U of

X0 such that the Cauchy problem

ﬂ = =
gt Viy), y(©) X 3.1)

has exactly one solution in U.
Indeed, if U 1s a connected component of R-Z (V) containing L then we can write

y
(3.1 on U as: t=t_+ [ 0%, yel, obtaining exactly one function t=t(-,x_) and
X

©
equivalently one function y=y(-,t°), which is the solution of (3.1).
We shall consider now the set of flows generated by a given vector field V on R.
Let V be a continuous, bounded vector field on R and let p be a flow generated
by this field with the time measure u‘P and the set S(p) of p—fixed points. For
any closed set Q€2(V) let (Pa)a be the family of connected components of the
set R-R2.

qQ

For further considerations we introduce, for a given R and ¢, the set K‘P ),
elements of which are all (not necessarily positive) Borel measures m on [R
satisfying the following conditions:

1. m is concentrated on Z(V),

2. p‘Pﬂn is nonnegative and if A is any open ronempty subset of [R then

(W'P ) (A) >0,
3. if A is a compact subset of any P« then m(A)<+x, and (ulp*-m) (Pa)=+oo,
€

4, for any x€Z(\) lim
e—>o“““*.p’ (1Ix, x+€ [UIx+e ,x[)

=0,

5. if xeR then m({x))=+mq for yaR u ({y?>)=0.
A topology in K‘P (R) may be introduced by the following
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DEFINITION 3.5

we say that a sequence rnnet\'P (' converges to a measwre m 1f:

lim sup {Imn(B)—m(B) |: B 15 any compact subset of P'\)=O
m+x ~eQ i

The set F1(V) has the standard uniform convergence topology.

THEOREM 3.6
Let V be a continuous, bounded vector field on [R. I+ the set Fi1(V) 1S not empty,

then there exists a flow @eF1(V) such that the mapping

J:g kg SD—F1(V), Tm =y

which assigns to a measure m the flow \um. which has the time measure “@ﬂ“‘ where
uﬁ denotes the time measure of €, 1s a continuous bijection.

Proof. Since F1(V)® we can choose ¢&Fl(V). For a closed set 2€Z we denote by
F1(V,2) the subset of F1(V) consisting of all flows having R as the set of fixed
points. It 1s clear that for =S(p) the mapping A gives a continuous bijection
between K () and F1(V,52). To complete the proof 1t suffices to show that there
exists a flow #eF1(V) with a mimmal set of fixed points 1.e. S(®)[B(yp) for any
ypeFl (V). We remark first that if p,yeF1(V) and u‘P,uw are their time measures
then p=m1r\(ulp,p‘p) 1s the time measure of a flow belonging to F1(V). We denote
that flow by min(p,p). Since xeS(p) 1¥f and only if u‘P((x))=a we have
Smin(p,y))=Sp)rS(y). One can check that a decreasing net of time measures of
flows 1n F1(V) converges to the time measwe of a flow 1n Fl1(V). Using
Kuratowski-Zorn lemma we get the existence of a flow ®&F1(V) with the mimmal
set of fixed points. Q.E.D.

An analogous result holds when R is replaced by s'. For manifolds of larger

dimension than 1 one can conclude the following

COROLLARY 3.7

Suppose that ¢ and ¢ are different flows on a manifold M, and each w-orbit is
contained 1n a p—orbit. If ¢ and y are generated by the same vector field V then
V has at least ome critical point.

4. VECTOR FIELDS AND FLOWS ON HIGHER DIMENSIONAL MANIFOLDS.
This part starts from the following definition describing singular points of a

given vector field V on finite-dimensional manifold.

DEFINITION 4.1

Let V be a vector field on a differential manifold M.

(a) A point xeM will be called a V-strong branched point if there exi1st quasi-—
flows ¢ and y gererated by V and a positive number € >0 such that the set
R(p,w)={telR:p (t,x)™p (t,x)) contains at least ore of the intervals (0,€),
(-€,0). The set of V-strong branched points will be denoted by R(V).

(b) A point xeM will be called a V-weak branched pownt if there exist two
solutions yl(',O,x), i=1,2 of Cauchy Problgm:

y=Vy), y(O)=x, “4.1)
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such that t=uU 15 a cluster polnt ot the set [Qd=10 vlkt.v.mtvz(t.u.x)). he

set of weak v~tr anched points will be genoted by .'P-wtv.'-

[t 1S obvious that each strong branched point of a given vector +t+iela Vv 15 3
V-weak branched noint., and 1 x 1S a4 V-weak Dranchned polnt, rhen Tthe LCauchv

problem (4,]) nas uncountable manv solutions (see for example (5], theorem 4.1)

DEFINITION 4.2
If, for a given subset A of a man1fold M, there e-1sts a vector fiela Vv on ™
such that RV)=A (xw(w=m, then A will be called a strong branched set (resp.

weak branched set).
The following fact follows easily from Theorem 4.6:

PROPOSITION 4.3
Suppose that Vv 15 a continuous bounded vector field on R or S‘. then R(V) 15  a
nownere-dense subset of this mamifold, contained i1n the set of critical points

of the field V.
1

It follows from the above proposition that an open subset of R or 8 can never
be a weak branched set. Now we shall show that there exist strong branched sets
dense 1n higher dimensional manmifolds, especially 1n ﬂ?z. The construction 1s a
continuation of M. Lavrentiev’s and P. Hartman's 1deas (see (6] and (7)), who
have constructed examples of ordinary differential equations with locally non-
unique solution of Cauchy Problem 1n any point of an open subset of !Rz. It s
equivalent to proving that IRZ 1S5 a weak branched set 1.e. there exists a conti-
nuous vector field V on R? such that .‘RW(V)=IR2. We are going to show more,
namely, that ®? 1s a strong branched set. First 1n the example 4.4 we construct
a vector field V such that R(V) 1s dense 1in r?

EXAMPLE 4.4

We construct an example of a continuous vector field V on [Rz. wlith a dense set
of strong branched points. The construction 1s divided into two steps. In first
of them we define an operation called MOD-operation and analyse 1ts properties.
The second step included a proper description of the construction.

STEP 1

Let v be a continuous vector field on RZ and R(v) be the set of 1ts strong
branched points. Suppose that for a connected open subset U of the set [R-R(v)
there exists a smooth local coordinate system (1,U) 1n which v has the coordi-
nates <1,0>.

Let R denote a nonempty rectangle [a,blx{c,dlcA(U). We choose real functions
() and h(-) such that «:R—R is contiruous 1n la,bl, and o= on [R-Ja,bl,
h:R—Jc,dl is a diffeomorphism such that % —0 when x—ix, We assume, moreaver,

that
® -1 dh
_f a(s)ds=0, sup|«|>6m(b-a) and supld—x-l=rl 4.2)
(-3

where n is a positive real number.
Let u denote the vector field constructed in Example 3.3. We can define the
following vector field on RZ: £(x,y)=<1,Uly) -®(x)>, where:
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-1 .
N’ ty)yuth v)) for yelc.al.
uly)r=
0 for yelP-1c.al.

To assure that each orbit of any flow from Fl(¥) crosses the set of branched

points ot f, we assume aaditionally that there exist a’,b’ such that

,
-1

.fb x(s)ds > o (1) 4.3)

"ar

where o 1s defired 1n Example 3.3.

DEFINITION 4.5
we say that a vector field v, 1s a modi frcation of Yo and write vffDD(U.Q)vo 1+
there exist «, h, A, L as above such that VTV outsioe U and v1=F 1n U 1n local

coordinates given by .

To analyze properties of v, note that + nas Fc—-property: for any ¢eFl(u), 1t
generates the flow

t
P (E, Gy I=(xtt, d(f aix+sids,y)) . (4.4)
o]

Vector fields <1,0> and f are different only 1inside the rectangle 2. It 1s easy
to see that R = la,blxR(U) 1s the set of f-strong branched points. Condition
(4.3) 1mplies that the orbits of any flow gererated by f, which pass across &
have nonempty 1ntersection with the set R. [t 1s easy to see that flows genera-
ted by f which are of the form (4.4) are conjugate with the unit flow 12 by the
following homeomorphism A:

x

A,y) = (x, @(f aix+s)ds, y)), for (x,y)eR>.

-
DEFINITION 4.6
We say that a vector field V has a-property if for any point pm there exists
a connected neighbcrhood U(p) and a local map :U(p)—2A (L)(p))QJ?2 such that V has
the coordinates <1,0> in the map A.

Observe that if a vector field V has the a-property, p and U(p) are as 1n the
above definition, then MODWU(p),n)V has the a—property. The operation
MOD(U(p),n) depends on the choice of the local map L. We can choose A 1n such a
way that peR(MOD(U(p),n)V). In the following we shall always choose such a A.
STEP 2

We choose a countable dense set P={pn: neN) in R? and start from the vector
field V1 with coordinates <1,0> which obviously has a-property. Let Vn denote
the vector field obtained in n-th iteration. As the next 1teration we take
V. TMODWCp ) ym YV if pnziTn)' and V__ =V otherwise.

LEMA 4.7
Parameters Qn of the MOD-operation can be chosen small enough, so that
a) the sequence (Vn) converges uniformly on Rr? (in the sense of the uniform
convergence of coordinates in the canomical map in Rr?).
b) each of Vn has the Fc-property.
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c) Rw ISRV ).,
n+4 n
Proof. The distance d, between v and \/“ﬂ . definea as
2
sup(llvhtx)—v ﬂ(x;ll: xR}, 15 proportional to n_ (Wwith a constant depending on
n

x

n), SO 1t 1s possibie to make the series a  convergent. D) and c) follow
n=4

1immediately from the construction. Q.E.D.

If n 1s such that Vnﬂwn then for any flow @nefl(vn) we can construct, using
4.3), continuum of flows @ el ) which are equal to ® outside Up ) (an
n+4 n+1 n n
the sense of definition 4.4). The distance bewween 'in and @nﬂ detined as
X 2
m(tl@ﬁ(t.p)—fbhﬂ(t.p)u: telR,pelR™) can be bounded by constant (depending on n)

proportional to Qn.

LEMMA 4.8
Parameters Qn of the MOD-operation can be chosen small enough, so that any

sequence @h) chosen as above converges unitormly to a flow on Rr>.
The proot follows from the above remarks.

PROPOSITION 4.9

If n _ are chosen according to Lemmas 4.7 and 4.8 then the vector field V=lim v,
has a dense set of strong branched points. The limit of any seguence (ﬁn) as 1n
Lemma 4.8 is a flow generated by V.

Proof. Lemma 4.8 guarantees that lim Gn 1s a flow on ®>. From standard theorems
about differential equations (see [S] Theorem 4.4) follows that 1lim Qn 1S gene-
rated by V. It is easy to see from the construction, that using different Flows
from F1(W) 1n any NJD(U(ph).Qn)—operatlon we obtain different limits lim ﬁn. it
1mplies that V has Fc—property and any point of P is a V-strong branched point.
Q.E.D.

It can be proved that if the parameters R are sufficiently small the set R(\V)
15 dense but different from R>. This completes Example 4.4.

REMARK 4.10

If the vector field u used in MOD—operation, is replaced by the vector field
constructed in Example 3.4 we can obtain a vector field Vm such that R(V‘)=R2,
i.e. B? is a strong branched set.

S. GENERAL PROPERTIES OF VECTOR FIELDS AND FLOWS WITH Fc—PROPERTY
In this part we investigate sets of vector fields and flows having
Fc—property. Those sets will be regarded as subsets of the spaces FC and

F1(M) respectively, which consist of all contiruous vector fields and flows on a
finite-dimensional manifold M. In order to avoid problems with non-integrable
vector fields and with definition of the uniform convergence of vector fields we
assume that all considered manifolds are compact.

PROPOSITION S.1

If M is an n-dimensional manifold and N2, then any continuous vector field on M
can be uniformly approximated by vector fields with Fc—property.

Proof: If the given vector field is smooth and does not vanish one can apply
MOD-operation with a sufficiently small parameter n. If the field vanishes in an
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open set one can add to 1t any field with Fo-property., multiplied by a
sufficiently small constant. A continuous vector field can be unmformly approxi-—
mated by smooth fielas. Q.E.D.

Let ¥ be any cardinal number; the set o+ continuous, bounded vector +ields on ™
with the Fk—property will be denoted by G(M,k). The same way., 1¥ we consider tne
set Esmt(M) of vector fields with nonempty, open sets of strong branched polnts
(for 1nstance Gmtm?z)?@ - see Remark 4.10), 1t can be similarly proved that
Gmt(l"l) 1S dense 1n Fo ) . The sets G(M,0) and GM,1) are also dense 1n Fe M),
1t can be shown much more: G(M, 1) 1s the set of second Baire category (see (3]
pp.119-121).

The space F° may be 1n a natural way represented as a sum of disjoint sets
GMM,k), for k0. Unfortunately, for many dimensional (dim M = 2) manmfolds
authors do not know anything about the sets G(M,k) for k22 and kSNO; are these
sets nonempty?

It was shown that on the n-dimensional manifolds, n22 , there exist vector
fields having open sets of strong branched points. For an arbitrary open set,

approximating 1t by sums of rectangles, we get

PROPOSITION S.2
Every open subset UCD?“. where n>l, 1s a branched set.

It is easy to see that the stronger result occurs: every open subset of the

n—dimensional manm+fold, where n>1, 1s a branched set.

DEFINITION 5.3
For a compact manifold M and given cardinal number k we define the +following

sets:
Aq(m,k) = U (-F}xqu(F)
&6 (M, k)
B (M) = U (fIxF1_(H)
q o q
feF£o (M)

Since M 1s metrizable, then using the metric p on M we define a topology of
above sets by the following metric:

d((ﬂ,\p‘), (Fz,-pz))=lI-F‘—-Fz|I° + po(‘Pa"Pz)
where II-IIC> is the norm of the uniform convergence in FO(M), the set of all
continuous vector fields on M, and Py denotes the norm:

Po(‘Pu‘Pz)=:\;pR j:z p (lPt(tyX),'Pz(t,x)).

In what follows the topology defined by d in those sets will be called the
c°-topology.

Before formulating results of this section, we give a short description of MOD1-
operation which which assigns to a quasi—flow w a quasi—flow ¢ having the
Fc—property such that the po(np,q») can be arbitrarily small. Let V be a conti-
nuous vector field on a manifold M with the set Z(V) of critical points diffe-
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rent from M. Suppose that Fla(w 1s not empty and let y be a quasi—flow genera-
ted by V. It 1s obvious that for any xe€Z(V) there exists a map (.U} of a
nei1ghbourhood U of x such that ¢ 1s conjugate to the unmt flow 1h on u"@w(x) Qn
the sense of definition 2.5). Without loss of generality we can assume tnat (U)
contains the cube [0.117. Let « be a nonnegative continuous function on ®' such
that

(a) «(-)—1 vanishes beyond a neighborhood of the Cantor set C on

interval (0,117,
1

) _f (@ (s)-1)ds < 6, where 5 denotes a positive number,
Q

(c) for any xeC, (x)=1.
Let y’ be any flow which 1n the map (A,U) has the following coordinates:

1
¥ (L0 =(pr 0O+ J’ «(S)AS, Pr, (XD, ... pr X)),

a
1

where den. Let ¢ denote the quasi-flow which 1s equal ¢ on M—U"@w(x). and ¢’ on
wo (x).
[

DEFINITION S.4

We say that a map lP‘:RXN—)M 1s a modification of quasi—ftlow ¢ and write
q:ft’DDl(U,S)w 1f there exist «,A,e,U,¢,¢’ as above such that -p‘=-,u outside
me and tp‘=q: n W\P(X)'

It is easy to see that the map: yp 1s a guasi—flow with a Fc-property, suffi-
ciently close to y: o(lP )=, where €=S6 and S denotes a constant depending on
A, and U.

THEOREM 5.5

Let M be a compact smooth manifold with Euler characteristic X(M) different from
zero. Suppose that V is continuous vector field on M and q’nflq(V). Then there
exists a sequence of vector fields Vn having the Fc—property and quasi—flows
q)nequ(Vn) which uniformly converge to V and ¢ respectively; 1.e. the set
A (M,C) is dense in B (M) in c°-topology.

Proof. Let V be a continuous vector field on M with nonempty set qu(V). If v
vanishes in an open subset of M theorem is obvious. In the other case let us
consider an integer number n and any quasi-flow tpequ(V). Since XM=, it
follows from Poincaré—Hopf theorem (see (81 p.69), that V has nonempty set Z(V)
of critical points. Let us choose a point xeZ(V) and open set U such that
O (x)rU is disjoint from Z(V).

Performing the MODl1-operation we obtain quasi-—flow w=MODL1(U,1/n)y which
satisfies the condition

. -4
v -Vﬁo-’- Polwsp) =07,

where V' denotes the vector field which gernerates the quasi—flow ¢. Since n can
be chosen arbitrarily large, the proof is complete. Q.E.D.

Since Euler characteristic X(Sk) of k-dimensional sphere is equal 1+(-1)k, it
follows immediately from theorem 5.5 that the set Aq(Szn,c) is dense in Bq(Sz")
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n Co—topologv.
Theorem 5.5 does not., 1n general, hold for manitolds with Euler characteristic
zero. For example, since any vector fielad on S‘ wlth Fo-property has uncountapte
many of critical points 'see Section 3); this fact 1mplies that A(S‘.c) 15 not
dense 1n Bthi). There ex1st also higner dimensional mani+oids for which Theorem
5.5 does not hold. Let us consider T2=‘S‘xS"=(eyD(Z'ﬂ1«): ~“ERIxiexp(ZTip): PeR;.
and the flow ® naving the form ®(t, (x,p))=(x+bt+atcosp, B), where a and b are
positive numbers. Let V-:b cgenote the vector field which generates ®. It can be
checked that the pair (V@

fields and flows from Aq(m,m. It appears, nowever, that qu and ® separately can

,8) can not be uniformly approximated by the vector

be uniformly approximated by vector fields and flows with Fc-property. Note that

this fact 1s more general:

PROPOSITION 5.6

1¥ M 15 a compact smooth manifold. then the set U F1 (V) 1s a dense subset
o veiG M,c)
of U qutV) in the C topology, 1.e. any guasi—flow on M can be um<formly

ver® (M)
approximated by quasi—-flows with Fc—property.
The proof 1s analogous to the proof of Theorem 5.5 and will be omitted.

we can easlly construct an analogous example of a vector field and a flow on
) _ 2
Klein bottle [Kz. Since for any two-dimensional compact manifold apart from &

2 -
and K Euler characteristic 1s negative, we can formulate:

COROLLARY 3.7
Suppose that M 1s a two—dimensional compact manmfold. Then the following
conditions are equivalent:

1. Euler characteristic X(M) 1s different from zero,

2. The set A_(M,c) 1s dense 1n B_(M in C° topology,

3. M=S? and M2, ?
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