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ABSTRACT. Shalika’s unipotent regular germs were found by the authors in the case ofG Sp4(F).

Next, subregular germs are also desirable, for at least f(1) is constructible in another form for any
smooth function ]’by using Shalika germs. Some of them were not so hard as expected although to

find all of them is still not done explicitly.
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0. INTRODUCTION

Suppose that G is the set of F-points of a connected semi-simple algebraic group defined over

a p-adic field F, that T is a Cartan subgroup of G, and that T’ designate the set of regular elements

in T. Letd be a G-invariant measure on the quotient space TG, and let C’(G) be the set of smooth

functions. Then it is known that for any f
_
C’(G) and T’ the orbital integral frf(g-1 tg)doo is

convergent.

Next, let S,, be the set of unipotent conjugacy classes in G and let dxo be a G-invariant measure

on 0 E S,,. It is also known thatAo(f)-fofdro converges for any f_ C’(G).
Shalika, J. A. (see 14], p. 236) says that for any E T’ sufficiently close to 1, there exist germs

r0(t) satisfying

fGf(g-l tg)d Oo es. Fo( )Ao(f)

Shalika, J. A., Howe, R., Harish Chandra, Rogawski, J., and others contributed to the establishment

of the germ associated to the trivial unip0tent class. Recently Repka J. has found regular and

subregualr germs forp-adic GLn(F) andSL,(F). The authors also found the regular germs forp-adic
Sp4(F) in 1987. In this paper, the authors intend to find some subregular germs associated to some

subregular conjugacy classes in Sp(F).
Our result may in principle be seen elsewhere, but this paper gives an explicit formula in a

special case.

1. NOTATIONS RELATED TO SYMPLECTIC GROUPS

Let G -Sp4(F) (g SL4(F) :’gJg -J), where F is any p-adic field and

o

with 2 2 identity matrix I_.
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Let o be the involution on SL4(F) defined by o(g)-J-(g)-lJ with g SL4(F). G may be

interpreted as SLy(F). G may also be expressed as the subgroup of SLy(F) generated by all the

symplectic transvections whose most general forms are of the type

4- C[l[

ca21
M(c, a, a,,)

ca& ac aac
+cc actc
C[lf5: cai ca[
cf ca f: ca

(1.0)

where c , O, and %,[ are arbitrary variables in a ground field F. So any symplectic element should

be of the form

(M Mn’M
[M2 M22,

with Mi .M2(F) satisfying

’MM’-’MMi’’MzzM-’MI2’Io) (1.1)
M M2 -’MmMn -’M:M:- M z3/lz

Hereafter, we let F be a p-adic field of odd residual characteristic with ring of integers A; let P be

the maximal ideal ofA. Let K -Sp,(A ), K {kK :k id modP}, and let diag(a,b,a-,b-) be

denoted d(a,b) for brevity. If a -b, denote diag(a,b,a-,b-) simply by d(a). Write char(s) for

the characteristic polynomial of a matrix s, c(s) for the pair consisting of the 2nd and 3rd coefficients

of the characteristic polynomial of s -/d, ignoring the signs that occur in the characteristic poly-

nomial. Conjugating a matrix s by a matrix r means to produce r-sr -s" unless otherwise stated.

Other symbols shall follow the standard convention.

2. UNIPOTENT ORBITS
G acts on itself by conjugation, so in particular on the set of all unipotent elements.

Referring to [5] 3, we may obtain the following.

PROPOSITION (2.0). Any unipotent orbit meets the set of all elements of the form

1 -x
0 0
0 -where a, I, ’ and x F.

(2.1)

Ifx -0, however, in (2.1), it is not GL-conjugate to the element with all diagonal and super-

diagonal entries equal to I and with all other entries equal to zero, i.e., not a regular unipotent element

in short. Due to proposition (3.4) in [5] 3, (2.2) represents the orbits of the G-set consisting of all

the regular unipotent elements of G.

Ifx # 0 in (2.1), we may calculate directly to see that the associated unipotent orbits meet the

set of non-regular unipotent matrices or the set of regular unipotent matrices which as a G-set has

representatives of the form

I 0
with 6F"/(F") (2.2)

0 1
0 -1
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On the other hand every subregular unipotent matrix, i.e., the matrix which is GL(F)-conjugate

to the element with all diagonal entries equal to 1, with superdiagonal entries (1,0,1), and with all

other entries equal to zero, must be conjugate to the matrix of the form

0
with o.,yEF

0
0 0

By (1.1), we see easily that for (aij) E G and for two subregular unipotent matrices

0 0 ’ if and only if
0 0
0 0 0 0

’al +a-
--aa+ -0 (2.3)a21a

a a
a + -1

-!""’"’ into the lastholds. Without loss of generality, we may put a O; substituting - ,
equation in (2.3), we have

From this we know that

is G-conjugate to the following analogous form

1 0
ctx+vx

0

0
otx + yx

0 I 0
0 0

where xy’s are arbitrary so that denominators arc nonzero. is, however, contains

I 0 0

0 1
0 0

and
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0 yxs O
0 0 cuc
0 0
0 0 0

12
where xl’s are nonzero. Hence there exist at most 4 +5-= 10 representatives for this form in any

case of F. In fact, a trivial computation shows that there are six, seven or eight classes.

Let

with representative pairs (ct,),).

0 x 0

0
0 0

Now let S(o.,y)-(g K’g ’(ct, y)modP). We may choose representative pairs (t,),) with

Ivl 1. By making use of S(a,),), we intend to compute the Shalika’s germs associated to the

unipotent classes of (o.,),). Any element of S(’t) should be of the form

+pll P12 Ct +p13 P14

X21 + P22 x23 Y + P24

x31 x3: +p3s Ps4
P,u x,,2 X43 +p,

(2.4)

the matrix of the form

/li
0

0b01001 0!/
with some b @P yields the form

where pi are arbitrary in P and xo P are rational functions of Pii with coefficients in A uniquely

determined by (1.1). From this we obviously see thatS(ct,),) p 10. We shall deal with the relationship

between -(ct,),) and S(ct, ,) in the upcoming proposition.

Here we shall practice conjugating by a succession of matrices in Sp4(F) to simplify S(-). Let

s E (). Any matrix of the form (2.4) may be changed into the analogous form with (1,4) entry

and (2,3) entry equal by using some matrix of the form (2.1) with I’1, I1, Ivl and Ixl 1. Over

anyp-adic field with odd residual characteristic, the Jacobian of these conjugation maps has modulus

1. Conjugating this by the matrix of the form

l1i
0 0 0

0 0
0 1 -a

0 0

with some a EP yields the form with (1,4) entry -(2,3) entry -0. Next conjugating this form by
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with *’s as in (2.4), since the Jacobian of each of these conjugation maps has modulus 1. This form

is then conjugate to the analogous form with (3,3) entry and with (1,4) entry (2,3) entry (3, 4)

entry 0 by the matrix

0 0
c 0
0 0 0

with some c E P, which may be transformed into the analogous form with (3,3) entry (4, 4) entry

and with zeros as before by a matrix of the form

/li
0

0d0l001 0!/
with some d E P. Lastly it may be transformed into the form

1 + zax zx2 O’-- l+zz 0 7

1 1
-=-z -=-_z= 1 0

1 1
--=-Zl= ---z22 0

(2.5)

,1,
t" . ,2,

for some PI3,P24 C_ P. Forwithsomezii P by conjugatingby d(e,f)withe +T,J- +-
later use, we let S3(a, y) be the set of all matrices of the form (2.5), and let/ be the composite map

of the conjugations which take the form (2.4) to the form (2.5).

3. INTEGRAND FOR SHALIKA’S UNIPOTENT SUBREGULAR GERMS

If any of the form (2.5) may be a unipotent element, either z12 0 or zll -zz, is obtained. The

former result z2 0 implies zx 0, which again yields Zzz 0. The latter impliesz +z2 0, so

__4 (F"):’. Recall that an n n matrix u is unipotent if and only if (u 1)" 0 for some m Z/. So,
we get the following considering (2.4) and the proof of [5] Proposition (3.8).

PROPOSITION (3.0). Let- (.,) be representative pairs with - (FX)2. Then the only

unipotent orbit intersecting ’) is the class of ’(’Z).

Now assume O to be a nonsquare in F and write E F(V). Then E being analogous to

the unit circle in C, it becomes a compact group under multiplication. More precisely

E -{a +bV’a,b F and a2-Ob-1}
Supposing that T be the set of all matrices of the form

a 0 b 0
0 a 0 nbO 0 a with O,0 F(F)2, i.e.

0 1302 0
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squarefree elements and with a2-Oib ct2- O21B 1, we may see easily thatT as a subgroup of G

is isomporphic toE xE both algebraically and topologically, and that Tbecomes an elliptic torus

as a Cartan subgroup.

According to the Shalika’s theorem (see [14] p. 236) as we have mentioned earlier, we have a

kind of expansion

fnof(t’)d, . r’(t fz,.of(uf)a (3.1)

where {ui} is a finite set of representatives of the unipotent orbits, f C’(G), and is any regular

element sufficiently close to the identity, although "how close" depends on f. Here the functions F
called Shalika’s germs do not depend on.f, but depend on a maximal torus T.

We intend to compute the functions I’-(t) corresponding to the element () of 2 by letting

f- Y,s be the characteristic function of the set S() defined in 2. Thanks to proposition (3.0), the

integrals on the right hand side of (3.1) all vanish in the case off--- X6-) with (,) and
a
-(F)

except for that corresponding to ’(). This facilitates for us to compute the germs sought, but it

may not be easy to calculate the others, i.e., those for the pairs with -- (F’)’. This note deals with

the former cases only.

4. CHANGE OF VARIABLES AND JACOBIANS
Let be a regular element of T sufficiently close to the identity; write x + d, and assume that

is an element such that the nontrivial coefficients of the characteristic polynomial of t- id are

in P, i.e., c(t)P according to our convention. By the way char(tS)-char(t)
det(t .o 1) k" 2(a + et)k + 2(1 + 2arx)k:’- 2(a + a)k + 1, where a and a refer to the entries in the

matrix in 3.
On the other hand, the characteristic polynomial of a matrix s in the form (2.6) turns out to be

char(s) .4 + k3(_4 zl z22) + 2 6 + 2zlx + 2Zz2 + zllzz2

+ K(-4 Zll z22 +

So we obviously see that c(s) p2. In case that s and are conjugate, the corresponding coefficients

of char(s) and char(t) must be the same, thus the following must hold:

z22 2(a + a) 4 Zll

zllz22---_z2m +6-2(1 + 2ao.) + 4(a +ct)- 8- 0
(4.0)

[Zz2 2(a_+ ct) 4

z- 2(a + a) 4 z

The las equations are solvable if and only if (a -) g (F)

For any given matrix s of the form (2.5) subject to (4.0), we are going to determine whether

we may find g ff a smisfying -s. Bm we see easily by trivial computation hat: in ease that
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S ES3(f/.,y) is any element with the property z_. O, and with (a -)2 z square, there exists--" 12

gEGs.t.
tg--sS() for x=(t,)

2bt
’ -(o_ a2 Ne

e ((E’)x)

Q(a

For a fixed regular T, let c"G G be the continuous map given by c’(g)-t. Put

(t) (c’)- (()). The orbital integral off- Xg over the conjugacy class of is just the measure

off(t). Define a mappingP’ 3 x p7 p x p7 viaP’((zt,zz,z) ((zz) ), which is obviously

a projection. Now we construct the following composite map:

(4.1)

P P’

(TG D)(t) () 3 P P PT.
Fig. 1

Here the middle arrow P in Fig. 1 arises as a homeomorphism which has shown up in {}2. Due to

the above description, if (2.5) satisfies (4.1), this composite map is bijective except at zx: 0 and at

z12 which does not make (a -ct)’- --gzz square. We want to find out the composite map’s Jacobian

so that we may compute the measure of G(t).

Let Ube a neighborhood ofa fixed T’ NK1 chosen so that no two elements ofU are conjugate.

LetA C T’ TG be an open setA {(t,g)’t U,ts ()}. Construct the following commuting

T

diagram.

cx id (C)

id p’op oc’
(pZ) TG DB

S-() p,O S(ct,’) x p7

cp’op P"

p (P P)

Fig. 2

The upper left mapping cr is just the conjugation map taking (t,g)T’ TG to -.g-tg and

B c /d(A). The middle vertical map c P’ P denotes c x P’ 15(s) (c(s), P’ [’(s))Vs ().
Specifically c(s)-(ca, c2), where c-trace(s-1)and c,_- the coefficients of Z. appearing in

Is-l-..l[. For (s3,p ,pT).S--3P7, the opposite diagonal map P" is defined as

P"(s3,Px,-..,PT) (C(S3),Z12,Pl, "-’,PT)"

Next we shall discuss the Jacobians of these maps. The Jacobian of the map cr is just

D(t) det(id -Ad(t))q/e where q and t are the associated Lie algebras of G and T respectively (see
[14] p. 231). It is not hard to know IJ()l I(a -,)V’a’:’- 1V’ct 11- Moreover, since

IJ()l -I/(e")l 1, we have

O(t)
IJ(e’ op oc’)l (a-t)V’a:’- l/ct2-i

(4.2)
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As in [5] 5, we have Io(/)l -Ix/ct- l(a ct)l and IJ(c xp’o/5)1 1. Hence

J(P’ /5 c’)l 9(t)/(a ct)V’a 7.- l/t7.- II ID(/)I ’

5. ORBITAL INTEGRALS WITH NORMALIZATION OF MEASURES

We take the natural additive measure dx on F so that A has measure 1. As T E’ xE2 and

(EO’/F :3E’/{+_l }, choices of measures on (E’) and F determine a choice of measure on Et’.
On (E’) we may take the corresponding measure dx and on F v d"s . Now select the

iXlEOl
measure on G whose restriction to K is an extension of the standard measure of()- pro. Since

]J(c P’ P)[ 1, Hair measure of() must be the same as that of pl0. A choice of measure on

TG depends on that of G and T which also gives the natural measure on K and ().
Now recall

i.e., explicitly

We put

P 2- 2a + Zz, Q 2- 2t + zzz

- ct a +/- (a t)7. z2- a ct +/- a t)2 z

X(a, o., o.,’f)
1 P" a a + (a a) --z2Ne

1y E1

X’Ca,ct,)-
m eP .a a Ca ) z?eN’ _0’

YCa,V)- , eP :a - + 12-z72 eNff E

Y’(a,) zmp "a -a- (a a)-zN E

X(a,)- eP "a-a + (a -a)-$z?eF E’

X’Ca,)- eP’a-a- (a-al-z?eeF E’

Y(a,y)- 2eP.a_+ (a_)2_z?2eF E

’(a,a)- P’a-- (a-)-z2Fff((E) )
t be the Hair measure function on these sets. We have then the following orbital inteals.
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PROPOSITION 5.0. (i)If,_,,2-N E’’ and:N lIE J, then

tS)d "((X CI Y) U(X’ CI Y’)) x q-7 x [D(/)

(ii) If
a

,,F and E then

Sr t,;)(tS)d ’((X nF)u(x’ nP)) q-7 x ID(t)

(iii) If----_a. N-"’((E’)*) and.--=Ne*((E)*), then

tS)d ((nY)u(’ n r")) q-7 D(t)l _,n.

(iv) If,,_o---- Ne’ E’ and s? Nee e then

fra Tr)(tS)d ((fl U(’ n’)) q-7 D(t)l

PROOF. We have already seen the Jacobian ofP’ P. c’ is just ID(t)l 1/2 and that the measure

of P is fixed to be q-1. So we have our result considering the above remark and (4.1).
Now we must look for the orbital integral over the conjugacy class of(,). To see this we

need to specify the measure on the centralizer Z((ct,),)). Any element of Z((1,1)) should be of

the form:

a,, +/-V’I -all a,3

aza11 +/- a11a4+/-3/1 a -T-an az a3

0 0 an +/-3/1 -a
0 0 1-a

if an , +/-1 and 3/1 a F,

or

1 0 a13 azs

0 +1
0 0 1

if an _1.

By the way ’(,) d(Vr,vr-)’(1,1)d(vt V) implies that

Z(’ff()) Z(d(V,V" ’(1,1). d(V-rt,V))

-d(V,3/ Z(’ff(1,1)). d(V,Vy
We decompose G into the form

G Bi K Z(’ff(,)). P. K, where B)-Z(-ff(,))- P

and
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Hence the integral over Z(-(ct, y))\G may be replaced by an integral over

{Z(-(,))Z((a,y))’/5}. K, and this coset space may be represented by a subset of PK, the

measure ofP beingjust d"bl, and dz being an appropriate Haar measure ofZ((ot,’l,)). Next, consider

the following integral. For any f CT’(G),

fa f(g)dg fzCS)w fzfaS)) f(zg)dzd#’

fx fza,))f(zpk) dz -d. dpdk

where - arises because Z((,)) x/5 xK G given by (z,p,i) 2 p i is not a topological

isomorphism. We may figure out the constant 3 by calculating the measure of K. The modular

function being trivial on # K,

Lf(gg a()) ())xf(zgd

The inner integrals must be the same after setting f , the characteristic function ofK; so deleting

these, we obtain

So we have? )-. (Z((,))K)- Hence the quotient measure ofZ((a,))W is obtained

by writing $ pkwithpP, kKandputtingd$-(1-)-xx(Z(()) DK)-
since B(,) is not unimodular although G, K, P andZ()) are unimodular.

PROPOSION 5.1. With the assumption of measures noalized as above, we have

fztK ((’)s q-7
)

PROOF. The decomposition G-B). K assures that any element conjugate to (,y) is

determined by g -gi with p # and i K. So, we have

By the way p-x(,)p -k- for k K, s S(y) implies that p #K. Hence it is not

difficult to see that --’k’ with k’ (Z((,))nK). K, if and only if(S(y). Since

the modular function is 1 for p K, we obtain

X()((,) g f()).,
Since the measure of K is 1 -L and the measure of (Z(())K).K is just

-(z(())), we have

as required.
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Finally, we combine everything, in particular propositions (5.0) and (5.1) to yield our main

result. Notice that Oj may belong to three nontrivial residue classes mod (FX)2.
THEOREM 5.2. Suppose that we are given an elliptic torus 7’ as in 3. Then the Shalika’s

unipotent subregular germs for G in the case of-"_- q (FX) are obtained case by case as follows:

(i) If N E’ and N E then

r()-- E((z n Y) u(x’ n Y’)) IO(t) -.
(ii) If --_, e Nee’’ E’ and -, N E2 then

r() ((,n)U(X’ n’)) O(t)l-.
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