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Abstract: For positive operators A and B with A invertible it is shown that (AB2A)I/2<_ A implies

(AB2A)3/4 <_ ABA. The inequalities in the title for 0 _< B _< A are then derived as a conquence.
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1. IN’I3ODUCTION.

In this paper operator inequalities centered around the celebrated Furuta inequality are

considered. As motivation, we begin with a brief account of the origin of the inequalities in the

title.

We consider (bounded, linear) operators acting on a Hilbert space. For an operator A,
we write A > 0 (or 0 _< A) if A is a positive operator. For positive operators A and B, we write

A _> B (or B <_ A) ifA-B >0.

It is well-known that 0 <_ B <_ A implies that B r<_ Ar for every real number r with

0 _< r_< 1. Thus, 0 _< B_< A implies B/ <_ A1/. But, in general, 0 _< B < A does not necessarily

imply that B _< A. In 1 ], the following conjecture was raised:

If 0 < B _< A, then (AB2A)/2 <_ A2. ()

This conjecture was answered affirmatively by Furuta [2]. Indeed, Furuta proved a more

general inequality that contains inequality (1) as a special case:

THE FURUTA INEQUALITY. For p, r > 0 and q >_ 1 with p + 2r_< (1 + 2r)q,

0 _< B _< A implies (ArBlAr)lq <_ A(p+2r)/q.

Setting p= q=2 and r= 1, The Furuta inequality becomes (1). Furuta also observed that

setting p 2, r 1 and q 4/3, a stronger inequality resulted:

If 0 < B < A, then (ABA)3/4 < A. (2)
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That (2) implies (1) can readily be seen by taking the 2/3-power of both sides of (2).

After the appearance of Furuta’s original paper [2], Kamei [3] gave a direct proof of

inequalities (1)and (2)using the special notion of operator means. More recently, Furuta [4]
constructed the operator function Gr(p)=(ArB’Ar)(+2r)/l+) for A>_B>O, r>_O and

p e[1,), and showed that Gr(p) is a decreasing function on [1,c). In particular,

G,(2) < Gl(1). This yielded the following improvement of (2)"

If 0 <_ B <_ A, then (ABA)3/4 <_ ABA <_ A3. (3)

The main result of this paper is to show that for positive operators A and B with A

invertible, the inequality (AB2A)3/ <_ ABA is a consequence of the inequality (ABA)/ <_ A.
We also establish inequality (3) as a corollary of our result by giving a new proof of (1) which

appears to be simpler than those of [3], [5] and [6]. Our proof is completely elementary. It

was inspired by the work of Pedersen and Takesaki [7].

2. Tim M I_;SULT.

Trmomt. Suppose A and B are positive operators with A invertible. Then

(AB2A)’/2 < A implies (AB2A)3/4 < ABA.

PRooF. Let T= A-(AB2A)/2A-. The assumptions imply that O< T<L the identity

operator. Simple calculation shows that Bz= TA T. Now

[A-’(ABA)3/4A-’] [A-’(A TA)3/A-’]
A"(ATA)*/(ATA)A-(ATA)(ATA)*/2A -’

A-’(ATA)’/2(AT2A)(ATA)’/2A-’
<_ A"(ATA)’/2(ATA)(ATA)’/2A"1

A"(ATA)2A-I= TA2T= B

Taking square roots, we have A-I(AB2A)3/4A-1 < B and hence (AB2A)3/4 <_ ABA, and the proof

is completed.

Cortotz,Y 1. If 0 < B < A, then (AB2A)3/4 <_ ABA < A3.

PROOF. Without loss of generality, assume that A is invertible. In view of the theorem, it

suffices to establish the inequality (ABA)1/ <_ A. Again we employ the idea of Pedersen and

Takesaki. Let S A-/2(A/2BA/2)/A-/. Since 0 < B < A, 0 < S <_ I and B SAS. Thus

(AB2A)’/ (A(SAS’)A)/ (ASASASA)/

< (ASA2SA)’/= ASA < As.

This completes the proof.

The following improvement of (1) is a consequence of Corollary 1.

Cottony 2. If 0 < B < A, then (ABA)’/ <_ (ABA)/3 <_ A.
Coaov 3. Suppose A and B are positive operators with A invertible.

(a) Then, (ABZA)3/4= ABA if the operator T= A- (AB A) A- is a projection.

(b) If, in addition B is invertible, then (ASIA)3/ ABA if and only if A B.
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PaooF. (a) If T is a projection then T T. In this case, the only _< in the main body

of the proof of the theorem becomes "= ".

(b) If (ABA)3/4= ABA, then the occurrence of "_<" mentioned in (a)again becomes

". If B is also invertible, then T is invertible. Consequently, T T I and hence A B.
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