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ABSTRACT. A singular non-self-adjoint boundary value problem is considered. This problem
has a discontinuous coefficient with a spectral parameter in the boundary condition. Some
solutions of the eigenvalue equation are given. The discrete spectrum is studied and the
resolvent is obtained. Formulation of the adjoint problem is deduced and hence the continuous
spectrum of the considered problem is given. Furthermore, the spectrum of the adjoint problem

is investigated.
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1. INTRODUCTION.
Consider the boundary value problem corresponding to the modified form of the Sturm-

Liouville equation

—Y" + g(z)Y = Ap(2)Y, z € [0,00) (L.1)
and the boundary condition
W) -2 3 e +2 [ "G Yz =0, (12)
n=1 0

where ) is a complex parameter and o,,a, are real constants. We shall assume that the
potential function ¢(z) and the function G(z) are a complex valued, integrable on [0,00) and the

condition
/ 2| ¢(z) | dz < 00 (1.3)
0

b2, 0<z<c
p(z) =
1, c<z<oo

is satisfied throughout this paper.
The function p(z) is defined by

where b, ¢ are a positive constants and b # 1.

It is worth noting that the study of boundary value problems containing a spectral parameter in
the boundary conditions have many interesting applications, especially in mathematical physics
(e-g. [1], pp.146-152).
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Many self-adjoint boundary value problems of this type, for a differential equation of the second
order for which p(r) =1 and including a spectral parameter in the boundary condition, were
discussed in ([3], 4], [6]. [7]). In [5] the case of two-point boundary value problems with spectral
parameter in the boundary condition was studied. Moreover, a singular non-self-adjoint
boundary value problem with a discontinuous coefficient and including a spectral parameter in
the boundary condition was investigated in [10].

Our aim in this work is to study a non-self-adjoint boundary value problem, with a
discontinuous coefficient, that contains a spectral parameter in the boundary condition.

We give some solutions of equation (1.1) and obtain the Greens function or the resolvent of
the problem (1.1)-(1.2). Upon using Lagrange’s formula and the resolvent of the problem (1.1)-
(1.2) we deduce the adjoint problem that associated with that one. Moreover the continuous
spectrum of the considered problem is given and then the spectrum of adjoint problem is
classified.

SOLUTIONS FOR THE EQUATION (1.1).

We shall mainly use the basic results that have been obtained in ([8], [9]). Let us consider
first the initial conditions:

u(c,k) =1, u(c,k)=0 } (1.4)
Y(c,k) =0, ¥'(c,x)=1,
where
k=A2=g4ir with 0 <arg k <.

Upon using the results in [9], it can be shown that the solutions for z € [0,c], and which satisfy

the initial conditions (1.4) can be expressed in the form,

u(z, k) = cos k(z — )b+ /IA,(J:, t) cos k(t —c)b dt,
c

and
Y(z,5) = sin /c(z + / Ay(z.?) sin IC(t —c)b dt,

where the kernels A,(z,t), A,(z,t) satisfies both the differential equations

8%4 8%A 9%’A 0%A
8721 - 'é—tfl': q(a:) Al (.’t,t), Eﬁz - at22 = Q(x) A2 (I,t)

and the conditions

A=} [ a0 dt G A @0)] =0
c

A (z,2)=1 /“" (t) dt; A, (z,¢) =0
Moreover, u(z,x) and ¥(z,«) are entire funciions of k of any fixed b and they have the following

asymptotics behavior as 7 > 0, | k | —oo
u(z,k) = cos k(z—c) b+0 ( %e:cp | Im &b | (z —¢)),

v (z,n):ﬂf%__c)b+0 ( ;lz-ezp|1m kb|(z—c))
uniformly with respect to z on [0,c].
Now, let us denote by

o@)= [Tl dt; or(z) = [Toft) d.
I

T
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For z € [¢,50) one can show using (8] that for any » in the upper half plane the equation (1.1) has

a solution of the form

flx.x) = crp (k) + /O(p(x',t) exp (1xt) dt, (1.5)
where p(z,t) satisfies the inequality *
Izt < Lo ("2”) exp (o,(2)) (1.6)

In addition, if ¢(z) is differentiable, then p(z,t) is twice differentiable and satisfies both the

equation

Pp Op

G T a(x)p(z,t)
and the condition

dp‘(,t’x) = —1 4(a).

This solution is an analytic function of x,7 > 0 and continuous of x,7 > 0. From the continuity
of f(z,x) on [0,c] we find

f(z,k) = f(e,k) [cos k (z—c) b+ /I 1(z,t) cos & (t—c) b di]
+ ff(c,,c)[s_"m_(ﬂf_:c_+ |7 aute gineli=9b dt} )

Furthermore, in (8] it was shown that the equation (1.1) has a solution f,(z,x),z € [c,00) such

that in a domain 7> 0, | k| > 6 > 0 the inequality

| f1(z,6)] £ M exp(zT)

holds for a sufficiently large M. This solution can be written in the form

filz,x) = eap( —inz) (1 +0(L))

uniformly with respect to z > c as | k| —o0.
Thus, the solutions f(z,x); f1(z,x) on [0,00) can be written asymptotically as follows:

exp (ikc) [cos k(z—c)b +i— sin k(z —c¢) b](l +0 (%)) 0<z<c
f(z,r) = (1.8)
exp (inx)(1+0(%)), c<r<oo

and
exp (-ikc) [cos k(z—c)b —% sin k(x —c) b] (1 +0 (,1—;)), 0<z<c
fi(z,k) = (1.9)
exp (-ikz) (1 +0 (%)), c<z<oo.

2. THE DISCRETE SPECTRUM AND THE RESOLVENT.

In this respect we study the discrete spectrum and obtain the resolvent of the problem (1.1)-
(1.2).
The next lemmas 1, 2 follows directly from the work (8].

LEMMA 1. The boundary value problem (1.1)-(1.2) does not have eigenvalues on the
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positive semi-axis A > 0.

LEMMA 2. The necessary and sufficient conditions that A # 0 be an cigenvalue of (1.1)-
(1.2) are that

m o
A= w7 > Oplk) = 1 (0K) =1 Y anflanr) 40t [TG@SERE=0,  (21)
n=1 0

It is clear that (&) is an analytic function in the upper half-plane and this proves the following
lemma:

LEMMA 3. The boundary value problem (1.1)-(1.2) has no more than a countable complex
set of eigenvalues. The limit points can lie only on the real axis.
Next, the asymptotics formula for investigating the discrete spectrum is obtained.

Taking ,

po(k) = kb exp (inc)[sin K be +IL) cos K bc]— k* S ay,lcos kb (a, — )

n=1
+% sin kb (a, —c)] —(h‘z rzn: a, exp (ifca,,))
n=r+1
Thus, using (1.9), (2.1) we have
¢ ()= ()1 +0(L)] (2:2)

Then, for large values of x and 7 > 0 the functions ¢(x) and ¢y(x) are equivalent outside a circle
of fixed radius 0<8<1 with a center at the zeros of y(«),ie., the circle
Df={r; |k —K2| <60<6<1}.

Since, p(k) and (k) are analytic functions of x, by Rouche’s theorem they have the same
number of finite zeros.

Let «,,&2 be the zeros of (x) and py(k) respectively. Thus from (2.3) it is clear that

K, ~ kO for | k|—00 with 7 > 0.

Accordingly, the study of the distribution of eigenvalues of the problem (1.1)-(1.2) is equivalent
to the study of the zeros of the function ¢y(x) in the upper half plane.
Evidently, the function ¢g(x) does not tend to zero for sufficiently large real values of .
Hence:

THEOREM 1. The set of eigenvalues of the problem (1.1)-(1.2) are bounded in a closed
domain in the upper half plane.

THEOREM 2. Let ¢(z), G(z) satisfy the conditions exp (ez) ¢(z) € L, (0,00) and exp(ez)
G(z) € 1,(0,00),e > 0.
Then the discrete spectrum of (1.1)-(1.2) consists of a finite number of complex eigenvalues and a
possible finite number of real spectral singularities on the positive semi-axis A > 0.

PROOF. From Lemma 3 it is sufficient to show that the set of complex zeros of ¢(x),7 >0
has no limit points on [0,00). Since for A = k%, 7 >0 and X € [0,00) equation (1.1) has a solution
of the form (1.5)-(1.7). Thus in view of (1.6) and the assumptions of the theorem we have

| p(z,%)| < M exp(—/2[z+1) (2.3)
where M is a positive constant. Suppose that

I Al(z’ t) ' ’ | A2(zv t) I S M (24)
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and the kernels A,(z,t), A,(x,t) have continuous partial derivatives.

Also, the kernel p(z,t) has continuous partial derivatives and

JTUR @01 + 14 @)V exp (5/20) dt < oo, (25)

Taking into account (2.3), 1(‘2.4) and (2.5) show the integral in (2.1) converges for 7 > /2. By the

uniqueness of analytic continuation, the function f(z,x) is not only a solution of (1.1) for 7 >0
but also for 7> —€/2. Thus, ¢(«) is a holomorphic function in a domain S, = {x:7 > —¢/2}.
Therefore, the set of complex zeros of ¢(x) has no limit points on the real axis. Hence, this
set is finite in a bounded domain. Moreover, it is possible for () to have a finite number of real
zeros as well as a singular spectrum on the positive semi-axis A >0 and hence the theorem is
proved.
In the sequel, we obtain the resolvent formula of (1.1)-(1.2). If 2ix f'(o,) # 0, let us define

£10,K)f(z,8)f(t,5) s fle.x) filtR), t<z

2k £ (0,5)
RO(‘TV t, K) = (2.6)
F10,8)f(z,8) f(t, &)
2K ;(g,,g) - i‘,cfx(fm) fltr), tzz

THEOREM 3. If A = «? is not an eigenvalue of (1.1)-(1.2) then the Green’s function for

=Y +4q(z) Y= A p(z) Y= pf, z€[0,00) (2.7)
is R(z,t,k). That is, if f € £,(0,00,p(z)) then

Uz) = [~ Rlatin) plt) £(2) dt
]

where

w(k) =1

PROOF. 1t is clear from Theorem 1 that all numbers A = k%, ¢(k) # 0 and 7 > 0 are in the
resolvent set of the problem (1.1)-(1.2). Since, A = &% is assumed not to be an eigenvalue of (1.1)-
(1.2), we have the resolvent R(z,t,x) exists. Consequently, there exists a solution of equation
(2.7) in £,(0,00; p(z)). Suppose that

Ular) = [ Rolz,t,x) plt) £(2) dt
is a solution of equation (2.7) that satisfies’the condition 9'(0) = 0. Then, we find Ry(z,t,x) is of
the form (2.6); therefore, the general solution of the equation (2.7) that belongs to £,(0,00; p(z))
takes the form

R(z,t,k) = Ro(z,t,x) +~’f(m,~)[ $% @ Ry(at k) + / *G(z) Ro(,,K)] d:c} (2.8)
n 0

Y(z,k) = Yo(z,£) + Cf(z,K), (2.9)
where C is an arbitrary constant to be found. Since the function Y(z, ) satisfies condition (1.2)
we have
m
C=251 3 ¥ (ann)+ [ G)Uolan)da
(k) n=1 0

Substituting in (2.9) we deduce that
(o<}
V)= [“R(tx) pl0) £0) dt,
0
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where R(r,t.~) 1s defined by the formula (2.8).

Furthermore, for ¢t < r we have

Ris.tin) = 5 2SR 1000 .00 = 100 fitrn)

& f(z, k) & . ) ) . )
+WT) nzzzlﬂn fla,, &) [f1(0,K) f(t,x) = fi(t,&) f'(0,x)]

L KIw) £1(0.5) fit) [7 610 flawn) da

20 (v) f'(0.x) o
;,f(f(h [f(t /0’ G() fi(a,x) do + f, th)/ G() f(z,x) d,} (2.10)
and for ¢t > = we have
Rlati) = 5 LGS 14 000) £ (o) = £ (000) £ (w0 + g e TG

m m
{ 3 £ (ar) £ (0k) = 35 an fi (ar) f' (o,n)]

n=1 n=1

% f1(0,5) f(z,%) f(t,%) / “G(a) f (v.x)dz

T 200 (v) F10,1)
& f (z,K)
% 9 (k) [f( %) 4 G(z) fy (z,8) dz + f, (t,K) / G(z) f (z,k) dz} (2.11)

3. THE ADJOINT PROBLEM OF (1.1)-(1.2) AND ITS SPECTRUM.

Now, we consider the resolvent R(z,t,x) of the problem (1.1)-(1.2) to obtain the adjoint
problem.

Let us denote by L} the adjoint operator of the L, operator which is generated by (1.1)-
(1.2).
We denote by D(L}) those functions % denoted on [0,00) and satisfying:

(1) Bisin £,(0,00,p(z));

(ii) %' exists and is absolutely continuous on every finite subintervals

[0,(1,), (alva2)’ T (an - laan) and (amoo);
(i) B’ (ap+0)—B'(an—0) = @, A B(0)
(iv) B'(0)=

(v) % is twice differentiable as = # a,,n = I,m and —Z" +7 (z) B € £, (0, 00; p(x)).
THEOREM 4. Assume that & € D(L}) satisfies the conditions (i)-(v). Then the adjoint
problem of (1.1)-(1.2) can be written in the form

-B"4+G(x) B~ A [@(z)— § a, 6(1:—a,,):l Z(0) = A p B, (3.1)

n=1
%' (0)=0. (3.2)
PROOF. If 4 € D(L,) and & € D(L3) then we have (L,%, %) = j0°°( — 9" 4 ¢(z)V)

% de=(~ V", B)+ (Y D) =[(-VB +YB - [TUBldz+ [THUT do
0 0
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=Y OF (O-Y OB )+ [(-B"+¢T)Ydr

_/oo ~B"+4B)Ydr-Y (OB 0+ 30| 3 0, Ua,)

n=1

- [7 6@ ) dr}= [T (-8 44B) R O)C (=) U d
0 0

+x2%(0) 3 a, /°° §(z—a,) Y dz—Y (0) B' (0)
n=1 0

= /Oo(—.‘Z"+q§ —x*% (0)[G(x)— f: a, 6(z—an)}‘ljdz—‘lj(0)§'(0).
0

n=1

Next, we show that Z'(0) = 0. Since

(@)= [~ Rita%) plt) £(t) dt, f(t) € L, (0,00,p(a))
we have
2'0)= [* B 0.2%) olt) f(t) dt

In fact, R(z,t,&) as t < z has the form (2.(&0). By differentiation with respect to t we obtain

R (0.5%) = 52 GRS f10m) 10.0) - rom) fi0)

_Kf@Rk) & a, f(a,,%) [fi(0,%) f(0,% '(0,%) f(0
) O, o S OR) FOF) = Fi0%) F0%)

4+ f@F) HOF) (“‘2’1.2) (’;“)O’E) 7 6@ faF) da
0

2ip (k)

Similarly, for ¢ > z we can show that R} (0,z,% ) = 0 by using (2.11).

_5f@R) iOF) 1% Gy a7 ) do =0 thus RY0,2,% ) =0
0

BB = [T(-8"+0% - 2O 66~ ¥ o blea) Y iz
0 n=
= -Z"+7B-R HO G @)~ 3 a6z—a) = (U L53)

n=1
Hence, the adjoint problem takes the form
- _ m
—ZM4g(0) B-AGo)- 3 abe—a) HO)=)p Z,
_ n=1
Z'(0) =0,

where % satisfies the properties (i)-(v).
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THEOREM 5. The positive semi-axis A > 0 constitutes a continuous spectrum of (1.1)-(1.2)
unless both ¢(x) and ¢( — &) vanish simultaneously. This theorem can be proved by using the

adjoint problem (3.1)-(3.2) and the work [8].
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Upon using Lemina 2 and Theorem 5 the next theorem follows directly from [2]:
THEOREM 6. The spectrum of (3.1)-(3.2) consists of:
(i)  eigenvalues X whenever p(#) = 0,7 > 0 and A = #2 on the positive semi-axis A > 0,

(ii) continuous spectrum on the positive semi-axis A >0 unless both ¢(x) and @(—~x)

vanish simultaneously.

We claim that all numbers A whenever »(x)# 0 and A= x? from the upper half plane

belong to the resolvent set of the problem (3.1)-(3.2) and its resolvent is R (¢,1,% ).
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