
internat. 3. Math. & Nath. Sci.

VOL. 18 NO. (1995) 89-96

COMPUTABLE ERROR BOUNDS FOR COLLOCATION METHODS

89

A. H. AHMED

Department of Mathematics
Ash-Sharq University
Khartoum, Sudan

(Received August 12, 1992 and in revised form February 27, 1994)

ABSTRACT. This paper deals with error bounds for numerical solutions of linear ordinary
differential equations by global or piecewise polynomial collocation methods which are based on

consideration of the involved differential operator, related matrices and the residual. It is shown

that significant improvement may be obtained if direct bounds for the error in the solution are

considered. The practical implementation of the theory is illustrated by a selection of numerical

examples.
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1. INTRODUCTION
This paper is concerned with computable error bounds for the solution of linear ordinary

differential equations by global and piecewise polynomial collocation methods. This work is

motivated by an abstract approach of error analysis such as described for example by Kantorvich

and Akilov 1, Chapter XIV] and Anselone [2, Chapter I]. It extends previous work in this area by

Cruickshank and Wright [3] and considers direct error bounds on the solution and its derivatives

rather than via the error bounds on the highest derivatives as described in [3].
The basic idea here is to make use of the matrix involved in the numerical solution of the

differential equation in computing error bounds. The relationship between various matrices and the

inverse differential operator has been considered by Wright [4], Gerrard and Wright [5] and Ahmed
and Wright [6]. In particular these papers are concerned with asymptotic relationships between

inverse operator norms and those of matrices related to the numerical solution. The theory leads

naturally to the use of matrix norms in bounding the inverse operator norms. Then computation of

the residual norm leads immediately to computation of the error bounds.

The use of these ideas in error estimation is discussed in [7]. Their practical implementation

in selection criteria for adaptive collocation algorithms is examined in [8]. References to alternative

approaches in collocation algorithms and error analysis such as Delves [9], De Boor and Swartz

[10], De Boor [11] and Russell and Christiansen [12] may be found in [7]. Detailed comparisons

with the algorithms of Ascher, Christiansen and Russell (used in the well known code COLSYS for

solving boundary value problems) [13], is presented in [8].
Throughout this paper the analysis and illustrative results use infinity norms, though some of

the ideas could be extended to other norms. The assumptions about the methods and equations are

introduced when needed, to emphasize their significance. The theoretical background is presented

only briefly as it is reasonably well known. The results are tested on a selection of problems and

comparisons are made with those in [3]. The work presented in this paper is based on Ahmed thesis

[14].
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2. ASSUMPTIONS AND NOTATION

In order to be able to treat both global and piecewise polynomial collocation in a uniform

manner we follow very closely the assumptions and notations used in [7]. We consider the linear

ruth order differential equation of the form:

xt")(t) + ,-o P’(t)xO)(t) "y(t) (1)

With m associated homogeneous boundary conditions. Without loss of generality we assume that

the equation holds in [-1,1]. The equation may be written in operator form:

(D’- T)x y (2)

where D denotes the differential operator. In (2) we suppose that x EX and y C Y where X and Y

are suitable Banach spaces. The operators (D T) and D" with the associated conditions are both

assumed to be invertible. The approximate collocation solution is taken in a subspace X,,, CX. To

define this, we first define a subspace Y,, C Y. Suppose the interval[-J, 1] is subdivided by the break

points -1 to < t < < t,, 1. In each sub-interval q collocation points are used chosen as:

+k--((tk--tk_l) +(tk + t_))/2
j 1 q

(3)
k 1,...,n

where {’}+ j 1, ...,q, are given reference points in (-1,1). The space Y,,, consists of functions

which are polynomials of degree q 1 in each of the intervals Jk- [t_t +,t- 1],k 1 n. No
assumptions regarding continuity at the break points is made. The solution space X,, is then taken

as (D’)-Y. The projection operator 9,,, is defined as the operator which gives the interpolant in X,,,
based on the collocation points {g}. With these assumptions the approximate solution x,w satisfies:

(D" ,r)x, y (4)

In [6] certain matrices Q were introduced and their properties examined. Here we use a special case

of this and denote it by Q,,,. This is most conveniently defined by considering the right hand side

y and the solution at the collocation points. Then there is a matrix Q,,, such that

xt)= Q,wY (5)

and this can be regarded as a definition ofQ. In a similar way we define the matrix Q.<) by

x(r) (r).Q.q,, r 1,2,...,m 1 (6)

and the matrix Q)by

x<,,,) Q,,,y
Then under suitable conditions it was shown in [6] for r 0,1 m 1 that

t’)ll IID’(D’- r)-ll as n o ,q fixed, and

OOll.,, lID’(D" r)-ll as n ,n fixed, and

in [4] and [5] that

O0’011II:.,, II( T(D’)-’)II as n oo, q fixed, and

as n--, n fixed.

(7)
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These conditions concerned the location of the collocation points and required the continuity of the

coefficients Pj(t) in (1). In particular, the global case (q %n 1) assumed that the points {’}
were zero of certain orthogonal polynomials.

Some further definitions and notations are needed before constructing the bounds. It is

convenient here to define the compact operators K and K by

K T(D")
-1

K, D’-" for r 1,2, ...,m 1.

We also introduce the evaluation operator .q:Y R"’ to give a vector consisting of the values of

a function at the collocation points. Further an extension operator qJ’.R "q Y can be defined to give
a function whose values at the collocation points agree with the components of the vector, with y
the properties .q[I tIJ.qll 1, .qC,,q-.q and (nqLIlnq- I.,, 9.q .W.q., as described in

[4,5]. Operator expressions for the matrices Q. can now be obtained. From (4)
-1

and applying. gives

-,.T) ,.y, (8)

and hence

Q.q .qCD"

In a similar way we express Q,,’, and W,,, in the following operator forms

-1

and

(9)

(10)

(11)

TI-IE ERROR BOUNDS

Suppose an approximate solution x.q of the differential equation (2) has been found and x.,
satisfies (4). Let the residual r,q be defined by

r,, (D" T)x,, y

and the error by

Using (2), we have

(12)

(D" T)e,,q r,,, or e,q (D" r)-lr,q. (14)

e.,ll "= (O" T)-II r. (15)

Note that I1,’.11 can be evaluated at any point without difficulty since x,,, is a piecewise polynomial.

Thus r.ll may be estimated by evaluation at a suitably fine grid of points. Now once a bound on

W’- T)-ql has been obtained, (15) can be used to bound e.ll To bound W’- r)-ll directly
we need to extend the theory in [3] in the following way. If we denote the inverses (D" -$,,,T)

-I

and (I- q,,rK)-1 when restricted to the subspace Y., by (D" -#hqT)-lY, and (I- ,,rg)-’Y,,, then the

following relation can be seen between them.

It immediately follows that

e,, x,, x. (13)
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which implies

(I ,,qK)- I + (I ,,,K)-’Yq9,,,K

(D" #,,qT)
-1 D" + (D" q,,,T)-tY,,,,,qK

(16)

(17)

(D" -9.,T)-’ I111 (D’)
-t

/ (O"- .,T)-’Y.q .g (19)

Now (D" T)- can be related to (I -.qK)- and (D" -.,T)-1. By applying Anselone [2, page 59]

to the identity

(D" t)(D")-)(l +K +... +Ka- + (I -a , - d%K) )K I + (0., I)K(I + ,,.,K) K

we conclude that

(D" T)
-t

I111 (D")- +
(D’)-’ K +... + (D’)-’ K -’11 (D" .T)-x K

6-II(%-l)g(1-*.g)-’gq < d- 1,2 (20)

Now to apply the extended projection theory suggested in [3], define W,,d by

W,, (D’)-y + (D Tx,,

By definition of ,q(D")-x,,D is a bounded linear projection fromXto X,. Define T,:X Y by

T. T(D’)-,". Then it can easily be verified that,

(o" r.)w. y,

(D" L)-’ (D’)
-x
+ (D’)-’T(I .T)-’, (21)

and

(K K.q)-’ I + K(I .,rK)y.q
Now by applying Anselone [2, page 59] to the identity

(D" T)-’ (D")-’ (I +K + +Ka-’ + (I -KO,,,)-’Ka)(I + K(O., 1)(I -Kc#.,)-’Ka-’)
we conclude that

(D’)-’ + (D’)-1 K +... + (D’)-’ K-’ + (D" T.)-’ K"
(D" T)-’ I1": 1 A.a

if

A.- II(%-I)K(I- .)-Kq < 1 d- 1,2,...

Now if we recall equation (9)

Q,,, q),,(D"
-x

and use q.tIJ.,qs., q., q.,rx., x.,, ,,,V. I. and .. . we get

-1 -1

so that

D’-.T)-’Y. IIll . Q.

(22)

(23)
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If we recall (11) and use the same idea we get (D T)- <

-,,qT) Ynq I111 (D) % Q.q II. (24)

Again, if we recall (21) and use the same idea of (23), we get

(D" T,,,)
-t

I111 (D’)-’T, Q, + (D’)-’ II. 25)

In a similar way it can be shown that K(I Q,K)- K,q,Q,q and hence

,.K) K (,. Id ’]l + (,. z,.ll o.ll K"II (26)

and

IIK(%-)(-K%)-KII IIKII II(*.-ZII +IIKII II(.-Z.II I1.%11 IIKq. (27)

Now if we denote the bounds in (20) by QP and use (18), (19), (23), (24) and (26) we get

QPd (D’)-’[[ 11K’II + *.11 I1Q.II *.Kd.’l[ (28)
,-o -and

-I +I

wp,,-ii (D’)-’ : K’ + (D) ,., Q." *.de"
i-o

and if we denote the bounds in (22) by Aa and use (21), (25), and (27) we get

i-o -A

(29)

(3O)

zx.-II K (* -r)K / r (*. -OK,. ?. K I1 1 d 1, 2,....

Following the arguments of (28), (29) and (30) and using (10) instead of (9) similar bounds for the

derivatives of the solution n be derived.

Now in order to compute these bounds we need to compute bounds for (,. II, *. II,

andD-’T. Bounds for the projected terms can be computed using Jacon theorem [15] whereas

bounds for the constant tes can be evaluated directly as described in [3].

3. NUMERICAL RESULTS
We present here a selection of numerical examples illustrating how the ideas can be applied

in practice and what sort of results can be obtained. We use zeros of Tchebychev polynomials as

collocation points and for the piecewise case we work with two points only. For comparison we

include the bounds derived in [3] and denote them by Pa and Aa. We also use the problems used

there as basic test problems. Other problems have been considered, including higher order equations.
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Problem x" + c( + t2)x y x(__.l) 0

Problem 2 x" ctr y x(+_l) 0

2a
Problem 3 x"-(t + 5)2x

y x(__l) 0

2coc" 2tx
Problem 4 x" + y x(_l) 0

+3 (t +3)

The parameter t is included to vary the stiffness of the problem. In table we present the values

of Pd, WPd, QPd, Ad and QAa for the global collocation method. In comparing these bounds we

observe the following inequalities:

Problem ct--.5 A < QAI Po < WPo < QPo

ct .5,1 A:, < QA < WPt < QP < Pt

From these inequalities and the results in the tables we note:

(1) The extended projection bounds (QAt,2,A1,2) are much more accurate than the projection

method bounds (QPo, IPo,). This confirms expectation based on the expressions for these

bounds as aPt and ed include the projection norm ,q which is not uniformly bounded.

(2) If we consider each projection method separately, we observe that (with the extended

projection method) in all problems except problem 1, QA1,2 <A,2. For the usual projection
method in most cases QPo and WPx have no improvements over P0, while QP and WPI are

better than P. In general, if K I1< 1/2, it can be seen that WPa < P,t and superiority of bounds

using the matrix Q becomes more clear when a., I1:11 W"-x) w., as justified by the

theory.

(3) If we compare bounds with small values ofd with those of higher values of dwe observe that

the latter are always better. This is obviously due to the bounds derived for (z-.,)r as

mentioned in [3].
Results for the piecewise collocation method are presented in table 2. All the problems

there have consistently satisfied the inequality

QAI,, < QPo,1 < WPo, <ml,2 < P0.1"
This confirms the superiority of bounds using the matrix Q and the improvement of Pa by WP, as

expected by the theory.
NOTE: The missing values in the tables are due to the deltas not being < 1.

Problem 2 ct .5 A < QA Po < WPo < QPo

a- QA <At aPo < WPo < Po
ct .5,1 QA < QP <A < WP < PI

Problem 3 .-.5,1 QA <A <Po < WPo <QPo
ct- .5,1 QA <A <P < WPa < QP

Problem 4 t- .5 QA <A

ct- .5 QAz <A < QPI < WP < P,
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4. CONCLUSION

The numerical results show that improved computable bounds for the inverse of the differential

operator can indeed be found if we consider the differential equation in the original form,

(D" T)x y, instead of the transformed one

(l -K)x y

The introduction of the matrix Q,, whose norm as shown in [6], tends to the norm of the inverse

differential operator is a main factor of the closeness of these bounds. The improvement is more

obvious with the piecewise collocation method than with the global case. Within the global case

there is much improvement with the extended projection method. This is clearly due to the

involvement of the projection norm (which is not uniformly bounded) in the latter case. However

in that case we have got WPd bounds which use (D )9,,, w,, [[, instead of @,, Q,, [[, as

alternatives. Despite the closeness of these bounds, unfortunately the conditions of applicability

(5,d < 1,A,d < 1), which were major problems with the previous analysis [3], have turned out to be the

same. An alternative approach to deal with such problems is to split the differential operator in

some different way. For example (D") in (2) may be replaced by a,,D" + a,, D +... + aid where

al, a2 a,, are some constants to be chosen to give the highest possible applicability. This idea is

justified by the result described in 16] and may be investigated in a separate paper.

REFERENCES

[1] KANTORIVICH, L. V. and AKILOV, G. P., Functional Analysis in Normed Spaces,
Pergamon Press, New York (1964).

[2] ANSELONE, P. M., Collectively Compact Operator Approximation Theory, Prentice-Hall,
Englewood Cliffs, NJ (1971).

[3] CRUICKSHANK, D. M. and WRIGHT, K., Computable error bounds for polynomial
collocation methods, SIAM J. Num. Anal. 15, 134-151 (1978).

[4] WRIGHT, K., Asymptotic properties of collocation matrix norms 1- global polynomial
approximation, I.A.A.J. Num. Axial, 4, 185-200 (1984).

[5] GERRARD, C. and WRIGHT, K., Asymptotic properties of collocation matrix norms 2:
piecewise polynomial approximation, I.M.A.J. Num. Anal, 4, 363-373 (1984).

[6] AHMED, A. and WRIGHT, K., Further asymptotic properties of collocation matrix norms,
I.M.A.J. Num. Anal. 5, 235-241 (1985).

[7] AHMED, A. and WRIGHT, K., Error estimation for collocation solution of linear ordinary
differential equations, Comp. & Maths. with Appl;,, Vol. 128, No. 5/6, 1053-1059 (1986).

[8] WRIGHT, K., AHMED, A. H. and SELEMAN, A. H., Criteria for mesh selection in
collocation algorithms for ordinary differential boundary value problems, I.M.A.J. Nurrl,
Anal. 11, 7-20 (1991).

[9] DELVES, L. M., in Modern Numerical Methods for Ordinary Differential Equal;i0ns (Edited
by G. Hall and J. M. Watt), Chap. 19, Oxford University Piess (1976).

[10] DE BOOR, C. and B. SWARTZ, Collocation at Gauss points, SIAM J. Num. Anal. 10,
582-606 (1973).

[11] DE BOOR C., Good approximation by splines with variable knots II. In proceeding of a
conference on the Numerical Solution of Differential Equations (Edited by G. A. Watson),
lecture notes in Matheamtics 363, Springer, Berlin (1974).

[12] RUSSELL, R. D. and CHRISTIANSEN, .l., Adaptive mesh selection strategies for solving
boundary value problems, SIAM J. Num. Anal, 15, 59-80 (1978).

[13] U. ASCHER, CHRISTIANSEN, J. and RUSSELL, R. D., COLSYS A Collocation
for Boundary-Value Problems. Codes for Boundary Value Problems in Ordinary_ Differential
Equations. gd. B. Childs et al., New York, Spriner Verlag, 164-185 (1979).

14] AHMED, A., Collocation alogrithms and error analysis for approximate solutions ofordinary
differential equations, Ph.D. Thesis, University of Newcastle Upon Tyne (1981).

[15] CHENEY, E. W., Introduction to Approximation Th.eory, McGraw-Hill, New York (1960).
16] AHMED, A., Asymptotic properties of collocation projection norms, Vol. 19, No. 4, 45-50,

1990 Int. J. of Comp. and Math. with Applications.


