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ABSTRACT. A sequence of identification problems of cocfficients in the parabolic equation with
noulinear boundary conditions is considered. The parameter (index of an element of the sequence)
appears in the cost functionals as well as boundary data. It is proved that the optimal solutions
exist and that under some continuous convergence of the cost functionals and the convergence of
the data, the sets of optimal solutions converge in some sense to the set of optimal solutions of

the limit problem:
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1. INTRODUCTION.

In the recent years there has been an increasing interest in the parameter identification (or
inverse) problems involving differential equation constraints. Such problems arise in particular in
the coefficient estimation for partial differential equations (for example in [2-3], [14], [17-18]) as
well as iu the theory of structural optimization. The identification problems consist in determining
of unknown parameters (coefficients) from known observations of the modelled processes.

In this paper we investigate a class of identification prol)lcil}s for the second order nonlinear

parabolic system:

u=—A(t)e inQx(0,T), (1.1)
du .
+pB(u)3¢g inT x(0,T), (1.2)
20
w(0)=¢ inQ, (1.3)

where 0 C R™ with boundary T', 0 < T < +o0, f is a maximal monotone graph in R x R, the
operator A(t) has the form

9 7
.A(t) = _E:(aij(m’t)b;Tj)

and

ou

du
— = a;;(x, t)—v;
v 4y is(e )0.1',»1/1

is the conormal derivative associated to A(t). Above, v is the unit outward normal vector to I'.

Given the set of adiissible parameters M and the cost functional J defined on the space
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W (sce Notation) of the solutions to (1.1) - (1.3), we are interested in the following parameter
identification problem:
find the parameters ¢ = {af;(¢, 1)} in M so that
(P)
T (w(e*,9,9)) < T(w(a,g,9)) forall a € M,
where u(a, ¢,¢) denotes the weak solution in W corresponding to the data a, g and . Here and
in what follows, we suppose that the graph A is fixed.

Our aim is to prove the existence of optimal solutions (i.e. an clement which realizes the
minimum) to (P) and to show the stability of optimal solutions under perturbations of the data
g and ¢ as well as of the cost functional 7. As indicated in (1], {4-5) and [10-11] the stability of
this kind plays an important role in applications,

It should be noticed that a compactness of adinissible subset of parameters is the crucial
assumption in the identification problems (compare e.g. [5]). Since the cost functional is not
convex in general, the unigueness of optimal solutions is not guaranteed. Therefore the stability
is understood in the sense of continuity of multivalued mapping.

We note that the widely known approach to the parameter identification problemns used also
in numerical methods (see [4-5), [14]) is the output least squares formulation ({10-11}, (13]). In

this approach the cost functionil to be minimized Las the form

llCw(a,9,) = zall%, (1.4)

where C: W — Z is an observation operator defined on the space of solutions, z4 is the desired
clement (target) in the space of observations Z. Such cases are also included in the frame of
the paper. Next, it should be underlined that the identification of coefficients in partial differ-
ential equations is, in general, an unstable problem ([16-17), [13]). This is due to the theory of
Lhomogenization ([8], [18]) which shows that operators with highly oscillatory coefficients can be
"replaced” by very different ones and still giving the same response.

Finally, we point out that the problems of the type (1.1) - (1.3) occur in many mathematical
maodels of phenomena studied in physics. For example, equation (1.1) describes the change of
pressure during the flow of viscous fluids in porous media or it governs the heat distribution
in a body occupying the volume €. It is natural to consider such problems not only with the
classical (Dirichlet and/or Neumann) boundary conditions, but also with the more general ones.
The boundary condition (1.2) includes some particular cases e.g. the Signorini condition, the
Stefan-Boltzmann heat radiation law, the Newton’s law, the natural convection, the Michaelis-
Menten law. For these and other important examples of the condition (1.2) which appears in
mechanics, biology and chemistry, we refer to [12], [7], [9] and the bibliography in them. We also
recall that the evolution variational inequalities can be formulated in the form (1.1) - (1.3) (see
(6], [9], [12], [15]). For the general identification theory presented in anabstract manner we refer
to [13] and [1].

The remainder of this note is divided in three parts. In Section 2 we give a result on the
continuous dependence of solution to boundary value problem (1.1) - (1.3) on the data. With
this background, in Section 3, we show that the problem (P) has a solution. The last section is
devoted to the stability of optimal solutions with respect to variations in the given data and the
cost functional.

Notation. Let §2 be a bounded open subset of R* with Lipschitz continuous boundary T. For
a fixed real interval [0, T], we introduce Q@ = Q x (0,T), & = T x (0,T). Putting V = H(Q),
H = L*(9), we denote by ||.||, |.|, the norms in V and H, respectively. By V' we denote the
dual to V. Following e.g. [15], we define the Banach spaces: V = L?(0,T;V), H = L*(0,T; H),
V' = L*(0,T; V') (the spaces of the square summable functions defined on (0, T') with the values,
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vesp, in V, Hy V) and W= {veV : o€ V'}. Here and subsequently the partial derivative
with respect to ¢, is understood in the distributional sense and do/dt will e denoted by v'. The
pairing of V and V' and also the inner product on H is denoted by < -+ >. The symbol < -, - .>|‘
stands for the inner product on L#(T). Given closed sets A and B in a Banach space X, we define
the distance function by d(x, A) = inf{|le — allx : a € A} and the separation of a set A from a
set B by

*(A, B) = sup{d(a,B) : a € A}. (1.5)

Throughout this paper a sunination convention over repeated subseripts is adopted.

2. CONTINUQUS DEPENDENCE ON THE DATA.

The goal of this section is to study the question of continnous dependence of solutions to
(1.1) - (1.3) on the data a;j, g and @. First we give the existence result on the solutions to this

problem. To this end, we adopt the following

DEFINITION 2.1. (sce [7]) A function u € W is a weak solution to (1.1) - (1.3) if and only
if there exists a function w € L*(E) such that
w(o,t) € B(u(o,t)) ac.on I, (2.1)

and
< u'(t),v > +a(t;ut),v)+ < w(t),v >p=< g(t),v >r Yv € V,ac. on (0,T),

u(0) = ¢,
wlere we have set
dz Qv
a(t;z,v) = | aij(a,t)s—5—de, Vz,v €V, ae te(0,T). (2.2)
0 0.(7,’ a.l?j

We need the following hypotheses on the data of the problem (1.1) - (1.3):
(H1) the coefficients {a;;}, 1,5 = 1,...,n are functions from C(Q) such that
abibi < aij(z,t)€€;, VEER" (2-3)

a.e. in Q, for some constant a > 0,

(Hz) B is a maximal (multivalued) monotone graph in R x R which satisfies
the condition 0 € 4(0),

(Hy) gelL*%),p€H.
It is well known (see e.g. [G]) that 3 is a subdifferential of a proper, convex, l.s.c. function
J:R = RU{+00},ie g =20j.

PROPOSITION 2.1. In addition to the hypotheses (H;) — (Hj3) we assume that j(p) €
L'(Q). Then the problem (1.1) - (1.3) has a unique weak solution u € W. Morover, the following
estimate holds:

lellw + [lellLze) < e(1+lglleae) + o)), (2:4)
where w € L%(X) is a selection of B which appears in (2.1) and ¢ € R is independent of g and .

The proof of this result can be found in [7], Proposition 1, where the overall hypotheses on
the coefficients a;; were more restrictive. A careful look in that proof can convince the reader
that it is still true for the case of coefficients satisfying (Hy).

Let {af‘j}, k € N, be a sequence in C(Q) satisfying (2.3) uniformly with respect to k and let
{(gx,9k)} be a sequence in L?() x H. Denoting by ux = u(afj,gk,cpk) the solution to (1.1)
(1.3) corresponding to {afj}, {(gx, %)}, we have

LEMMA 2.1. Under the above notations, let us assume that g satisfies (Hz) and j(pi) €
LY Q). 1f

a,-kj — a;j in C(?)-), Vi, 7,
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(gr,01) = (9,9) in L*T) x H,

as bk — +o00, then
wp = uw in VN0, T; H) and weakly in W, (2.5)

as kb — 400, where v = u(a;j,9,¢) is & unique solution (still in the sense of Definition 2.1) to
(1.1) - (1.3) corresponding to a;;, g and p.

PROOF. Note that by lower scmicontinuity of j, it follows that j(¢) € L'(Q). Therefore,
from Proposition 2.1, we know that there exists a unique solution to (1.1) - (1.3) corresponding

to aij, g and . Substracting two equations which arve satisficd by ug and u, we obtain
< uf(s) = u'(s),0 > + ap(s;ur(s),v) —a(s;u(s),v)+
+ <wi(s) —w(s),v >r = < gr(s) = g(s),v >r
for all v € V, a.e. s € (0,T), where w,wy € L*(T) are such that
w(o,s) € B(u(a,s)), wi(o,s) € Blur(o,s)) ae on T

and a(+j+, ), ak(+;+,-) are of the formn (2.2) with the coefficients u;j,afj, respectively.

Tuking ux(s) — u(s) as the function v nud integrating both sides we get:

1 !
;|uk(t) —u(t)]® + / ap(s;up(s) — u(s), up(s) — u(s))ds +
2 f
' 1
+/u < wi(s) —w(s),ur(s) —u(s) >p ds = ;1):|<pk -l +'/0 (a(s;u(s),uk(s) —u(s)) -
t
— ai(s;u(s),ur(s) - u(s)))ds + / < gi(8) — g(s),ur(s) — u(s) >r ds.
0

Hence, from (H,;) and (H;) we obtain:

Jue(t) = u(?))? + 2(\:/0 Nur(s) = w(s)|Pds < o — 0l +

Eali o Qu(s), Qur(s)  Ou(s)
I _
+/o Z|Z(ﬂ,1 aij) o It 0a; 7, |ds +

=1 i=1

[
+2 / l9k(s) = ()]s i (s) = 1(s)|Laqryds.

Using the continuity of the trace operator from V to L%(T') and the inequality 2ab < 2-112 +
«

b?, we have

W) R

t
lun(t) = w(B)]? + o A llus(s) = u(@)lPds < Jon — of? +

n t
+allully 3l - aullogy + @ [ 10(s) = a(@lliaards
1,j=1

where ¢;, i = 1,2 are positive constants independent of k. From this, (2.4) and from the hypotheses
we deduce that
uy—u in YVNCO,TH), as k — +oo.
On the other hand, owing to the estimate (2.4), which is uniform with respect to k, we obtain
up — u weakly in W, as k — +o0.

The uniqueness of solutions of problem (1.1) - (1.3) implies that the whole sequence {ux} converges

to u in the sense of (2.5). This completes the proof of the lemma.
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3. EXISTENCE RESULT IN IDENTIFICATION.

Using the result of Lemma 2.1, we can prove the existence of sohition of the identification
problem (P). This is given in the following

THEOREM 3.1.  Let the asswnptions of Proposition 2.1 hold. We suppose that the set of
admissible parmneters satisfics

(Hy)  the set M is a compact subset of (C’(a))'ﬁ such that o£€; < aij(e, )€€ for cach

€€ R" and for all a = {«;;(x,t)} in M.

Let the cost functional 7: W — R be weakly sequentially lower semicontinuous on W. Then the
problem (P) has a solution.

PROOF. We apply the direet method of caleulus of variations (see e.g. [1]). Let g, ¢ satisfy

(Hj) and let {ax} be aminimizing sequence from M sucl that
klim T(u(ak, g,9)) = it {T(u(a,g9,9)) : @« € M} =m.
{00

Since M is compact, there exists a subsequence of the sequence {a}, relabeled again as {ag},

and a ay € M such that ax — ay. It follows from Lenuna 2.1 that in particular
w(ag, g,0) = ulay,g,¢) weakly in W, as k — +o0.
Therefore, by lower semicoutimmity of (7 we have

m < J(u(ay, g,9)) < liLminf T(uwlag, g,9)) = Llim T (u(ar,g,9)) =m.
Henee the result follows.

REMARK 3.1. In general, without convexity assumptions, we do not expect uniqueness of
the optimal solution in identification ([1], [10]).

4. STABILITY RESULT.

In this section we give the main result of this paper on the dependence (hence also the
stability) of the optimal elements for the problem (P) on the data as well as on the cost functional.

We consider the sequence (indexed by the parameter & € N) of the identification problems:

find «* = {a};} in M so that
(Px) ,
Tk (w(a*, gi, k) < Ti(u(a, gk, i) for all « € M,
where u(a, gr, pr) are the solutions in W to (1.1) - (1.3) corresponding to the perturbed data
gk, ¢k and Ty are the perturbed functionals. We show that the set of optimal solutions to (Py)
converges in some sense, to the sct of optimal solution to (P).

We need the following continuous convergence of functionals. Let (X, 7) be a topological
space and Ji: X' — R.

DEFINITION 4.1. We say that a scquence of functionals {7}, £ € N, is sequential
continuously convergent (shortly, Cye -converges) to J, and we write J = Cyeq(r — A') klinolo Tk,
if for every x € X and for every {a} C .V which 7-converges to x, the sequence Jy(z)) converges
to J(z).

For each k € N, we denote by S, Si the scts of optimal elements to the problem (P), (Px),
respectively, i.e.

S=8(g9,0,T) = {a* € M: T (u(a*,g,0)) < j(u(a,g,cpj), Va € M},
Sk = S(gx, 1, Ti) = {a* e M s Tk (ula

*
y Gk, (PL)) < Tk (”(”’) 9k, ‘Pk))) Va € M}
With the above notation we have
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THEOREM 4.1. Iu addition to the hypotheses (F,) and (Hy), we assume that 7, T W —
R are given weakly sequentially lower semicontinnous functionals. Let g, gx € L*(Z) and p, 0k €
H be such that j(@g) € L1(Q). If

{(gr,00) ) = (0,9) in LAY < I, as k= oo, (4.1)

T = Cylw = W) lim Ty, (4.2)

(where w — W stands for the weak topology in W), then

‘Iim W (Si,S) =0, (4.3)

where B*(-,-) is defined in (1.5).
PROOF. We argue by coutradiction. If (4.3) is not verified there exist € > 0 and a sequence
{k.}, k, — 400 such that
g < h*(Sk,,S), Yk, €N
Clearly, there exist a3 € Sy, such that
E < d(ay,,S), Yk, € N, (4.4)

Iu view of compactuess of M, we deduce that there exists a subsequence of {“I‘..}’ that we will

denote in the same way, such that
p— 2
ag, = «* in (C‘(Q))" , as k, — 400, (4.5)
for some a* € M.

Let now uy, = u(az, , g, , ¢, ) and w* = u(a®, g, ¢) denote the solutions to (1.1) - (1.3) which
correspond to the triples (af , gk, , @x, ) und (a*, g, 9), respectively. From (4.1) and (4.5) Lemua
2.1 gives

uy, — u® weakly in W, as k, — +oo.
Since the functionals Ji Cycq-converges to 7, we got
J(u*) = lim Jy, (ug, ) (4.6)

Let us fix an arbitrary « € M. Let ug, = u(«, g, , 9k, ) and u = u(a,g,p) be the solutions to
(1.1) - (1.3) with the indicated data. From the continnous dependence ou the data, we conclude
that

ug, — u weakly in W, as &k, — +oo.
Hence, as above, we have
J(uw) = lim Ty, (uy, ). 4.7)
Since a}, are in Sy, , we have
Ti, (uy ) < T, (wr, )
In the limit, as k, — 400, one gets from (4.G), (4.7) :
J(“(“‘agv ('9)) S \7("‘(“) 9, ‘P))a VaeM.
From the arbitrariety of « € M, we have «* € S and this implies that
d(ay,,S) < lap, — a*|]. (4.8)

But now from (4.5), we obtain that (4.8) contradicts (4.4). This proves (4.3) and completes the
proof of the theorem.
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The convergence (4.2) holds, for instance, for the sequence of functionals of the form (1.4).

Namely, the following two cases can he considered:

(i) Let 2 = M. Given the functionals Ji(u) = |l = 25|13, where {z5} is a sequence
of perturbed distributed observations in 'H converging to zq, we have that (4.2) is satisfied with
T(w) = || —za|]3- This follows direetly, by the definition of Cyeq-limit, from the fact that W C H
and this embedding is compact (compare [15]).

(i) Let 2 = L*T). We comsider the functionals Ti(u) = [Jlu — 2§32y, where {25} is
a sequence of perturbed measurenients (observations) performed on T, If 28 — 24 in LA(E), as
k — 400, then using the compactiess of the trace cmbedding from Wointo L(Z), we casily get
the convergence (4.2), where J(u) = ||u — :,l||";12(2).

REMARK 4.1.  Oue can generalize the results presented above to the case when A(t) is a
differential operator of the form

0 0
Alt) = ——(a;(a, t)=—) + ala, t)u.
(0=~ g (e, 05) + et
Our theory, with some minor changes, can haudle inverse problems involving the identification of

any of the parameters «,j, a, or initial data or houndary function.

REMARK 4.2. A further generalization of owr results can be obtained considering the

identification problems for (1.1) - (1.3) with the mixed boundary conditions

du
rm

+ /“i(“‘) Sy on Ei» 1= 112)

instead of (1.2), where &; = T'; x (0,7") aud T; are the disjoint parts of I'. The exact formulation

of the results with obvious modifications is left to the interested reader.
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