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ABSTRACT. This article deals with a general single-server bulk queueing system with a server

waiting until the queue will reach level before it starts processing customers. If at least r

customers are available the server takes a batch of the fixed size of units for service. The

input stream is assumed to be a compound Poisson process modulated by a semi-Markov

process and with a multilevel control of service time.

The authors evaluate the steady state probabilities of the queueing processes with

discrete and continuous time parameter preliminarily establishing necessary and sufficient

conditions for the ergodicity of the processes. The authors use the recent results on the first

excess level processes to explicitly find all characteristics of the named processes. Some
characteristics of the input process, service cycle, intensity of the system, and both idle and

busy periods are also found. The results obtained in the article are illustrated by numerous

examples.
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1. INTRODUCTION.

Queueing systems, where the server takes batches of a fixed size, r (generally greater than

1), usually preclude that the server will wait for the queue length to accumulate so many

customers if unavailable. Such models are discussed in the book of Chaudhry and Templeton

[.], where the authors refereed works from sixties and seventies by different authors. Perhaps,

Chaudhry and Templeton were the first to use modified Kendall’s symbolic M/G"/1 for these
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systelns.

As it appeared from different sources, the evaluation of the steady state probability

distribution for an emb’dded queueing process has a problem of dealing with roots of certain a

analytic function which were difficult to find and whose existence were firmly related to a

finite set of unknown probabilities. Although some recipes existed in the literature prior to this

vork but there arC’ only those al)ln’opriate which dealt with very special systems. A recent

work by Abolnikov and Dukhovny [2] enabled not only to supplenent and refine the existing

results but also to enlarge the class of systems to which this analysis can successfully be

applied.

Dshalalow and Russell [7] were probably the first to employ the new techniques to a

class of systems of type M/G/1 generalizing usual assumptions about this system by allowing

the input stream to be modulated by a semi-Markov process and by’ implementing a service

control. This work generalized models considered by various authors (see for instance,

Chaudhry and Templeton [3,4]). By assuming that, in addition, the input stream is general

bulk, we obviously have another problem of the cmtical behavior of the queueing process about

level r. Indeed, in this case, when the server will start his service for the first time after being

idle, the queue length is more likely to exceed than to exactly reach level r. The authors apply

the recent results of the first passage problem obtained in Abolnikov and Dshalalow [1] to

study the behavior of the queueing process at the instant of the first passage time of level r by

the process. Thus, one of the central problems in the analysis of such queueing systems is

another (auxiliary) process embedded in the queueing process over the successive instants off

first passage times.

The authors establish necessary and sufficient conditions for the ergodicity of the

queueing process with discrete and continuous time parameters and study its steady state

behavior in both cases.

Due to the queue length dependent service delay discipline assumed in this article, an

auxiliary random process describing the value of the first excess of the queue length above level

r- appears to be one of the kernel components in the analysis of the queueing process. The

authors study this process independent of its relation with the queueing system and obtain

formulas for its distribution. Using these formulas the invariant probability measure of the

embedded process is found in terms of generating functions and roots of a certain associated

function in the unit disc of the complex plane.

The stationary distribution of the queueing process with continuous time parameter is

derived by using semi-regenerative techniques. The authors also obtain the intensity of the

input process, service cycle, a formula for the capacity of the system, the distribution of an idle

period and the mean busy period. A number of various examples illustrate the results obtained

in the article.

2. AN INFORMAL DESCRIPTION OF THE SYSTEM

Let Q(t) give the total number of customers in the system at time t, and let the

stochastic sequence {T,,; n 0,1,...; TO 0} gives the successive instants of time when the

server completes his service. Consider the embedded sequence {Q(T, + 0) n 0,1,...} which



PASSAGE PROCESSES IN QUEUEING SYSTEM 573

gives the total number of the customers in the system immediately after a batch of processed

units departs from the s)t’m. If at tme T, + 0 the queue length Q,, is greater than or equal

to r, the server takes any group from the’ queue of a fixed size r and begin processing this

group in accordance with an arbitrary distribution function, B,,, generally dependent on Q,. If

Q,, < r the server rests as long as the queue needs to accumulate its level to at least r. The

server activity is fully restored at the instant of time, say if,,, the queue length reaches or

exceed level r. [As mentioned in the introduction, because customers arrive in groups the

queue level at time ft, is more likely to exceed r than to reach it.]

In addition we assume that in the interval (T,, T,,+ ] the input flow is a compound

Poisson process with parameter t(Q,,). This assumption allows a greater flexibility of the

system incorporating a natural reaction of the input flow on the state of the system.

In the next section we will study the behavior of another embedded process Q(,). We

will be using some basic results on the first passage problem stated and developed in Abolnikov

and Dshalalow [1].

3. PRELIMINARIES ON THE FIRST PASSAGE TIME PROBLEM PROCESSES

First we treat the process {Q(ff,)} without any connection to the queueing system.

Because of its "conditionally-regenerative" properties we will study the point process ft, which

can obviously be described by a certain auxiliary integer-valued renewal process

S {S X0 + X + + X, n 0,1,...} whose successive increments X,X,..., give sizes of

groups of the input process arriving at the system. Unlike the (usually regular) renewal process

S itself, the concrete process Q(ff,,) which S describes, is terminated for some n.

In this section we will discuss the "critical behavior" of a compound Poisson process Z
determined by a Poisson process r {r,, o + t + + t, ;n > O, o O} on lit + marked by a

discrete-valued delayed renewal process S {S,, Xo + X1 + + X,, ;n > O} on {0,1,...}.
We assume that the processes r and S are independent. We also assume that inter-renewal

times t,, %-r,,_, are described in terms of its common Laplace-Stieltjes transform e(O)
E[e-’"] A--’ n 1,2,....

For convenience we agree to set ft, T,, as long as X0 Q, _> r.

For a fixed integer r _> we will be interested in the behavior o the process S and some

related processes about level r.

The following terminology is introduced and will be used throughout the paper.

3.1 DEFINITIONS.

(i) For each n the random variable u,, inf{k >_ O" S >_ r} is called the indez of the the

first ezcess (above level r- 1).

(ii) The random variable S,,,, is called the level of the first ezcess (above r- 1).

(iii) The random variable r,.,, is known as the first passage tzme of S of level r.

(iv) The random variable 11, S,,,- So is called the increment of the input process over

the time interval IT,, ft,], or shortly, the total increment.

Let
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Or Or S
(3.1a) l’)(0.-) E’[e %:%], (]1’)(8.-) E’[c %= %].

G.(O,:) E,>.E’[,’-"s’I, (S,)]
where : {0,1 .1,} and I is the indicator function of a set AWc call G,(0 -) the generator

of he f,r eces. b:,eL W" will also ts’ the’ following functionals of marginal processes:

(a.) ’{-) ’(0,:),
(a.d) ,(-) G,(0,:).
It is readily seen that G,(z) is a polynomial of (r- 1)th degree.

Ve formulate the main theorems from Abolnikov and Dshalalow [1] and give formulas

She joint distributions of the first passage time and the random variables listed in 3.1

3.2 THEOREI. The f7c*wnal 7’(0. z) (o He fra* pa..saW *me and of Oze mde o *he

(’(e,z) (1 ,)(z z(e)()) <

where 1, >_ r,

0(3.2b) lm_o -7- k e O.

Specifically, the Laplace-Stieltjes transform of the first passage time, 0)(0,1), is

follows:

7(’)(0,1) (I )(I e(O)a(z)) < r

i, ikr.

From formula (3.2a) we immediately obtain that the mean value o[ the index o[ the

first excess equs

0, ir.

Prom (a.2a) we also obtain the mean value of the first psage time:

a.5 THEOREM. The eerator G,(O,) of the first ecess level can e deteined om
the following formula:
(3.5)

z’-’-’{ ]} i<r
a,(O,z) (1 x)[1 e(O)a(xz)

O, i_>r.

The rationale behind the use of the term "generator of the first excess level" comes from

the following main result.

3.6 THEOREM. The functional (](’)(0,z) (of the first passage time and of the first ezcess

level) can be determined from the formula
(3.6a) O(’)(O,z) z’ -[1 e(O)a(z)]G,(O,z).

3.7 REMARK. To obtain the functionals of the marginal processes defined in (3.1b-
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3.1(1) we set e(O)= in formulas (3.2a), (3.5a) and (3.6a).

3.8 COROLLARY. The .qenerat.vg fu.nctwn (’)(z) of th," f.rt ezce, level s detcrmzned

bg the follouwng formula:

(3.Sa) (’)(z) (1 x)(1 a(zz))J’ < r

e, zk,’.

(3.8b)

By using change of variables in (3.8a) we can transform it into an equivalent expression

gl,)(z) (z- z)[1- a(x)]
Z ’ r.

3.9 COROLLARY.

(3.9a)
where a E[X].

(3.9b)
Specifically, the mean value ’)= E’ [:10] of the total increment is then

!’ =,!’.
3.10 REMARK. Now we notice that the above results can be applied to our queueing

system, where in formulas (3.2a)-(3.9a) we supply a(z) with subscript i.

4. PROJECTIVE OPERATORS TECHNIQUES

In this section a formula for the generating function of the process {S,} will be derived

in another form.

Let f be an analytic function in the annulus A(0,0,1) {z e C: 0 < z < x} d conti-

nuous on the boundary of the unit disc, F {ll z 1}. Then f equals its Laurent series f
for all points z E A(0,0,1). Denote T+f the tame part and T-f the principal part of that

Laurent series. We mention a few properties of the operators T + and T-"

[P1] If f is analytic in F + B(0,1) {z E C: z < 1} and continuous on F then

T+f(z)=f(z)andT-f(z)=O,z[(O,1)= {zC: [[z[[ <1}.
[P2] If f is analytic in F- {z C" z > 1} and continuous on F then

T+](z) ](oo) and T- f(z) f(z)- f(c), z

_
FU F-.

[P3] T+T T-T + O (zero operator), T+T + T +, T-T- T-.

IF4] If f(z) E,,=o f,z" then

fz zrT z f(z)(P4a) ]=
(P4b) E> f z zT + z f z

[Pb] Let X be a random variable valued in Il0 such that E[zx] =a(z) ad let

A {0,1,...,r- 1}. Denote A= {r, r + 1,...}. Then from IF4] it follows that

(P) BiOta(X)] eT--(z)
(Pbb) E[zXIA(X)] z’T + z- a(z)
where IA denotes the indicator function of set A and the operator (f)+ denotes

{y,0}.

Note that applications of the operators T + and T- are especially useful when the
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function f is continuou. on F and meromorl)hically ,’Xteldil)le to F + or F- (c.f. Dukhovny

Now let us wturn to the process S introdm’’d in section 3.

4.1 PROPOSITION. Th," 9eneratng fttn.cton .’(z) .., determtned bu the folloum9

(4 ) ’(:) ’r+ .,()r_ {e_.
_r ,,-a?,,,)

PROOF. Applying (PSa) and (PSb) we obtain

(4.1b E’ [zs’ + "/a(Sty.0)/ac( St, + ,.0)] zT + a,( z)T z’ a(z).
Now (4.1a) follows from (4.1b) and the fact that

e T + a,( z)T() Z ’,[zSI(& ,.0) (&0)]
(AS.l) We additionally assume that the greatest common divisor of all values of X.q0

(taken with positive probability) is 1. [Observe that a bulk input with constant size of batches

will be excluded from this class.]

The following result gives an elegant computational formula for ’) for a broad cls of

special cases restricted by (AS.l).

4.2 COROLLARY. Let ( be as in assumption (AS.l). Then formula (4.1a) reduced

to one of the two equ’,valent ezpress’wn below
1-(. ’( e + e(- ,(r
_
,(

PROOF. rom (4.1a) we have

Under sumption (AS.I), it follows fi’om [2] (for m 0) that the only rt of the function

1-a,(z) in (0,1)is Therefore, 1-e--’()
is analytic in r + and continuous on r.

Hence we obtain fi’om [P1] that

Now the statement of the corollary follows fi’om (4.2c) and properties [P1-P4].

5. FORMAL DESCRIPTION OF THE SYSTEM

We begin this section with definition a modulated process introduced and studied in

Dshalalow [6]. All stochastic processes below will be considered on a probability space

{f,q,(P*),, }, with ty {0,1,...}.

Let {T,,; n 0,1,...; To 0} be a point process and let (t) be an integer-valued jump

process with successive jumps at T,, (we allow (T,,)= (T,, + ) with positive probability). Let

{r,; k E N} be a non-stationary orderly Poisson point process with intensity function A(t).
Then we call the doubly stochastic Poisson point process with intensity A((t)) the Pois8on

process modulated by the jump process {(t)} and it is denoted by {r}. Denote U(-) the

associated counting measure. A compound modulated process is defined as follows. Let

{X} {Xl(t), X(t),...} be a doubly stochastic sequence of random variables such that given
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a fix,d value of ((t) {X} is a sequ,’nce of iu,l’p,’d,’t id’,ti ally ,listrilut,’d random variable’s.

Then the compound Posso mod,.la:,t proc’.s is l’fin’d as Z(t) ;[
Let {Q(t)" 0} q’ {0.1 1,,, , ,to, h,,tic 1,r,,c,’s ,l,,scril)ing th,’ mmfl,,’r of units

at time in a singl,-s,rv,r qu,u’ing s)-t, with an infinit’ waiting roon. Following the

introduction, {T," G o,T0 0} is the sequence of successive completions of service and

O, G(T, + 0).

INPUT. Let C(-) be the counting measure associated with the point process {T,,}.
Define ((t)= Q(Tc{} +0), 0. Then the input is a compound Poisson process moddated by

{((t)} according to the above definition.

Assume that the input is a compound Poisson process nodulated by {((t)}, where

is ith batch size of the input flow which depends on ((t). Thu, in our case {X} is an integer-

valued doubl.stochastic process describing the sizes of groups of entering units. We denote

ae{,)(z) Eli ,e,}], i= 1,2 the generating function of ith component of the process {X}.

SERVICE TIME AND SERVICE DISCIPLINE. At time T, +0 the server takes a

batch of units of size r from the queue and serves it during a random length of time a,+ if

the queue length Q,, is at least r. Otherwise, the server idles until the queue length for the first

time reaches or exceeds the level v. Let ,, mf{k 6 : r T,,}, 6 0. Then the size of the

first group Mter T, (which arrives at the instant of time re.) is X,,,. For a convenience in

notation, we reset the first index-counter of the process {X} on after time hits T,.
Therefore, in the light of the new notation, X,,X,,... will denote the sizes of successive

groups of units arriving at the system pt time T,. Let S, XoQ, + X, + + X,, where

Xo,=Q,. Then, given Q., {S.; k6} is an integer-valued delayed renewM process.

Denote u, inf{k O" S, r} the rdom index when the process {S,} first cs o

exceeds level r given that the queue length is Q,. If Q, r, T, + T, coincides with length of

service time a, + of the n + 1st batch. If Q, < r the interval (T,, T, + ] contains the waiting

time for XQ, + + Xu,, units to arrive and the actual service time a, + . In both ces we

sume that a, + h a probability distribution function B, fi {B0, B ,...}, where the latter

is a given sequence of arbitrary distribution functions with finite means {b0, b ,...}.

Finally, denoting V, Z(a,) we obtMn the following relation for process

s.-+ v.+,, . < r

6. EMBEDDED PROCESS

From relation (6.1) and the nature of the input process it follows that the process

{,q,(PX)x, Q(t);t >_ 0} @ has at T,, n _> 1, the locally strong Markov property (see defini-

tion A.3 in Appendix) and that {,5,(P’)x, Q,;n.lo} is a homogeneous Markov

chain with transition probability matrix A (a,1). Let A(z) denotes the generating function of

ith row of matrix A. Since A(z) E[z] we obtain from (6.1) that

(6.1) A,(z) g,(z)z-’)(z), c:. , where

(6.1a) 9,(z) 3,(,- A.a,(z)),
3,(0), Re(O) >_ O, is the Laplace-Stieltjes transform of the probability distribution function B,.

For analytical convenience and without considerable loss of generality we can drop the
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modulation of the input p,’occss and service control when the queue lcugth exceeds a fixed

(perhal)s w_’ry large) level N. In other words, wc ass,me that

(AS2) B,(z) B(z),,!;,())= :( O). g,( z) g(z).b, b..\(,) .\, .\. a,(z) a(z),a, a, > N,

N > r- 1, where

Given assumption (AS2), it can be shown that the transition probability matrix A is re-

duced to a form of the A.N-matrix introduced and studied in [2]. According to theorem A.1

(by Abolnikov and Dukhovny, see Appendix), the Markov chain {Q,} is recurrent-positive if

and only if
d A,(z)[ < x, 0,1(6.2) d- ,...,N,

and

(./ e-
Condition (6.2) is obviously met and condition (6.2a) is equivalent to

(6.2b) p .cb < r.

Therefore, given that p< r, the Markov chain {Q,} is ergodic. Let P=(p;x ) be

the invariant probability measure of operator A and let P(z) be the generating function of the

components of vector P. Denote ’ + {z C: z _< }. Now we formulate the main result of

this section.

6.3 THEOREM. The embedded queueing process {Q,} s ergodic if and only if
p < r. Under this condition, 19(z) is determined by the following formula:

Lo,,{g,(z)’)()- e()}
(6.3a) P(z) z g(z)
Probabilities Po, ...,PN form the unique solution of the following system of linear equations:

(6.3b) E,U=or,,7-_{-%(z)’)()-e} =0, k= O,...,k,-1, s= 1,...,S,

(6.3) :Z,"= o ,,[p, p + O(.’)] ,-- p,

,h,. . are th ,oo oy z +-z +-"g() in th eaio, + \{ ,,th thi ttiptiitis .
such that s k N, and where

(6.3d) p, ,,b,, and

(’)fz
dz

O, i r

PROOF. Formula (6.3a) follows from P(z)= , ,, p, A,(z) and (6.1-6.Xa). It is easy to

modify formula (6.3a) into

(6.3f) E,=+p,z, N-,_ E,N op,{g,(z)z "@’)(z) z’}
ZN + zN + g(z

SO that the function in the left-hand side of (6.3f) is analytic in F + {z C" z <x} d
continuous on F OF + According to theorem A.2, for p < r, the function z-- z- g(z) has

exactly r zeros in ’+ (counting with their multiplicities); all zeros located on the boundary F
(including 1), are simple. Therefore, the denominator in the right-hand side of (6.30 must have

exactly N roots in the region ’+\{1}. This fact along with (P,1)= (which yields (6.3c))
leads to equations (6.3b-6.3d).

The uniqueness of p {Po,’",PN} follows from the following considerations. Suppose
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that the system of equations (6.3b-6.3e) has another solution 1,’= {p; t= 0 ,N} which we

substitute into (6.3a) to obtain the generating function P’(z). Then, P’(z) is analytic in F +

and continuous on F. Thcr,,forc, P" {l,;i } (l’, ). Obviously, equations P’(z)

z,U=oP,{9,(z) )( z) z’9( z) }
are equivalent. The last equation is alsoZ ,, P’A,(z) and P’(z) Y 9(z)

equivalent to P" P’A. Since p" satisfies (6.3c) it follows that (P’,I) 1. Thus, the system of

equations x xA, (x,1) has two different solutions from (l, ][) which is impossible (cf.
Gihman and Skorohod [9], theorem 15, p. 108).

6.4 LEMMA. The ezpected number of units -’}= I.’1- that arrive dumn9 an idle

pemod (of the server) started with the queue length equals (defined in formula (6.3e)) can be

represented in the form
(6.4a) ’)= a,!

PROOF. Lemma 6.4 is just another interpretation of formula (3.9b). f’!

6.5 REMARK. Consider the following auxiliary process. Let {12, Y,(P*),,,, Y,, n I}
0 (abbreviated {Y}) be a homogeneous irreducible and aperiodic Markov chain with

transition probability matrix A {a,; i,j } and the generating function A,(z) of ith row of

A. Assume that A,(z)= zl’-l+9(z), 1, where 9 is analytic in r + and continuous on F.

Then, according to Abolnikov and Dukhovny [2], the process {Y} is ergodic if and only if

9(1) < r. Let $ (6,;x ) be the invariant probability measure of operator A and let ti(z)
be the generating function of $. Then 6(z)= ,,,,6,A,(z) and after some algebraic

transformations we get

(6.5a)
(6.5b)
Modifying (6.5a) we obtain

(6.5c)

6(z) 9(z)n(z)[] 9(z)]-’, where

R() E-’ ,(z e).,mO

iz,_ + R(z)
|’-0 z ()

According to theorem A.2 (in Appendix), the function z-, z"-g(z) has exactly r roots

(counted with their multiplicities) in ’+. Since the function in the left-hand side of (6.5c) is

analytic in F + and continuous on F the polynomial R(z) should have the same r roots (given
that gt(1) < r). Taking into account that the left-hand side of (6.5c) equals for z 1, we get

,- (_ i)
_

a’(x)(6.5d) n’(1)= E, o
The polynomial R, which determines the generating function 5(z), can uniquely be restored

after we find all roots of z-9(z) in + and satisfy (6.5d). In general, the roots can be

evaluated numerically (in some cases also analytically). Alternatively, the roots, and therefore

the polynomial R, can be obtained from computer simulation of the Markov chain {Y}.

7. APPLICATIONS AND EXAMPLES

We now will consider several special cases of our system. All of them can be analyzed
with the help of the general theorem 6.3 and by using appropriate numerical methods. How-

ever, in the particular cases considered below, it turns out to be possible to develop a more

direct approach and thereby obtain more convenient formulas for generating functions of the

corresponding queueing processes. In the first case we drop the modulation of the input process

and service control, thereby assuming that A,= A, a,(z)=a(z), and B,= B,i’. The
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folloving proposition states that in this case the generating function P(z) can be expressed in

terms of the stationary prol)abilities for the auxiliary Markov chain {Y} introduced in 6.5.

7.1 PROPOSITION. Gwen that p < r, tte generating function P(z) of the invariant

probab.dity meaz’ure P of operator A for the embedded process Q,,} in a bulk queueing system

wdh queue length, dependent sewzce delay and w,thout modulation and e’wce control, can be

determined from the followzng formula:

(7.1a) P(z)
(1 a(z))g(z)R(z) 1 a(z)
( z)(- (z)) ( ()’

where ((z) is found by formula (6.1) and R(z) is defined in (6.2).

PROOF. In the assumptions of the proposition, formula (6.3a) for P(z) reduces to
1..

(7.15) P(z)
g(z)E, 0e,s,)(z) z’}- ()

which due to (3.6a) leads to
r-l

g(z)(1 ()) (z- i)E, oP, a,(z)
(7.1c) P(z)- c(1 z) z g(z)

The first factor z
g(z)[1- a(z)]

a(1- z)
in (6.6c) has the following obvious properties: It is

analy-tic in F + and continuous on F, it is valued at z and it does not vanish at all roots

of z- g(z) inside +. The latter property and analyticity of P(z) yield that the function
r-, p,a,(z)(z- 1)E, 0(7.1d) z , ()

is analytic in F + and continuous on F and it takes on value at z 1. Thus, the numerator of

(7.1d) must have the same roots with their multiplicities as the denominator in F + and it

assumes value r-g(1) at z 1. Since G,,(z) is a (r- 1)th degree polynomial the numerator of

(7.1d) is a rth degree polynomial. Therefore, from the considerations in 6.5 it follows that the

numerator of (7.1d) must be equal to R(z) defined in (6.55). Fi

In the second example we assume that B,(x) f,B(x), < r, S,(x) B(x), >_ r, and

A, .k, a,(z)= a(z), i . Let o() denote the Laplace-Stieltjes transform of the (arbitrary) pro-

bability distribution function F and let H(z) V(A- Aa(z)).

7.2 PROPOSITION. Under the above assumptions, the generating function P(z) of the

invariant probability measure P of operator A is determined by the expression

a(z) L(z)R(z)(7.2a) P(z) g(z) a(l z) z 9(z)
where the function L is an analytic in r + and continuous on F, and L(1) 1.

PROOF. In this case formula for P(z) yields

o)
(- 1)}2, p, () ’ +//() 6’,,()

P(z) 9(z) a(1 z) z" g(z)
Repeating the same arguments as in proposition 7.1 we deduce that the function

(7.2b) L(z) 0 P, a(z)
z’ + H(z) a,,(z)

is analytic in F +, continuous on F and equals at z 1. F!

7.3 EXAMPLE. Preserving all assumptions in proposition 6.7, we additionally

assume that F is an exponential distribution with parameter . Then L in (7.2b) is

(7.3a) L(z)= 7 {a(z-1) r-’ (G,,.(z)+/k7+-a(z) R() 0P, e
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Following the argum(.nts of the l)roof of 1)roposition 7.1. wc conclude that the expression in

l)raccs equals R(-), thcr(’by r(’(lu(’ing L(-) to ( "t + Aa(-)) Replacing

g(z) R(z)( g(z))-t by b(-) in (7.1a) w(, finally obtain that

[1 a(z)]
(7.31)) z) b(z) o(I z)[ + A- Az)]

A spccia] casc with an orderly nodu]ated Poisson inl)ut process was studied earlier by

Dshalalmv and Russell [7]. In other words, ve sume that %(z)= z, otherwise retaining all

other assumptions made in (AS2). Then, the version of theorem 6.3 can be formulated

follows.

7.4 COROLLARY. The embedded queueing process {Q,,} is ergodic 4 and only

if p < r. Under this condition, P(z) is determined from the following formula
E,=op,{e,()-eg()}

(7.4a) z) g(z)
where

(7.4b) d,(z) ’- ") +g,(z)
and operator ( + sup{],O}. Probabilities Po ,pN ]o the unique solution of the ]ollong

system of linear equations:

z

d(7.4c) =0p,{,(z)- e} =0, k=0 k.-1, s= S,

(7.;4) Z 2’: o ,[(,- )+ (,’- )+]: ,’- ,
where p, $,b, and z, are the roots of +’- +’-’g(z) in the region +{1} th their

multiplicities k, such that s k, N.

8. ANALYSIS OF THE QUEUEING PROCESS WITH CONTINUOUS TIME PARAMETER

In this section our main objective is the stationary distribution of the queueing process

with continuous time parameter.

8.1 DEFINITIONS.

(i) Let fl= E[T]] (the mean sojourn time of the process {(t)} in state {j}) and

fl (; j )T. Then we will call the value Pf/the mean service cycle of the system, where P
denotes the stationary probability distribution vector of the embedded queueing process {Q.}.

(ii) Let a= (tr;z q @)T, A= (A;x q I’)T and let p= a,fl,, be the Hadamard (entry-
wise) product of vectors a, fl and ,. We call the scalar product Pp the intensity of the system.

Observe that the notion of the "intensity of the system" (frequently called the offered
load in queueing theory) goes back to the classical M/G/1 system, when Pp reduces to p Ab.

It is noteworthy that in many systems the intensity of the system and the server capacity coin-

cide.

8.2 PROPOSITION. Given the equilibrium condition p < r, the mean service cycle can

be determined from the follouring ez’pression:

(S.2a) Pfl-= b4- E=op,(bj- b4- _i))
PROOF. Obviously, b + ’)/$. The statement follows after elementary algebraic

transformations. [-I

8.3 THEOREM. Gzven the equilibrium condition p < r, the intensity o the system Pp
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and server capac’ty co’mcide and equal r.

PROOF. According to the description of our nodel the server capacity is r. Now, the

statenent of the theorem follows frown definition 8.1 (li), equation (6.3c) and lemma 6.4. [2]

From the dis<’ussion in section 3 and fi’om definition A.4, it follows that {fl,q,(P’),,,,
Q(t); 0} (, ()) is a semi-regeneratiw’ process with conditional regenerations at

points T,. n =0,1 To=0. {,.(P),,. (Q,,,T,): ,, =0. (x+, (x+))is
the ssociated Markov renewal process. Let Y(t) denote the corresponding semi-Markov kernel.

Under a very mild restriction to the probability distribution functions B,, we can sume that

the elements of Y(t) are not step functions which would imply that {Q,,T,} is aperiodic. By
proposition 8.2, the mean service cycle Pfl, which is also the mean inter-renewM time of the

Markov renewal process, is obviously finite. Therefore, following definition A.5, the Markov

’enewal process is ergodic given the condition p < r.

It also follows that the jump process {fl,,(P*),,,, ((t); _> 0} ff, defined in section

5, is the xninimal semi-Markov process associated with Markov renewal process {Q,,,T,} and

therefore, following the definition at the beginning of section 5, the input process

{,J,(P*),,, Z([O,t]);t _>0} is a compound Poisson process modulated by the semi-

Markov process .
8.4 DEFINITION. Let

(8.4a) 6,,(t) =/{2([0, t])= s. T, > t}
Then, given that (0)= x and that Z(t) is not modulated by a new value of (t), the input

process takes on the value

(S.4b) Z=([0, t]) E y__:ltl
where N=(-) is the Poisson counting measm’e with parameter A:. We call {Z:(t0,tl)
in (8.4b) the z-partial process (of the compound Poisson process modulated by

(8.4c)
Therefore, by (8.4b),

=.(t) P{Z([0, tl) s}

Let K(t)= (Kt.(t);j, ke qt) be the semi-regenerative kernel (see definition A.6). The

following proposition obviously holds true.

8.5 PROPOSITION. The semi-regenerative kernel satisfies the following equations:

Kj(t) ti,_j(t),0 _<j_< k< r,

l((t) ot%(s+j’t- u) ti,__o(U)(1 B(u))du,O _< j< r<_ k
--r-3

K(t) O, 0 < k < j,

where 6, is as defined in (8.4a) or (8.4c) and q denotes the density of the joint probabihty
distribution function of the random variable S% and the first passage time ff of the first excess

above fever r bU the queuein9 process {Q(t)}.

Now we are ready to apply the Main Convergence Theorem to the semi-regenerative
kernel in the form of corollaxy A.8.

8.6 THEOREM. Given the equilibrium condition p < r for the embedded process Q,},
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the stat’onary distmbutwn r=(rx;xE of the queu...,,g p,’oces {t)} exi.ts; it

zndcpendcnt of any nttial dtstr’tbutton and ts ezpr:s,:d t tcr,s of the gcncrattng function (z)

of x by the followtng fon’ulas:
(8.6a) P(z) d(z)P(z) + N ,[=,,, K,(z),(z)+ z’(d(z)- d(z)),

K(z)

here ) the 9enertin9 fncton of P, P deteined m proposition 8.2, a,() deer-

mied "n (a.Sa), nd d() is defined s d(z) with ll s’ubscpt, dropped.

PROOF. Recall that the Markov renewal process {Q,T} is ergodic if p<r. By
corollary A.8 the semi-regenerative process {()} has a unique stationary distribution

provided that p < r. From (8.5a) we can see that the semi-regenerative kernel is Riemann

integrable over N+. Thus, following corollary A.8 we need to find the integrated send-

regenerative kernel H (which is done with routine calculus) and then generating functions h(z)
of all rows of H. First we find that, I ([-(]e e(l(S.c) E= 0

Then it follows that

where G’I(z) denotes the tail of the generating function G,(:) summing its terms from r to. However, it is easy to show that G;I(z) and G,(z) coincide. Then it appears that

where the index j can be dropped for all j exceeding N, in accordance with sumption (AS2)
made in section 4. ormula (8.6a) now follows from corollary A.8, equations (8.6c-8.6e),
(a.6a), remk a.10, and some algebraic transformations.

The following corollary (which follows from (8.aa), (8.4a), (8.2a) and (8.5a) by mes
routine calculus) gives an elegant formula for the service cycle P and the generating function

(z) if we just drop the modulation of the input but retain bulks of the input, service control

d state dependent service delay.

8.7 COROLLARY. The seice ccle P nd the 9enertm9 function () of in the

qeein9 sstem th no modulation of the input cn be detemed from the followin9

(s.7) =.
[-(1

8.8 EXAMPLES.

(i) Observe that the same result as (8.7a) holds true by retaining a "weak modulation",
i.e. assuming that A, A and a, a but having no further restriction to the generating
functions a,(z).

(ii) Assuming that the input is an orderly modulated Poisson process, in other words if

aj(z) z, but retaining all other assumptions we arrive at the result by Dshalalow and Russell

[7]. Indeed, hj is reduced to

hs(z)-(l z)z-
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with .j(z)= ztJ-’t +gj(z). Then we ol>tain from (S.6a) that

(z) pq (1 z)

= + E- ,)+_0,[(L- b)+ (,-- ].
where z) and Po l’.v satisfy equations (S.ga-S.gd).

r and fromBy dropping the bulk of the input process wc obtain from (8.7a) that

(8.7a) that
z )(1 )

(iu) Now we will obtain a few results in connection with special ces treated in section

7. By further dropping service control in the condition of corollary 8.7 and using (8.6a) we get

from (7.1a)
,.(:) 1--z

By retaining some vague service control in the light of coroll’y 8.7 formula (7.2b) then yields

,’r(z) zL(z)(z),1--z
which reduces to

( )( + A- A(z))(:) ( :)(-)
when using (7.3b).

(iv) By virtue of obvious probability arguments we can derive the probability density

function of an idle period in the steady state:
r--lE, 0,7(’(, )
E:-’0 p

The mean value of the idle period in the stey state is then

E 0,E(8.s)
0
p’

(v) Formula (8.8a) and theorem 8.6 allow to derive the mean busy period in the equi-

-r, is the probability that the server idles. On the other hand, it Msolibrium. Clearly ,
0

Thus we haveequMs +
i=0

(vi) If the input is a stationary compound Poisson process (ie. nonmodulated) then its

intensity is oA, which is also the mean number of arriving units per unit time. In the ce of a

modulated input process its intensity is no longer a triviM fact. We define the intensity of y

r=dom meure Z by the formula =lim,_t(z), where t(z)=
apply the formula from theorem A.9 (Dshalalow [6]) for more generM Poisson process

modulated by a semi-Mkov process:
Pp=

where by theorem 4.3 Pp r and Pfl satisfies (8.2a). Thus we have that:

(S.Sb) prB
A trivial special case appears when we assume the weak modulation of the input defined in (i)
and therefore use formula (8.7a) combining it with formula (8.8b). Then t; Ac. Specifically

t Aa for the input without modulation, as it should be.
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APPENDIX

A.1 THE()RE3I (Al,,,lnik,,v an,l D,,kl,,,v,,y [2]). L,,t {Q,,} bt: a,, t,weduc,ble ape,-t,,d,,’

Markov chazn wdh the

recurrent-posztz ve
d A,(z)[ < ,, 0,1 N,(A.la) d

and

(A.lb) d 9(z) < r.

A.2 THEOREM (Abolnikov and Dukhovny [2]). U,der th.e condition of (A.lb) th.e

functton -9(z) hs ezactl9 root that belon9 to the clo.ed ,,, ball F + Thoe of the roots

lzn9 on the boundar

A.3 DEFINITION. Let T be a stopping time for a stochtic process {,ff, (P),
0(t); 0} (, N()). {Q(t)} is said to have the locMl9 stron,9 Markov propert9 at T if for

each bounded random variable : [ r and for each Baire function f: N, r 1,2,..., it

holds true that E’[f o (o 0r Ir] Ezr[f o ] P-a.s. on {T < }, where 0, is the shift

operator.

A.4 DEFINITION. A stochastic lnocess {,ff,(P’),, Q(t); 0} (, N()) with

N is called sem-regeneratoe if

a) there is a point process {T,} on R+such that T, (n+)and such that each

is a stopping time relative to the canonic filtering a(Qu;y t),
b) the process (Q(t)) h the locally strong Markov property at T,, n 1,2,...,

c) {Q(T, + 0),T,; n 0,1,...} is a Markov renewal process.

A.5 DEFINITION. Let (X,,T) be an irreducible aperiodic Markov renewal process

with a discrete state space . Denote , E*[T] as the mean sojourn time of the Markov

renewal process in state {x} and let fl (fl.’x )T. Suppose that the embedded Markov

chain (X,) is ergodic and that P is its stationary distribution. We call Pfl the mean rater-

renewal time. Then we call the Markov renewM process recuent-pos,tive if its me inter-

renewal time is finite. An irreducible aperiodic and recurrent-positive Mm-kov renewM process

is cMled ergodic.

A.6 DEFINITION. Let {fl,ff,(P*),,, Q(t);t 0} (, ()) be a semi-regenerative

process relative to the sequence {T.} of stopping times. Introduce the’probability

K;(t) P’{Q(t) k,T, > t}, j,k

We will call the functional matrix K(t) (Ka(t) j,keO) the semi-regenerative keel.

A.7 THEOREM (The Main Convergence Threm, cf. inlar [5], p. 347). Let

{fl,ff,(P’),,, Q(t); t o} (@, N(@)) be a semi-regenerative stochtic process relative to

the sequence {t,} of stopping times and let K(t) be the cowesponding semi-regenerative keel.

Suppose that the sociated Markov renewal process ergodic and that the semi-regenerative

keel is Riemann integrable over +. Then the stationa d@tNbution x (r,; z ) of the

process {Q(t)} exits and it is detemed from the foula:
(A.Ta)

A.8 COROLLARY. Denote H hj 3,k f o K( t)dt as the integrated semi-regene-

rative kemel, h(z) the generating function 4 th row of matz H and r(z) as the generating

function of vector . Then the following fomula hol& te.
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(A.8a) r(z) E ,, P h’j( z)
PH Finally,PROOF. From (A.7a) we get an equivalent formula in matrix form, r

formula (A.8a) is the result of clcnmntary algebraic transformations. 13

A.9 THEOREM (Dshalalow [6]). Let Z be a compound Potsson process modulated by a

semz-Markov proccs, tn accordance with the above notatto’o ad deftntton tn section 5. Let

p a.fl. denote the Hadamard product of vectors a, fl and A. If {Q,,, T,,} is ergod’tc t/ten the

intensity of the process Z is given by the formula
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