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ABSTRACT. This article deals with a general single-server bulk queueing system with a server
waiting until the queue will reach level r before it starts processing customers. If at least r
customers are available the server takes a batch of the fixed size r of units for service. The
input stream is assumed to be a compound Poisson process modulated by a semi-Markov

process and with a multilevel control of service time.

The authors evaluate the steady state probabilities of the queueing processes with
discrete and continuous time parameter preliminarily establishing necessary and sufficient
conditions for the ergodicity of the processes. The authors use the recent results on the first
excess level processes to explicitly find all characteristics of the named processes. Some
characteristics of the input process, service cycle, intensity of the system, and both idle and
busy periods are also found. The results obtained in the article are illustrated by numerous

examples.
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1. INTRODUCTION.

Queueing systems, where the server takes batches of a fixed size, r (generally greater than
1), usually preclude that the server will wait for the queue length to accumulate so many
customers if unavailable. Such models are discussed in the book of Chaudhry and Templeton
[], where the authors refereed works from sixties and seventies by different authors. Perhaps,
Chaudhry and Templeton were the first to use modified Kendall’s symbolic M/G"/1 for these
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systems.

As it appeared from different sources, the cvaluation of the steady state probability
distribution for an embedded queucing process has a problem of dealing with roots of certain a
analytic function which were difficult to find and whose existence were firmly related to a
finite set of unknown probabilities. Although some recipes existed in the literature prior to this
work but there are only those appropriate which dealt with very special systems. A recent
work by Abolnikov and Dukhovny [2] enabled not only to supplement and refine the existing
results but also to enlarge the class of systems to which this analysis can successfully be

applied.

Dshalalow and Russell [7] were probably the first to employ the new techniques to a
class of systems of type M /G"/1 generalizing usual assumptions about this system by allowing
the input stream to be modulated by a semi-Markov process and by implementing a service
control. This work generalized models considered by various authors (see for instance,
Chaudhry and Templeton [3,4]). By assuming that, in addition, the input stream is general
bulk, we obviously have another problem of the critical behavior of the queueing process about
level r. Indeed, in this case, when the server will start his service for the first time after being
idle, the queue length is more likely to exceed than to exactly reach level . The authors apply
the recent results of the first passage problem obtained in Abolnikov and Dshalalow [1] to
study the behavior of the queueing process at the instant of the first passage time of level r by
the process. Thus, one of the central problems in the analysis of such queueing systems is
another (auxiliary) process embedded in the queueing process over the successive instants off

first passage times.

The authors establish necessary and sufficient conditions for the ergodicity of the
queueing process with discrete and continuous time parameters and study its steady state

behavior in both cases.

Due to the queue length dependent service delay discipline assumed in this article, an
auxiliary random process describing the value of the first excess of the queue length above level
r —1 appears to be one of the kernel components in the analysis of the queueing process. The
authors study this process independent of its relation with the queueing system and obtain
formulas for its distribution. Using these formulas the invariant probability measure of the
embedded process is found in terms of generating functions and roots of a certain associated

function in the unit disc of the complex plane.

The stationary distribution of the queueing process with continuous time parameter is
derived by using semi-regenerative techniques. The authors also obtain the intensity of the
input process, service cycle, a formula for the capacity of the system, the distribution of an idle
period and the mean busy period. A number of various examples illustrate the results obtained

in the article.

2. AN INFORMAL DESCRIPTION OF THE SYSTEM

Let Q(t) give the total number of customers in the system at time ¢, and let the
stochastic sequence {T,; n=0,1,...; Ty =0} gives the successive instants of time when the

server completes his service. Consider the embedded sequence {Q(T,+0); n=0,1,...} which
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gives the total number of the customers in the system immediately after a batch of processed
units departs from the system. If at tume T, + 0 the queue length @, is greater than or equal
to r, the server takes any group from the queue of a fixed size r and begin processing this
group in accordance with an arbitrary distribution function, BQ", generally dependent on Q,,. If
Q,, <1 the server rests as long as the qucue needs to accumnulate its level to at least . The
server activity is fully restored at the instant of time, say 9, the queue length reaches or
excced level r. [As mentioned in the introduction, because customers arrive in groups the

queue level at time T, is more likely to exceed r than to reach it.]

In addition we assume that in the interval (T, T, ,,] the input flow is a compound
Poisson process with parameter A@Q,). This assumption allows a greater flexibility of the

system incorporating a natural reaction of the input flow on the state of the system.

In the next section we will study the behavior of another embedded process Q(9,,). We
will be using some basic results on the first passage problem stated and developed in Abolnikov
and Dshalalow [1].

3. PRELIMINARIES ON THE FIRST PASSAGE TIME PROBLEM PROCESSES

First we treat the process {Q(9,)} without any connection to the queueing system.
Because of its “conditionally-regenerative” properties we will study the point process I, which
can obviously be described by a certain auxiliary integer-valued renewal process
S={S,=Xo+X,+...+X,; n=0,1,..} whose successive increments X,X,,..., give sizes of
groups of the input process arriving at the system. Unlike the (usually regular) renewal process

S itself, the concrete process Q(9,) which S describes, is terminated for some n.

In this section we will discuss the “critical behavior” of a compound Poisson process Z
determined by a Poisson process 7= {7, =t,+ ¢, +... +t,;n >0, t, =0} on R, marked by a
discrete-valued delayed renewal process S = {5, = Xo+ X, +...+ X,,;n >0} on ¥ ={0,1,...}.
We assume that the processes 7 and S are independent. We also assume that inter-renewal
times t, =71, —7,_,, are described in terms of its common Laplace-Stieltjes transform e(f)

— _Otn —_ A —
= Ele ]_)\+0,n—1,2,....
For convenience we agree toset 9, =T, , as long as X, =Q,, > r.

For a fixed integer r > 1 we will be interested in the behavior of the process S and some

related processes about level r.
The following terminology is introduced and will be used throughout the paper.
3.1 DEFINITIONS.

(?) For each n the random variable v, = inf{k > 0: S, > r} is called the indez of the the

first ezcess (above level r — 1).
(%) The random variable S v, is called the level of the first ezcess (above r —1).
(417) The random variable 7,, is known as the first passage time of S of level r.

(i) The random variable 3, = S,,n — S, is called the increment of the input process over
the time interval [T, , 9], or shortly, the total increment.

Let
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v, _an SU
(3.1a) A9z =E" (c o) g(B.z) = Bt Yo: 0],
Y . —-0r S
(1,(0,2)= Z]E()E [(' Iz ]I“'—I(S-’ )],

where U, = {0,1.....p} and I | is the indicator function of a set 4. We call G ,(6.z) the generator

of the furst excess level. We will also use the following functionals of marginal processes:

(3.1h) S0y = 410.2),
(3.1¢) 6" (z) = g"0,2),
(3.1d) G,(z) =G,(0,z).

It is readily scen that G,(z) is a polynomial of (r — 1)th degree.
We formulate the main theorems from Abolnikov and Dshalalow [1] and give formulas

for tlie joint distributions of the first passage time and the random variables listed in 3.1 (2-222).

3.2 THEOREM. The functional ¥Y(8.2) (of the first passage tune and of the indez of the

first ezcess level) satisfies the following formula:

(3.22) o z“])""‘{ 1 - alz) } i<

7(')(9’ Z) = (6)23. (1 —2)(1 - ze(8)a(z)) | ' "
where L iz
(3.2b) D = lim F% k>0.

Specifically, the Laplace-Stieltjes transform of the first passage time, 7()(8,1), is as

follows:
(3.2¢) e9°])"“‘{ 1—o2) } i<r

W =) O\ T (e

1, i2>r.

From formula (3.2a) we immediately obtain that the mean value of the index of the

first excess equals

r—i1—1 1 7 r
(3.3 o) % o) -
0, 1>

From (3.2a) we also obtain the mean value of the first passage time:
(3.4) Eilr, ) =37

3.5 THEOREM. The generator G,(0,z) of the first ezcess level can be determined from
the following formula:
(3.5a)

r—1—1 1
G9,z) = 7o {(l—z)[l—e(o)a(zz)]}’

0, i>r.

i<r

The rationale behind the use of the term “generator of the first excess level” comes from
the following main result.

3.6 THEOREM. The functional §*)(6,2) (of the first passage time and of the first excess
level) can be determined from the formula

(3.6a) 61(8,2) = 2 —[1 — ¢(8)a(2)]G,(8, 2).
3.7 REMARK. To obtain the functionals of the marginal processes defined in (3.1b-
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3.1d) we sct ¢(f) = 1 in formulas (3.2a), (3.5a) and (3.6a).

3.8 COROLLARY. The generating function §'Nz) of the furst ezcess level s determined

by the followng formula:
T a(2) — a(z2) }, <r
(3.8a) g (=) = ! {(l —z)(1 — a(zz)) LT
zZ, 1>,

By using change of variables in (3.8a) we can transform it into an equivalent expression
zr%;—l—l a(z)—a(a:) , i<r
{(z— z)[1 — af2)]

z N 12T

(3.8b) §"(2) =

3.9 COROLLARY.
(3.92) G = B[S, ) =1+ a3,
where a = E[X,].
Specifically, the mean value 3{") = E*[Jy] of the total increment is then
(3.9b) 3 = o).
3.10 REMARK. Now we notice that the above results can be applied to our queueing

system, where in formulas (3.2a)-(3.9a) we supply a(z) with subscript <.

4. PROJECTIVE OPERATORS TECHNIQUES

In this section a formula for the generating function of the process {5 ”n} will be derived

in another form.

Let f be an analytic function in the annulus A(0,0,1) = {z€C: 0< || z|| <1} and conti-
nuous on the boundary of the unit disc, I' = { || z|| =1}. Then f equals its Laurent series Lf
for all points z € A(0,0,1). Denote T+ f the tame part and T~ f the principal part of that
Laurent series. We mention a few properties of the operators T+ and T ~:

[P1] If f is analyticin 't = B(0,1) = {z € C: | z|| <1} and continuous on I then
T+f(z)=f(z) and T~ f(z) =0, z€ B(0,]) = {z € C: | z|| <1}.
[P2]) If f is analyticin '~ = {z € C: || z|| > 1} and continuous on I' then
T+ fz) = floo) and T~ f(z) = f(z) — f(o0), z€ TUT~.
[P3) T+T- =T-T* = 0O (zero operator), T*T+ =T+, T-T-=T".
[P4] If f(z) = £_, faz" then

(Pta) i) fett = 2T ()
(P4b) zkzrf,‘z"=z'T+z"f(z)

[P5] Let X be a random variable valued in Ny such that E[z*]=a(z) and let
A={0,1,...,r —1}. Denote A° = {r,r +1,...}. Then from [P4] it follows that

(P5a) E[ZXI (X)) =2T "z "a(2)

(P5b) E[Z1,(X)]=2ZT*2z""a(2)

where I, denotes the indicator function of set A and the operator (f)* denotes
sup{f,0}.

Note that applications of the operators T* and T~ are especially useful when the
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function f is continuous on T' and meromorphically extendible to Tt or T~ (c¢f. Dukhovny
(8)-
Now let us return to the process S introduced in section 3.

4.1 PROPOSITION. The generating function GL(2) s determmed by the follownng

formaula:

oo l-e7(2)
() y — o7+ r 3
(4.1a) G (z)=2T%a(2)T {z‘ Toal) }, 1<
PROOF. Ap])lying (P5a) and (P5b) we obtain
(4.1Db) B2 5 0L (St0) Lie(Si 4 1.0)] = 2T+ a,(2)T ~ 2 ~"ak(2).
Now (4.1a) follows from (4.1b) and the fact that
62) = £, IS0 (S0 LelSio)l = £1207 ' 2T+ a ()T = 2" ak(2). o

(AS.1) We additionally assume that the greatest common divisor of all values of X‘~Qo
(taken with positive probability) is 1. [Observe that a bulk input with constant size of batches
will be excluded from this class.]

The following result gives an elegant computational formula for ¢!V for a broad class of

special cases restricted by (AS.1).
4.2 COROLLARY. Let (X) be as in assumption (AS.1). Then formula (4.1a) is reduced

to one of the two equwalent expressions below

(4.2a) g&"(:):z'+z(1-a,(z))T-{ti('z')}, i<r,
(4.2b) 62 =2 +2(1 - a,(z))T"'{f:'aIzl)}, i<r.

PROOF. From (4.1a) we have
@)= o7 agar-{z-r L O e {gat et )

1-a,z2) 1—a,(z2) 1-4a,(2)
Under assumption (AS.1), it follows from [2] (for m = 0) that the only root of the function
1—a,(2) in B(0,1) is 1. Therefore, %aa(,z')(z) is analytic in I'* and continuous on T.

Hence we obtain from [P1] that

(), = 7T+ =127 -1
(4.2¢) G, (2)=2T%a(2)T {1 — a,(z)}'
Now the statement of the corollary follows from (4.2c) and properties [P1-P4]. 0

5. FORMAL DESCRIPTION OF THE SYSTEM

We begin this section with definition a modulated process introduced and studied in
Dshalalow [6]. All stochastic processes below will be considered on a probability space
{0, F,(P*),eq }, with ¥ = {0,1,...}.

Let {T,; n=0,1,...; To =0} be a point process and let {(t) be an integer-valued jump
process with successive jumps at T, (we allow ¢(T,) = é(T, ,,) with positive probability). Let
{r; k €N} be a non-stationary orderly Poisson point process with intensity function A(t).
Then we call the doubly stochastic Poisson point process with intensity A((t)) the Poisson
process modulated by the jump process {£(t)} and it is denoted by {7¢}. Denote N¢(-) the
associated counting measure. A compound modulated process is defined as follows. Let

X} = {X;1, Xog(s)---} be a doubly stochastic sequence of random variables such that given
1¢(¢) 2¢(¢)
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a fixed value of £(t) {X} is a sequence of independent identically distributed random variables.

Then the compound Powson modulated process is defined as Z8(t) = ¥ ;\:‘,') Xy -

Let {Q(t): t >0} — ¥ = {0.1....} be a stochastic process deseribing the number of units
at time ¢ in a single-server queucing system with an infinite waiting room. Following the
introduction, {T,:n €Ny, T, =0} is the scquence of successive completions of service and

Qn=Q(T,+0).

INPUT. Let C(-) be the counting measure associatcd with the point process {T,}.
Define £(t) = Q(TC(,)+ 0), t > 0. Then the input is a compound Poisson process modulated by

{&(t)} according to the above definition.

Assume that the input is a compound Poisson process modulated by {£(t)}, where X,
is 1th batch size of the input flow which depends on &(t). Thus, in our case {.X} is an integer-
valued doubl{, stochastic process describing the sizes of groups of entering units. We denote

agylz) = Bl €t 5 =1,2,..., the generating function of ith component of the process {X}.

SERVICE TIME AND SERVICE DISCIPLINE. At time T, +0 the server takes a
batch of units of size r from the queue and serves it during a random length of time o, ,; if
the queue length Q,, is at least r. Otherwise, the server idles until the queue length for the first
time reaches or exceeds the level r. Let 5, = inf{k €N: 76 > T, }, n € N,. Then the size of the
first group after T, (which arrives at the instant of time 'rf,") 1 X"n'Qn' For a convenience in
notation, we reset the first index-counter of the process {X} on 1 after time t hits T,.
Therefore, in the light of the new notation, X,q , Xsq ,--- will denote the sizes of successive
groups of units arriving at the system past time T,,. Let S, = Xan + X, + -t qun, where
Xoq, =@n- Then, given Q,, {Sin; k €N} is an integer-valued delayed renewal process.
Denote v, =inf{k>0: S, >r} the random index when the process {S,,} first reaches or
exceeds level r given that the queue length is Q,,. f Q,, >, T, ,, — T, coincides with length of
service time o, ., of the n + 1st batch. If Q, < r the interval (T,,T, ,,] contains the waiting
time for Xlo" +...+ XV,.Q,. units to arrive and the actual service time o, ,. In both cases we
assume that o, ,, has a probability distribution function By € {B,, B, ,--}, where the latter
is a given sequence of arbitrary distribution functions with finite means {b,,b, ,...}.

Finally, denoting V, = Z¢(o,) we obtain the following relation for process {Q,}:
Sun_r+Vn+l! Qn<r

(51) Qn+l = {
Q-1+ Vs, Q.>r.

6. EMBEDDED PROCESS

From relation (6.1) and the nature of the input process it follows that the process
{9,9,(P%),cy, Q(t);t >0} — ¥ has at T,,, n > 1, the locally strong Markov property (see defini-
tion A.3 in Appendix) and that {Q,F,(P%),.¢, @.;n €Ny} — ¥ is a homogeneous Markov
chain with transition probability matrix A = (a,;). Let A,(z) denotes the generating function of
1th row of matrix A. Since A;(z) = E "[zQ‘] we obtain from (6.1) that
(6.1) A(2) = g,(2)27 "6 N(2), i€ ¥, where
(6.1a) 02) = B, = \a,(2).

B.(6), Re(8) > 0, is the Laplace-Stieltjes transform of the probability distribution function B, .

For analytical convenience and without considerable loss of generality we can drop the
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modulation of the input process and service control when the queue length exceeds a fixed
(perhaps very large) level N. In other words, we assnme that
(AS2) B,(z)= DB(z),3,(0) = 4(0). g,(2) = g(2). b, = b.\N¢) = X\, = A a(z) = a(z),a,=a, 1> N,
N >r—1, where a, = al(1), 1 € ¥.
Given assumption (AS2), it can be shown that the transition probability matrix A is re-

duced to a form of the A, y-matrix introduced and studied in [2]. According to theorem A.1

(by Abolnikov and Dukhovny, see Appendix), the Markov chain {Q,} is recurrent-positive if

and only if
(6.2) &£ A,(z)’ml <00, 1=0,1,..N.
and o
(6.2a) de 9(2) L, <r.
Condition (6.2) is obviously met and condition (6.2a) is equivalent to
(6.2b) p=Aab<r.

Therefore, given that p <r, the Markov chain {Q,} is ergodic. Let P = (p,;z € ¥) be
the invariant probability measure of operator A and let P(z) be the generating function of the
components of vector P. Denote 't = {z € C: || z|| <1}. Now we formulate the main result of

this section.

6.3 THEOREM. The embedded queueing process {Q,} s ergodic if and only if
p < 1. Under this condition, P(z) is determined by the following formula:

N—O W 9ilZ, s-') —2'¢(z
(6.3a) P(z) = =ilond ; _)Gg(i)z) 9( )}’

Probabilities py , ...,pn form the unique solution of the following system of linear equations:

k
(6.3b) Efv=0p,§{z"g,(z)(j$')(z) - z'}L_ =0,k=0,.k-1,s=1,.,5

(63C) ZlN=opl[pl_p+ d')]zr"P;

where z, are the roots of 2N *+!' — 2N +1=7¢(2) in the region T+\{1} with their multiplicities k,
such that E'S -1k =N, and where

(6.3d) p,=A\ab, and
d g i ;

dda| -, i<r

0, i>r

(6.3¢) Gl =

PROOF. Formula (6.3a) follows from P(z) = ¥ P, 4,(2) and (6.1-6.1a). It is easy to
modify formula (6.3a) into N —ralt)
(63f) 200 pzl-N—l = El:()pl{gl(z)z rgr (Z)—Z‘}

i=N4188 zN+1_zN+l—rg(z) ’
so that the function in the left-hand side of (6.3f) is analytic in I'* ={z€C: | z|| <1} and
continuous on I'=9I't. According to theorem A.2, for p < r, the function z+— 2" — g(z) has

exactly r zeros in T't (counting with their multiplicities); all zeros located on the boundary T
(including 1), are simple. Therefore, the denominator in the right-hand side of (6.3f) must have
exactly N roots in the region T'*\{1}. This fact along with (P,1) =1 (which yields (6.3c))
leads to equations (6.3b-6.3d).

The uniqueness of p = {pg,...,pn} follows from the following considerations. Suppose
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that the system of equations (6.3b-6.3¢) Las another solution p* = {pr; 1 =0,...,N} which we
substitute into (6.3a) to obtain the generating function P*(z). Then, P*(z) is analytic in 't
and continuous on T. Thercfore, P~ = {p;;i€ ¥} €(I', | - || ). Obviously, equations P*(z) =

TN on{ 9. 2680(2) - 29(2)}
7 —g(2)

Y,y PiA(z) and P (2) = are equivalent. The last equation is also

equivalent to P* = P"A. Since p* satisfies (6.3c) it follows that (P*,1) = 1. Thus, the system of
equations z = zA, (z,1) = 1 has two different solutions from (I, || - || ) which is impossible (cf.
Gihman and Skorohod (9], theorem 15, p. 108). ]

6.4 LEMMA. The czpected number of units 31 = §") — i that arrive during an idle
period (of the server) started with the queue length equals i (defined in formula (6.3e)) can be
represented in the form
(6.4a) M =qagl", icw.

PROOF. Lemma 6.4 is just another interpretation of formula (3.9b). 0O
6.5 REMARK. Consider the following auxiliary process. Let {0, F,(P%),.y,Y n; n € No}

— ¥ =N, (abbreviated {Y'}) be a homogeneous irreducible and aperiodic Markov chain with

transition probability matrix A = {a,,;,5€ ¥} and the generating function A,(z) of ith row of

05
A. Assume that A(z) = z("')+g(z), 1€ ¥, where ¢ is analytic in 't and continuous on T.
Then, according to Abolnikov and Dukhovny [2], the process {Y} is ergodic if and only if
g'(1) <r. Let §=(6,;x € ¥) be the invariant probability measure of operator A and let §(z)
be the generating function of 8. Then 6(z)=Y ,6,A,(z) and after some algebraic

transformations we get

(6.5a) 8(z) = g(2)R(2)[Z — g(2)] ™!, where
(6.5b) R(z)= £7216(7 - 2).
Modifying (6.5a) we obtain R

(6.5¢) £ 60 = ?T(g)(?) :

According to theorem A.2 (in Appendix), the function z— 2" —g(2) has exactly r roots
(counted with their multiplicities) in T'*. Since the function in the left-hand side of (6.5¢) is
analytic in 't and continuous on I' the polynomial R(z) should have the same r roots (given
that ¢'(1) < r). Taking into account that the left-hand side of (6.5c) equals 1 for z = 1, we get
(6.5d) R(1)= E:;;S,{r—i):r—g'(l).

The polynomial R, which determines the generating function §(z), can uniquely be restored
after we find all roots of 2" —g(z) in I't and satisfy (6.5d). In general, the roots can be
evaluated numerically (in some cases also analytically). Alternatively, the roots, and therefore

the polynomial R, can be obtained from computer simulation of the Markov chain {Y}.

7. APPLICATIONS AND EXAMPLES

We now will consider several special cases of our system. All of them can be analyzed
with the help of the general theorem 6.3 and by using appropriate numerical methods. How-
ever, in the particular cases considered below, it turns out to be possible to develop a more
direct approach and thereby obtain more convenient formulas for generating functions of the
corresponding queueing processes. In the first case we drop the modulation of the input process
and service control, thereby assuming that A, =\, a(z) =a(z), and B,=B,i€¥. The
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following proposition states that in this case the generating function P(z) can be expressed in

terms of the stationary probabilities for the auxiliary Markov chain {Y'} introduced in 6.5.

7.1 PROPOSITION. Gwen that p <, the generating function P(z) of the tnvariant
probability measure P of operator A for the embedded process {Q,} in a bulk queueing system
with queue length dependent service delay and without modulation and service control, can be

determined from the follounng formula:

- _ (1—a(2))g(2)R(z) _1-a(2)
(1) o= a=az —g@) ~a-a"
where §(z) is found by formula (6.1) and R(z) is defined in (6.2).

PROOF. In the assumptions of the proposition, formula (6.3a) for P(z) reduces to
92T {6(2) - 7}

(7.1b) Hz) = 7 — (2 ,
which due to (3.6a) leads to
_g(2)(1—-a(2) @z=1)T721p.G,(2)
(719 A=) e
g(2)[1 — d(z)}

The first factor z+— n (6.6c) has the following obvious properties: It is

ol -2)

analy-tic in 't and continuous on I, it is valued 1 at z =1 and it does not vanish at all roots

of 7 — g(2) inside T *. The latter property and analyticity of P(z) yield that the function
a(z—1)E" "1 p,G, (2
(7.1) - (z—=1) X7, p.G.(2)
-9(2)
is analytic in I'* and continuous on T and it takes on value 1 at z = 1. Thus, the numerator of

(7.1d) must have the same roots with their multiplicities as the denominator in 't and it
assumes value r — ¢'(1) at z = 1. Since G,,(z) is a (r — 1)th degree polynomial the numerator of
(7.1d) is a rth degree polynomial. Therefore, from the considerations in 6.5 it follows that the
numerator of (7.1d) must be equal to R(z) defined in (6.5b). u]

In the second example we assume that B(z) = F*B(z), i <r, B,(z) = B(z), i >r, and
A =, a,(2) = a(z), i € L. Let ¢(8) denote the Laplace-Stieltjes transform of the (arbitrary) pro-
bability distribution function F and let H(z) = p(A — Aa(2)).

7.2 PROPOSITION. Under the above assumptions, the generating function P(z) of the
invariant probability measure P of operator A is determined by the ezpression

(7.22) PG = o(a) 2 ZE8,

where the function L is an analytic in Tt and continuous on T, and L(1) = 1.

PROOF. In this case formula for P(z) yields

ofz— 1)):.-op.( IH(”z’+H(z)G.,(z))
P(z) = gz 742 C)
M al=2) 7= g(2) '

Repeating the same a.rguments as in proposition 7.1 we deduce that the function
(7.20) o) = gl ole= DELZhn (To0 g + HEGulo))

is analytic in ' *, continuous on I' and equals 1 at z = 1. a

7.3 EXAMPLE. Preserving all assumptions in proposition 6.7, we additionally
assume that F' is an exponential distribution with parameter 5. Then L in (7.2b) is

(7.32) L(z)=7+—/\‘y_/\mﬁz){a(z—l)2:;:)p,(G,,(z)+)\—y-1z')}.
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Following the arguments of the proof of proposition 7.1. we conclude that the expression in
braces  cquals  R(z), thereby reducing  L(z) to  3(y+A=Aa(z))”'. Replacing
g(z) R(2)(2" = g(2)) ™" by é(=) in (7.1a) we finally obtain that

) 3 31 = a(z)]
(7.3b) Pe) =0 =)

A special case with an orderly modulated Poisson input process was studied earlier by
Dshalalow and Russell [7]. In other words, we asswme that a(z) = 2, otherwise retaining all
other assumptions made in (AS2). Then, the version of thcorem 6.3 can be formulated as

follows.

7.4 COROLLARY. The embedded queueing process {Q,} is ergodic +f and only

if p < r. Under this condition, P(z) is determined from the following formula
TN or{Zd(2) - 29(2)}

(7.4a) P(z) = 7 =902 ,
where
(7.4h) (9 =24"""g(2),

and operator (f)* = sup{f,0}. Probabilities p,,...,pny form the unique solution of the following
system of linear equations:

&
(7.4¢) ):fv=0p,-(%{_(],(z)-z‘} =0,k=0,...k—-1,s=1,.,5

(7.4d) Torllp—p)+(r=*]=r-p,
where p, = \,b, and z, are the roots of zZVN*'—2N+1-7g(z) in the region T *\{1} with their
maultiplicities k, such that zf k=N

8. ANALYSIS OF THE QUEUEING PROCESS WITH CONTINUOUS TIME PARAMETER

In this section our main objective is the stationary distribution of the queueing process

with continuous time parameter.

8.1 DEFINITIONS.

(¢) Let B, = E’[T,] (the mean sojourn time of the process {{(t)} in state {j}) and
B=(B,;j€ ¥)T. Then we will call the value P8 the mean service cycle of the system, where P
denotes the stationary probability distribution vector of the embedded queueing process {Q,}.

() Let a=(a,;z € ¥)T, A=(),;z € ¥)T and let p = a*xP*) be the Hadamard (entry-
wise) product of vectors a, f and . We call the scalar product Pp the intensity of the system.

Observe that the notion of the “intensity of the system” (frequently called the offered
load in queueing theory) goes back to the classical M/G/1 system, when Pp reduces to p = Ab.

It is noteworthy that in many systems the intensity of the system and the server capacity coin-

cide.

8.2 PROPOSITION. Given the equilibrium condition p < r, the mean service cycle can
be determined from the following ezpression:
(8.22) PA=b+ Toop, (b= b+ £7)

PROOF. Obviously, 8,=b,+ 3 A,. The statement follows after elementary algebraic

transformations. 0

8.3 THEOREM. Given the equilibrium condition p < r, the intensity of the system Pp
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and server capacity cowncide and equal r.

PROOF. According to the description of our model the server capacity is r. Now, the

statement of the theorem follows from definition 8.1 (#7), equation (6.3c) and lemma 6.4. 8]

From the discussion in section 3 and from definition A4, it follows that {Q.F, (P%),.y.
Q(t); t>0} — (¥, B(¥)) is a semi-regenerative process with conditional regencrations at
points T,,. n=0,1,..., Ty=0. {(QF (L), (Q,.T,):n=01...}) - (IxR,, B(¥xR,))is
the associated Markov renewal process. Let $(t) denote the corresponding semi-Markov kernel.
Under a very mild restriction to the probability distribution functions B,, we can assume that
the elements of f(t) are not step functions which would imply that {Q,,T,} is aperiodic. By
proposition 8.2, the mean service cycle PS8, which is also the mean inter-renewal time of the
Markov renewal process, is obviously finite. Therefore, following definition A.5, the Markov

renewal process is crgodic given the condition p < r.

It also follows that the jump process {Q,F,(P7),.y. £(1); t >0} — ¥, defined in section
5, is the minimal semi-Markov process associated with Markov renewal process {Q,,T,} and
therefore, following the definition at the beginning of section 5, the input process
{Q,9,(P*),ev, Z5([0,t]);t >0} — ¥ is a compound Poisson process modulated by the semi-
Markov process ¢.

8.4 DEFINITION. Let
(8.4a) 6.,(t) = P{Z4[0,t]) = s, T\, > t}
Then, given that £(0) = x and that Z¢(t) is not modulated by a new value of £(t), the input
process takes on the value
(8.4b) 7(0,t) = =NV X,,
where N*(-) is the Poisson counting measure with parameter ),. We call {Z*([0,t])} defined
in (8.4b) the z-partial process (of the compound Poisson process modulated by £).

Therefore, by (8.4b),
(8.4¢) 8..(t) = P{Z*([0,¢]) = s} .

Let K(t) = (K ,(t);j,k€ ¥) be the semi-regenerative kernel (see definition A.6). The

following proposition obviously holds true.

8.5 PROPOSITION. The semi-regenerative kernel satisfies the following equations:
(8.5a)

Kult) = 6,0 (010 <5< k<7,
Ka®= "5 Thals+i,t= 108,001 - B(w) du,0 < i< r< b
K ult) = 6,0 (011~ B8), r< i < k
K, (t)=0,0<k<j

where &, ;. is as defined in (8.4a) or (8.4c) and g, denotes the density of the joint probability
distribution function of the random variable S,,0 and the first passage time T, of the first ezcess

above level r by the queueing process {(X(t)}.

Now we are ready to apply the Main Convergence Theorem to the semi-regenerative
kernel in the form of corollary A.8.

8.6 THEOREM. Given the equilibrium condition p < r for the embedded process {Q,},
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the stationary distribution x=(m.;z€ ¥) of the queweing process {Q(t)} ezists; it s
independent of any wmutial distribution and s expressed i terms of the generating function n(2)
of x by the following formulas:
(8.6a) Ppr(2) = d2)P(2)+ T, p[LK(AG,(2) + 2(d(2) ~ d(2)] wnth
(8.6b) d(z) = %%—) ,

5 )
where P(z) is the generating function of P, PB 1s determined in proposition 8.2, G,,(z) is deter-
mined wn (3.5a), and d(2) is defined as d(z) with all subscripts dropped.

PROOF. Recall that the Markov renewal process {Q,,T,} is ergodic if p <r. By
corollary A.8 the semi-regenerative process {Q(t)} has a unique stationary distribution »
. provided that p <r. From (8.5a) we can see that the semi-regenerative kernel is Riemann
integrable over R, . Thus, following corollary A.8 we need to find the integrated semi-
regenerative kernel H (which is done with routine calculus) and then generating functions h,(z)
of all rows of H. First we find that

(8.6¢) SX_ P06, ()l - By(u)du=2d(2) .
Then it follows that
_ doyr-s-1 1 r)
(8.6d) h2) = 2% B o _GJ("))}+ d(2)GN2),0< <,

where Ggf.)(z) denotes the tail of the generating function G,,(z) summing its terms from r to
oo. However, it is easy to show that G(J',)(z) and G,,(z) coincide. Then it appears that

(8.6€) hyz)=2d(2),j>r,

where the index j can be dropped for all j exceeding N, in accordance with assumption (AS2)
made in section 4. Formula (8.6a) now follows from corollary A.8, equations (8.6¢c-8.6e), (3.5a),

(3.6a), remark 3.10, and some algebraic transformations. 0

The following corollary (which follows from (8.3a), (8.4a), (8.2a) and (8.5a) by means of
routine calculus) gives an elegant formula for the service cycle Pf and the generating function
n(z) if we just drop the modulation of the input but retain bulks of the input, service control

and state dependent service delay.

8.7 COROLLARY. The service cycle PB and the generating function w(z) of x in the

queueing system with no modulation of the input can be determined from the following

formulas:
(878.) Pﬂ = ﬁ .
_a(l=2")P(2)
(873) 1r(z) = W
8.8 EXAMPLES.

(7) Observe that the same result as (8.7a) holds true by retaining a “weak modulation”,
i.e. assuming that A\, =) and @, = a but having no further restriction to the generating

functions a,(z).

(#) Assuming that the input is an orderly modulated Poisson process, in other words if
a,(z) = z, but retaining all other assumptions we arrive at the result by Dshalalow and Russell
[7]. Indeed, h, is reduced to
h](z),\LJ(l - z)z" =1- g](z)l



584 L. ABOLNIKOV, J.H. DSHALALOW AND A.M. DUKHOVNY

i-nt

with §,(2) = 2 ¢,(z). Then we obtain from (8.6a) that

=gl + 2o (3 -5) - (3 230 - §2u0a) |
PET=2) |

PB=b+ £ op)l(b,~ b+ E(r=0*].
where P(2) and py,....py satisfy equations (8.9a-8.9d).

n(z) =

By dropping the bulk of the input process we obtain from (8.7a) that P8 =§ and from

(8.7a) that

r
w(z) = r%l——zz) P(z) .
(222) Now we will obtain a few results in connection with special cases treated in section
- 7. By further dropping service control in the condition of corollary 8.7 and using (8.6a) we get
from (7.1a)

rr(z) = 11__:;6(:).

By retaining some vague service control in the light of corollary 8.7 formula (7.2b) then yields

ra(z) = 11—_2; L(2)6(z),

which reduces to
r(1=2)(y+ A= Aa(2)m() = 21 - =)8(2)
when using (7.3b).

(iv) By virtue of obvious probability arguments we can derive the probability density
function of an idle period in the steady state:
Tzl A6,
TiloP
The mean value of the idle period 3 in the steady state is then
Tt
il
(v) Formula (8.8a) and theorem 8.6 allow to derive the mean busy period B in the equi-

librium. Clearly 2:::)75 is the probability that the server idles. On the other hand, it also
p =
I+3B°

Uu—

)

(88&) J=

equals Thus we have

3 2:: r Tn .
Tisem ,
(vi) If the input is a stationary compound Poisson process (i.e. nonmodulated) then its

B =

intensity is A, which is also the mean number of arriving units per unit time. In the case of a
modulated input process its intensity is no longer a trivial fact. We define the intensity of any
random measure Z by the formula k =lim,_}u(z) , where p(z) = E*[Z([0,t])]. We will
apply the formula from theorem A.9 (Dshalalow [6]) for more general Poisson process

modulated by a semi-Markov process:

~Pr
K= P_ﬂ y
where by theorem 4.3 Pp =1 and Pf satisfies (8.2a). Thus we have that:
(8.8b) K= # .

A trivial special case appears when we assume the weak modulation of the input defined in (z)
and therefore use formula (8.7a) combining it with formula (8.8b). Then & = Aa. Specifically
K = Aa for the input without modulation, as it should be.
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APPENDIN
A.1 THEOREM (Aboluikov and Dukhovny [2]). Let {Q,} be an ureducible aperiodic

Markov chawmn with the transiion probabidity matriw A o the form of a A, y-matmz. {Q,} s

recurrent-posutive if and only of

(A.la) % A(z)| <00 i=01,.,N,
and 2=t
(A.1D) % a2 <r.

z=1

A.2 THEOREM (Abolnikov and Dukhovny [2]). Under the condition of (A.1b) the
function 2" — g(2) has ezactly v roots that belong to the closed umit ball T+ . Those of the roots

lying on the boundary T' are sumple.

A.3 DEFINITION. Let T be a stopping time for a stochastic process {Q,F,(P%),.y,
Q(t); t >0} — (¥, B(¥)). {Q(t)} is said to have the locally strong Markov property at T if for
each bounded random variable (: 2 — ¥" and for each Baire function f: ¥" >R, r=1,2,..., it
holds true that E*[fo(of;|Fy] = EZT[fo(] P*-a.s. on {T <oo}, where 6§, is the shift

operator.

A.4 DEFINITION. A stochastic process {Q.F.(P*), .y, Q(t); >0} — (¥, B(¥)) with
¥ < Nis called sema-regeneratee if
a) there is a point process {T,} on R such that T,—oo0 (n—o0) and such that each T,
is a stopping time relative to the canonic filtering o(Q,;y < t),
b) the process (Q(t)) has the locally strong Markov property at T,,, n = 1,2,... ,
¢) {Q(T,+0),T,; n=0,1,..} is a Markov renewal process.

A.5 DEFINITION. Let (X, ,T,) be an irreducible aperiodic Markov renewal process
with a discrete state space ¥. Denote 3, = E*[T,] as the mean sojourn time of the Markov
renewal process in state {r} and let 8= (3,;z € ¥)T. Suppose that the embedded Markov
chain (X,) is ergodic and that P is its stationary distribution. We call PB the mean nter-
renewal time. Then we call the Markov renewal process recurrent-positive if its mean inter-
renewal time is finite. An irreducible aperiodic and recurrent-positive Markov renewal process

is called ergodic.
A.6 DEFINITION. Let {Q,F,(P%),.q, Q(t); t >0} — (¥, B(¥)) be a semi-regenerative

process relative to the sequence {T,} of stopping times. Introduce the probability
K (t) = P{Q(t) =k.,T, > t}, jke L.

We will call the functional matrix K(t) = (K,.(t); j,ke¥) the semi-regenerative kernel.

A.7 THEOREM (The Main Convergence Theorem, c¢f. Cinlar [5], p. 347). Let
{5, (P™),eq, Q(2); t >0} — (T, B(T)) be a semi-regenerative stochastic process relative to
the sequence {t,} of stopping times and let K(t) be the corresponding semi-regenerative kernel.
Suppose that the associated Markov renewal process is ergodic and that the semi-regenerative
kernel is Riemann integrable over R, . Then the stationary distribution x = (7,; € ¥) of the
process {Q(t)} ezists and it is determined from the formula:
(A.7a) nkzﬁ Sl SO Ku(t)dt, ke .

A.8 COROLLARY. Denote H=(h,;3,k€ ¥) = f;° K(t)dt as the integrated semi-regene-
rative kernel, h(z) the generating function of jth row of matrz H and n(z) as the generating

function of vector w. Then the following formula holds true.
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(A.8a) (z) = I}—ﬂ TPy hy(2)

PROOF. From (A.7a) we get an equivalent formula in matrix form, » = %ﬂ . Finally,

formula (A.8a) is the result of elementary algebraic transformations.

A.9 THEOREM (Dshalalow [6]). Let Z¢ be a compound Powsson process modulated by a
semi-Markov process € i accordance with the above notation and definition in section 5. Let
p = axPx) denote the Hadamard product of vectors a, B and A. If {Q,,, T,} is ergodic then the
intensity k of the process Z¢ is given by the formula

~=lim E(1Z4(0,4)] = Pp/PB .
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