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ABSTRACT. In this paper, we investigate M(2,) in case 2. is a normal lattice of subsets of X
and we extend the results to 1, 2’2-lattices of subsets of X such that 2.1 C 2-2 and 2,1 separates
2.2. We define the outer measures /P and #" which prove very useful in proving some of the
above results.
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1. INTRODUCTION.
Let X be an abstract set and 2. a lattice of subsets of X. If 2_ is a normal lattice, then in

previous papers consequences pertaining to I(2,)-the set of non-trivial finitely additive zero-one

valued measures on .A(2,), the algebra generated by 2. have been investigated.
In the first part of this paper, we extend these results to M(2,), the set of non-trivial, non-

negative finite and finitely additive measures on .A(2,). We extend these considerations to 1,2.2-
lattices of subsets of X such that 2-1 C 2- and 2-1 separates 2-2.

If tt (5 M() then an auxiliary finitely subadditive outer measure/t is associated with it and
proves very useful in proving some of the above results. This along with another outer measure

#" is considered in detail in the second part of the paper. It is shown that although/t might not
be a regular finitely subadditive outer measure, it is still true that an arbitrary set E C X is/P-
measurable if and only if it splits just X additively. We note that if u 5 1(2,) then u is clearly
regular, but this need not be the case for # (5 M(2,).

We begin with some standard background material (see also [1] and [5]) for the reader’s
convenience. Some related material can be found in [2], [3], and [4].
2. BACKGROUND AND NOTATIONS.

Let X be an abstract set and 2. a lattice of subsets of X. It is assumed that O,X (5 2-. The
lattice is called normal if for any LI,L (5 2, with L N L 0 there exist La, L (5 2, with
i C i, 5 C i and i f Lt 0 (where prime denotes complement). is almost countably
compact if # E IR(2’) implies # E I().

We give now some measure terminology. M(2,) denotes the set of finite valued bounded
finitely additive measures on J((). Without loss of generality may assume throughout that all
measures are non-negative. A measure # (5 M(2,) is called:
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a-smooth on/, if for all sequences {L,} of sets of with L,O, #(L,,)-O.

a-smooth on A(/,)if for all sequences {A,} of sets of A(/,) with A,$O, #(A,,)-O.

/--regular if for any A A(/’), it(A)= sup{/a(L)/L C A,L

We denote by Mn(/’) the set of /--regular measures of M(/,); M(/’) the set of a-smooth

measures on/, of M(/,); M(/’) the set of a-smooth measures on A(/-)of M(/’); M(/,) the set of

/--regular measures of

In addition, I(/-),In(/,),I(/,),I(/’) and I(/’) are the subsets of the corresponding M’s

which consist of the non-trivial zero-one valued measures.

Finally, for /-1 C /-2 tWO lattices of subsets of X, /-1 separates/-2 if A,B 2. and Afl B 0

implies there exist C, D /’1 such that A C C, B C D and C f3 D 0.

3. NORMAL LATTICES.
THEOIM 1. Let 2. be normal and let #M(/,), r,Mn(/, with #<u on and

#(X) u(X). Then u(L’)= sup{p(" )," C L’,L," /,}.
PROOF. Let L/, and >0. Since uMR(/,), there exists AcLt,A2. such that

u(L) < t,(A). Since/, is normal, there exist B, C /’ such that A C B C C C Lt. Hence,

u(A) <_ u(B’) <_ #(B’) <_ #(C) <_ u(C) < u(L’)

and then u(L’)- #(C) < u(L’)- t,(A) < , i.e., u(L’) < #(C) + e, e arbitrary small. Therefore,

r,(L’) sup{#( )," C L’," /,}.
DEFINITION 1. Let g M(/,) and define #’(E)= inf{ #(L:),E C 0 L,, L, /,,E C X.}

t=l

inf{g(L’),E C L’,L /’}.
THEOIM 2. Suppose 2. is normal and let # M(/,),t MR( with # < t, on and

#(X) t,(X). Then # _< t, t/= #’ on/’.

PROOF. If A ,#(A)_< #(L’) for all A C L’,L /,. Therefore #(A)_< #’(A)= inf
A C Lt, i.e., # < # on/,. For t MR(/, we have for any A /,:

t,(A) inf {t,(Lt)/A C L’,L }

i.e., t, r,’ on /,. # < t, on 2. and #(X)= (X)implies # _> t, on 2.’. Hence t,’(A)= inft,(L’)
< inf#(L’)= #’(A),A C L’, i.e., t/< #’ on/,. To show that ’ #’ on/,, suppose that t,’ # #’ on

/-. Then there exists L /, such that t,(L) < #’(L). Since t, MR(I.), there exists A ,L C A’
such that t,(A’)- < t,(L)= t,’(L).

2. being normal, there exist C,D /" such that L cC C D C A and #’(L) < #(C’)
< #(C’) < #(D). But #(D) < t,(D) _< (A’) < t/(L) + < #’(L) + _< #(D) + e, contradiction.

THEOREM 3. Let be normal and let # M(), t, MR(Z with # <t, on and

#(X) t,(X). Then t, M(/,’).
PROOF. Let L, t;,L, /,. Since t, MR(Z) and # M() with # < t, on , t,(L’) sup

#( ), C L’;L, /,. Given e > 0, there exist . C L$,, /’ such that t,(L$)< #(.)+.
May assume , and since , C Lt, it follows ,, t;. Since # M(),#(,)<, all

n _> N(e). Hence t(L,) < for all n _> N(), i.e., M(’).
TH:EOIM 4. Suppose Z is normal and let / M(/,),t,l,t, E MR(/’) with t < t, on /,,

# _< t, on/, and #(X)= l(X)= t,(Z). Then h t%
PROOF. By Theorem 2,

g < ’, g < , g’ on ..
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Hencevl=u2=It
THEOREM 5. Let 2. be almost countably compact and let/ E Mn(2.). Then I E

PROOF. Suppose # M(Z). Then there exists A, O,A, 6 Z with it(A,)@0. Since

Mn(Z’), there exists B, Z,A, Z B and O+,(A,) u(B). May assume B 0 all n and

B, hence {B} has the finite intersection property. Therefore there exists A In(Z) such that

A(B)=I all n. Since A, zB it follows A(A,)=I all n. But A, 0; then A
contradiction since Z is almost countably compact.

THEOM 6. Let Z C Z and suppose that Z separates Z. Let Mn(Z) and consider

the extension u 6 Mn(). Then:

(a) u is Z-regular on

(b) If. M(Z,) then u M.(Z).
(c) v is unique.

PROOE.

(a) Define #,(L)= inf (L), L C L,L ,L . For y L D L we have v(L)
inf #(L)= #,(L), hence u #, on . Suppose that u(L) < u,(L) for some L fi Z. Since

u Mn(), there exists L , L C L) such that u() < u(L)+ e. By separation, there exist

La,L1 such that LcL1,LCI and LL,=O. Then LCL]CL;CL d
u(L) < u(L]) #(L1) < u(L) < #,(L)+ e, e arbitrary small. It follows #(L,) < #,(L). But

L C L] implies #,(L) #(L), contradiction. Hence we must have u #, on or u #. on

() Let L e ti, L t 0. (L)= ..(L)= .v{(L.),L. c ,L. e t}. Si.

L, C L, may assume L, 0. Given e > 0, there exists L, C L such that u(L)-e < #(L,).
u M()implies #(,)0, hence u(L)0, i.e., u M,().

(c) Suppose for # M(1) there are two extensions u,u M(Z). By (a) u,,u, e
Z;-regular on , i.e.,

() . .(), c L,] e Z, e .
(L) u(L,),L, c L,L, ,,L

Hence u;(L)= u(L) d then u] u on which implies u, u on Z.
THEOM 7. Let C and suppose 1 sepates . Let # M(Z1),u fi M(Z) with

# u on ; d #(X)= u(X). Consider the extensions v M(Z),v/A(;)= U d Ma(),

A/’(a) u. Then v A on .
PROOF. Let L , bitry. Since A is Z-regular, given e > 0, there exists

L C such that A()< A(L)+ e. By sepation, there exists LI,a , such that L C L;,, c ] a L ] . Thfo, h L C L1C C a (L) /a(z)(L]) u(L)
u(L;) u(L) /A(I)(L;) (L) < (L) + e d u on ,; e bitry smM1 implies

v(L) A(L). L bitrary in shows that v 5 on

TEOM 8. Let Z be normM d Mmost countably compact. Then M() C M,().
PROOF. Lt e M.(Z). The. e M.(t’) o. t’ a .(X) p(X). n

d p M,() since is Mmost countably compact. But p M,() d U Mn() d p
on , therefore, Z being normM it follows # M,(Z).
4. SOME FITELY SUBADDIT OUTER MEASUS.

DEFITION 2. # defined on (X) is a finitely subadditive outer measure if:

(a) # is nondecreing;

(b) .( 0 E,) < (,), fo .y E,,.... X;
=1 ,=1
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() ,() o
Clearly, #t, as defined in Section 3, is a finitely subadditive outer measure.

Let fu, be the set of all /it-measurable sets, where E is measurable with respect to it if for any

,4 C X, #(A) ’(A a ) + ,’(a E’)
if and only if/(A) >/t(A C E) + IL(A C E) for all A .THEOREM 9. E C :fu’

PROOF.

(a) If E C Yu" then the relation clearly holds.

(b) Let /3 be arbitrary in X, B C At, A . We have:

p(A’) g’(A’) >_/’(A’ N E) +/’(A’ C E’) _>/’(B f E) + p’(B N E’),

by assumption and /r being monotone. Since this is true for any B CAt, A , it follows

I(B) >#(Bf]E)+I(BVE). By the definition of pr as an outer measure, we have for

B (BNE)U(BVE’):t’(B) <_ I’(BNE)+ p’(BE’). Therefore, p’(B) I’(BNE)+ I’(Br]E’),
B arbitrary in X, i.e., E f,,.

DEFINITION 3. Let /M() and define the inner measure I,(E)=supp(L),
L C E,L ,E C X.

THEOREM 10. The following statements are true:

(a) /(X) =/,(L) + I’(L’),L .
(b) (X) =/,(L’) +/’(L)
PROOF. Clear.

DEFINITION 4. Let / Ma(),E C X and define I"(E)= inf, I(L:),E C J L:,L, .
--1

Let f,.,, be the set of p-measurable sets, where E is measurable with respect to if for any

A C Xt"(A) I"(A f E) + I"(A f E’).
THEOREM 11. / is an outer measure.

PROOF. Clear.

THEOREM 12. E f,,, if and only if #’(A) >_ I’(A f E) + i(At E) for all A .
PROOF.

(a) If E f,,,, then clearly/"(A’) >/"(A’ E) + g"(A’ f E’) for A .
(b) Let B be arbitrary set in X and let BC J L,L, alli. Then, since/’_</on ’,

we have

/(L,) > /"(L[) > [/"(L g E) +/"(U, E’)] ’, #"(L f E) +
,=I --s=l ,=I

#"(L E’) >/"( L f E) +/"( L f E’) >/z"(B E) + #"(B N E’).
s=l s=l ,=1

wm os fo. n z.z c g’.. tefo ,"(Z) ..f ,(g’.) > ,"( ) + ,"( ’) =d i.
=1 =1

B was arbitrary in X it follows E f,,,.
THEOREM 13. Let/ M(),E C X. E :f,, iff/,(E) =/’(E).
PROOF. Suppose E ’,,. Then /(X) #’(E’) +/’(E). By Theorem 10, /(X) =/,(E’)

+/’(E), so we have #’(E’)=#,(E’). Hence t(X)-I’(E’)=I(X)-I,(E’) and then

/,(E) =/’(E). Conversely, suppose #,(E)=/z’(E). Then, given > 0, there exists L ,L C E

and #(/,)+ > #(E). Also, be definition of #’, there exists such that ,’D E D/, and

#(]_,’) </’(E) + . Now, let A’ /.’. Then #’(A’ f E) _</’(A’ ’) =/(A’) +/(,’) I(A’U,’)
<_ #(A’) + #’(E) +- #(A’U[,) <_ I(A’) + Iz([,) + + I(A’U[,) I(A’ [,) + . Now E’ C/,’,
hence A’ E’ C A’ f g’. Thus #’(A’ g E) +/’(A’ f E’) _</(A’ g f_,) + +/’(A’ f ,’) =/(A’ f g)
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+ e + p(A’ N ,’) p(A’) + e, arbitrary.

Therefore, t,’(A’ C? E) + t,’(A’ N E’) <_ p(A’) p’(At),A’ e -’, i.e., E e ’,,,.
THEOREM 14. Let p E M() and define p"(E) as above. Then

(,) ,,"(.) ,(.\")
(b) I <Id’n.
PROOF.

(a) If "(X) p(X), there exists L, E Z,z 1,2, such that X- L and

#(L)< (X). But I,(L lira p(L)> hm #( 0 Lt,), 0 L and 0 Lt, t and
,=1 t=l t=l =1

L ? L’, X. Therefore, since , e M,(Z)we have lira #( 0 L.)= It(X), contradiction.
=1 *=l =l

(b) Suppose there exists L e such that p(L) > "(L). Then

<_ ,"(L)+ ,(L’) < ,(L) + #(L’) p(X) which contradicts part (a) of the theorem.
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