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ABSTRACT. A study of prolongations of F-structure to the tangent bundle of order 2 has been

presented.
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1. INTRODUCTION.
Let F be a nonzero tensor field of type (1,1) and of class ¢® on an n-dimensional manifold V,,
such that [1]

FK 4 (—)¥+1F=0and F¥ + (- )V *'F 0 for1<wW< K (1.1)
where K is a fixed positive integer greater than 2. Such a structure on V,, is called an F-structure
of rank 'r’ and degree K. If the rank of F is constant and r = r(F), then V, is called an F-structure

manifold of degree K(>3). The case when K is odd has been considered in this paper.
Let the operators on V,, be defined as follows [1]:

I1=(-)KFK-land m=1+(-)K+1FK-1 (1.2)

where I denotes the identity operator on V,,.
From the operators defined by (1.2) we have

l+m=Tand P=1I; and m*=m (1.3)

For F satisfying (1.1), there exist complementary distributions L and M corresponding to the
projection operators ! and m respectively.

If rank (F) = constant on V, then dim L =r and dim M = (n—r). We have the following results
1]

Fl=IF=F and Fm=mF =0 (1.4a)
FK-Y= _tand FK-1m=0 (1.4b)
2. PROLONGATIONS OF F-STRUCTURE IN THE TANGENT BUNDLE OF ORDER 2.
Let v, be an n-dimensional differentiable manifold of class ¢ and T, (V,)= U Tp(V”) is the
tangent bundle over the manifold V..

Let us denote Tj(V,), the set of all tensor fields of class ¢ and of the type (r,s) in V, and
T(V,) be the tangent bundle over V.
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Let us introduce an equivalence relation ~ in the set of all differentiable mappings F:R—V,
where R is the real line. Let r>1 be a fixed integer. If two mappings F: R—V, and G: R—V, satisfy
the conditions

drh(0)  dGh(0) dF'(0) _dG'(0)
FMO)=GM0), —gi—=—7 g =~

the mapping F and G being represented respectively by X*=Fht) and X*=G"1), (t€ R) with
respect to local coordinates X* in a coordinate neighborhood {U,X*} containing the point
P = F(0) = G(0), then we say that the mapping F is equivalent to G. Each equivalence class
determined by the equivalence relation ~ is called an r-jet of V,, and denoted by J5(F). The set of
all r-jets of v, is called the tangent bundle of order r and denoted by T,(V,). The tangent bundle
T,(V,) of order 2 has the natural bundle structure over V,, its bundle projection x;:T,(V,)-V,
being defined by x,(Jp*(F)) = P. If we introduce a mapping such that P = F(0), then T,(V,) has a
bundle structure over T(V,) with projection x,,.

Let us denote T,(V,), the second order tangent bundle over V,, and let F/! be the second lift of
Fin Ty(V,). The second lift F!! which belong to T%(T,(V,)) has component of the form [3]

Fh 0 0
Fl; y*8,Fh Fh 0 (2.1)
26,F" + (1/2)y'y*6,6,F" y'6,Fh Fh
L -

with respect to the induced coordinates in T,(V,), F? being local components of F in V.
Now we obtain the following results on the second lift of F satisfying (1.1).
For any F,G € T}(V,,), the following holds [3):
(Gllpll)xll = GII(Fx").
- GI I ( FX )[ 1
= (G(Fx)"
=(GF)!1x! for every X € T§(V,,), (2.2)

therefore we have
GIF! = (GF)!!

If P(s) denote a polynomial of variable s, then we have

(P(F)!T = P(F!T), where F e T}(V,) (2.3)

We have the following theorem:
THEOREM 2.1. The second lift F!T defines a F-structure in T,(V,,) iff F defines a F-structure
inv,.

PROOF. Let F satisfy (1.1) then F defines F-structure in V, satisfying
FK L (—)K+1p=y.

which in view of equation (2.3) yields
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(F")K-{-(—)K"'IF":G. (24)

Therefore F!! defines a F-structure in T,(V,). The converse can be proved in a similar manner.
THEOREM 2.2. The second lift F!/ is integrable in T,(V,), iff F is integrable in V,,.
PROOF. Let us denote N;; and N, the Nijenhuis tensors of F// and F respectively. Then we
have [2]
N (X, y) = (VX Y)H (2:5)
We know that F-structure is integrable in v, iff
N(X,Y)=0,
which in view of (2.5) is equivalent to
N (X,Y)=0. (2.6)

Thus F!! is integrable, iff F is integrable in V.
THEOREM 2.3. The second lift F/! of F is partially integrable in T,(V,), iff F is integrable in

V..
PROOF. We know that for F to be partially integrable in V,,the following holds [2]:
N(IX,1Y) =0
and
N(mX,mY) =0,

which, in view of equation (2.5), takes the form

N’I(IIIXII,III.YII) =0
and (2.7)
Nll(mllxll’mllyll) =0.
where 1!//,m!! are operators in T,(V,) which define the distribution L/ and M!! respectively. Thus
equation (2.7) gives the condition for F/! to be partially integrable.

The converse follows in a similar manner.
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