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ABSTRACT. Let fig be the Stone-Cech compactification of a group G, Aa the set of all

almost periodic points in G, Ka c[U { supp eLIM(G)}] and Ra the set of all

recurrent points in fiG. In this paper we will study the relationships between Ka and

Ra, and between Aa and Ra. We will show that for any infinite elementary amenable

group G, Aa Ra and Ra- Ka =/= .
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groups.
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1. INTRODUCTION

Let G be a discrete group, M(G) the Banach space of all bounded real valued

functions on G with the supremum norm, and M(G)* the conjugate Banach space on

M(G). A group G is called left amenable if there exists a mean on M(G) which is left

invariant [4]. Denote by LIM(G) the set of left invariant means on M(G). By using

Riesz representation theorem, then there exists a bounded regular Borel measure # on

flS such that

qo(f) fd i,a, feM(G).
s

For a subset H of a left amenable group G define the upper density as follows:

sup {o(X, )" ,LIM(G)} sup(H) {/() oeLIM(G) }

where X. is the characteristic function of H.

Put g c[U {suppp, eLIM(G)}].
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DEFINITIONS:

(1) For each A C G, let . c.e’A-G. The set i. is closed and open in ,SG-G.

Then a point wel is said to be almost periodic if for every neighbourhood U of w there

exist A,K C G with K finite, Aw C U, and G KA. Denote by Ae" the set of all

almost periodic points in fiG.

(2) we,SG is recurrent if whenever U is a neighbourhood of w then the set {xe.G xwet.

is infinite. Let RG be the set of all recurrent points in/G.

(3) we.fiG is discrete if its orbit 0(w) is discrete with respect to the subspacc topology

of fiG. Let DG be the set of all such points in fiG.

(4) wefiG is strongly discrete if there exists a neighbourhood U of w such that

x U ’lyU where x, yeG, x .y. The set of all strongly discrete points will be denoted

by DSe’. Let WRG fig- SDG, the set of all weak recurrent points of/G.

If G is a finite group, then Ae" De" KG G fig and RG WRG .
Therefore, we are only interested in infinite groups. For the remainder of this paper, G

stands for an infinite group.

LEMMAI.1. (1) AG C RG C WRG, SDG C DG and DG fiG- RG.

(2) If G is amenable, then AG C KG C WRG. [4]

As mentioned in Day [3], the family of amenable groups is closed under the following

four standard processes of constructing new groups from given ones: (a) subgroup, (b)

factor group, (c) group extension, (d) expanding union (or direct limit). Denote by EG

the family of elementary amenable groups. It is the smallest famil.y of groups containing

all finite groups and all abelian groups, and is closed under (a)- (d).

As pointed out by Chou [2], the groups in EG can be constructed from abelian

groups and finite groups by applying processes (c) and (d) only. Moreover, every periodic

group in EG is locally finite, and since it is known that every infinite locally finite group

contains an infinite abelian subgroup (Robinson [5; p. 95]), we have the following:

LEMMA 1.2 (Chou). If G is an infinite group in EG, then G contains an infinite

abelian subgroup.
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2. R0 SETS AND RECURRENT POINTS:

In this section we will show that .4a c Ra and Ra- Ka ://= , for any infinite

elementary amenable group G.

DEFINITION. A subset A of an amenable group G is called R0-set if:

(R0-1) d(A) 0, and

(R0"2) C Rc"
7 .

PROPOSITION 2.1: If an amenable group G contains an R0-set, then Aa c Ra

and Rc" Ka
7 .

PROOF: If A is an R0-set in G, then by (R0" 2) there exists we. gl Ra since

-(A) O, wfKa. The proof is completed.

R0-sets were first studied by Chou for the case G Z where he showed that Z

contains such sets (see Chou [1], P. 60, example 2). In this section we will show that

every finite elementary amenable group contains R0-sets.

THEOREM 2.2: Let {Ak} be a sequence of subsets of a group G, and {gk} be a

sequence of different elements of G such that

1. A D As D A3 D..., and

2. g.A.+a C An for all n. Then Cl A. contains a recurrent point.

PROOF. Let r be the family of sequences of closed subsets of . Let r be defined

as follows: a sequence of closed subsets {F, } of belongs to r if for each heN,

(i) F,, C fi-,,,

(ii) F.+a C F.,

(iii) gufn+l Q rn, and

(iv) F, : .
Note that r is non-empty since i.. #er. r can be ordered in the following natural

way: {F. } _< {F. } if and only if F. C F. for each n. It is easy to cheek that each chain

in r has a lower bound. Then using Zorn’s lemma, r has a minimal element {If. }.

Let we 91 K.. We claim that w is a recurrent point, by showing that if ft. is an open

neighbourhood of w, then there exists infinitely many 9eG such that 9weA.
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Let V U gA. Consider the sequence {K,- V}. It satisfies (i), (ii), and using the
9eG

fact that for 9eG, gV V, one sees that {K,- V} satisfies (iii). Since

and {K,} is minimal in , {K, V} 4, therefore, {K, V} does not satiny (iv), i.e.,

there exists n0 su that K, V wch implies K,o V Gg. Since K, is

compact, there exists a, a2,..., ameG such that

K.o c ,,,,...=
For each n >_ no,g.wegnK.+z C K. C K.o, thus by (*)gnweaiA for some 1 _< _< m.

Then clearly, there exists i0, i0 _< ra such that g,weaioA for infinitely many n. Thus

in ni o.  horefore

REMARK: When G Z, the above theorem is contained in Chou [1]. The idea of

the proof of the above theorem follows from [1, Proposition 3.1].

LEMMA 2.3 (Chou [1]): The additive group of integers Z contains an R0-set.

For prime number p, let

z(f) {./f 0 < . < f; .z,. 0, z, 2,...}

be the subgroup of Q/Z generated by

--’n=l 2,pn

LEMMA 2.4: For each prime number p, A(p) contains an R0-set.

PROOF: Let G A(p). Then G is a subgroup of Q/Z. Note that G can be

written as G U H, where Hz C H2 C... and each

1 2 ..p. I}H. 0, p.,p.,. P"

is a cyclic group of order p". For convenience, we will write H. (/.) (with the usual

addition in Q (rood Z)). Then following Chou’s construction for Z [1], we define a

sequence of subsets E. in G by induction as follows:

1

Then
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Let

E=,=IE,-/;1 1 1 1 1 1+ +
1 1 1

1 1 1 1 1 1 1
+ +

1 1
+ p25’ p

1 1 1 1 1

1 1
p9;p

1 1
p16’p

Consider the F-sequence {F, } in G where F. H,2.

Then

and
n-1

(E) 1i,m IE"l glim
2

=0.

Thus E satisfies (R0-1).

We may choose a sequence of infinite subsets C, in G such that

1 1 1 1 1 1 1 1 1
Cl-- p, - -}- -{- --1 1 11 1 1 1 1 1 1 1 1
=-+ + + + + + + +

Ca= ,+--,+p--,..., andsoon.

So

EDCI DC D...

and

C,+ + p-("+) C C, for all n.

Then by theorem 2.2, E contains a recurrent point, and hence E satisfies (R0 2).

REMARK: If X is a discrete set and Y is a subset of X, then we will consider

as a subset of fiX. Indeed fly is the closure of Y in fiX.

LEMMA 2.5: If an amenable group G contains an infinite subgroup H of infinite

index, then H is an R0-set in G.
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PROOF: Since [G" H] oo, the number of disjoint cosets {tH} is infinite. For

any eLIM(G), since (XH) (X,H) if tlH, t2H,...,t.H are distinct cosets, then

(X,,.u,.. u,n. (X,, +... + (X,n. n(X,.. < 1. Since n is arbitrary,

(X,, 0 so (H) 0. Thus H satisfies (R0-1). To see that H satisfies (R0-2) in

G, note that if weRH and if U is a neighbourhood of w in /G, then U Cl is also a

neighbourhood of w and X’ {hH" hw U N} is infinite. Therefore {gtG" gu,U} (D

X) is infinite. Thus weRa. Since # AH C RH, R [3- # . Thus H satisfies (R0" 2)

in G.

COROLLARY 2.6: If an amenable group G is a direct product of infinitely many

non-trivial subgroups {G. cI}, then G contains an R0-set.

PROOF: To prove that G contains an R0-set, we constuct an infinite subgroup H

of G of infinite index with the above lemma. Indeed, write I I1 "t9 I2 such that both

I and I2 are infinite, then H r {G, treI1 } is what we want.

LEMMA 2.7: If an infinite suchgroup H of an amenable group G contains an/’Q-set

A, then A is also an R0-set in G.

PROOF: This is quite obvious since whenever dH(A) 0 then d(A) 0 and

RH C_.RG.

LEMMA 2.8: If H is an amenable subgroup of an amenable group G such that

G/H has an R0-set A’, then 8-(A’) is an R0-set in G (8 is the natural homomorphism

of G onto G/H).

PROOF: Let A 8-(A’) and G’ G/H. Then for each eLIM(G), q([A

’.P(XA .8) 8*p(X, 0 since 8*eLIM(G’) and dc,(A’) 0. Then A satisfies (R0-1).

The natural homomorphism 8 of G onto G’ can be extended to a continuous map-

ping of/G onto/G’. We will denote the extended mapping again by 8. It is not hard

to check that 8-(RG’) C RG, sine A’- t3 R’ # 4, and A- gl Ra # either. Thus A

satisfies (R0 2), and A is an R0-set as wanted.

Before providing our main result, we will need some definitions and some structure

theorems for abelian groups. For the proofs see [6].

DEFINITION: Let xeG and n be an integer; x is divisible by n in case there is an

element yeG with ny x. A group G is divisible in case each xeG is divisible by evcry

n>0.
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A subgroup S of G is in G in case nG t3 S nS for every integer n.

If G is a periodic group, then a subgroup B of G is a basic subgroup of G in the

following cases: (i) B is the direct sum of cyclic groups; (ii) B is pure in

is divisible.

THEOREM 2.9"

1. Every periodic group G contains a basic subgroup B.

2. Every periodic group G is a direct sum of p-groups.

3. Every periodic group is an extension of a direct sum of cyclic groups by a divisible

group.

4. Every divisible subgroup D is a direct sum of copies of Q and of copies of Z(p).

We are now ready to state and prove the main results of this paper.

THEOREM 2.10: If G is an infinite abelian group, then G contains an R0-set.

PROOF: We will consider two cases:

1. G: non-periodic. Then G contains an infinite cyclic subgroup which can be regarded

as the additive group of integers Z. Thus by lemmas 2.3 and 2.7, there exists an

R0-set.

2. G: periodic. Then by 2.9, G contains a basic subgroup B, so that B is a direct

sum of cyclic groups. Here we have two subcases:

(a) If B is an infinite subgroup, by corollary 2.6 and lemma 2.7, there exists an

R0oseto

(b) If B is a finite subgroup, the question group G/B is an infinite divisible that

can be written as a direct sum of _< copies of Z(P) (see 2.9). Consider one

of these copies and apply lemmas 2.4 and 2.7 to get an R0-set in G. Then the

proof of the theorem is completed.

THEOREM 2.11" If G is an infinite elementary amenable group, then G contains

an R0-set.

PROOF: If G is an abelian group, the theorem follows from the above one. If G is

not abelian, then by lemma 1.2, G contains an infinite abelian subgroup H, and hence

there exists an R0-set A in H. By lemma 2.7, A is also an R0-set in G.
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THEOREM 2.12: If G is an infinite elementary amenable group, then

RDA and Ra-K.
The proof follows from the above theorem and proposition 2.1.

COROLLARY 2.13: If G is an infinite elementary amenable group, then

RG C wRG.

This follows immediately from the above theorem and lemma 1.1.

CONJECTURE: Every infinite amenable group G contains an R0-set, and therefore

ACR and RG-KG:.
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