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ABSTRACT. The following theorem is proved and several fixed point theorems and coincidence

theorems are derived as corollaries. Let C be a nonempty convex subset of a normed linear space

X, f:C X a continuous function, g: C C continuous, onto and almost quasi-convex. Assume
that C has a nonempty compact convex subset D such that the set

A {y E C: [[ g(x)- f(y)[[ >_ g(y)- f(y)[[ for all z G D}

is compact.
Then there is a point Y0 G C such that II g(0)- f(Yo)II d(f(Yo),C).

KEY WORDS AND PHRASES. Almost quasi-convex functions, fixed points, coincidence points.
1991 AMS SUBJECT CLASSIFICATION CODE. Primary 47 H 10, Secondary 54 H 25.

I. INTRODUCTION.
There has been given a variety of applications of KKM-map principle by Ky Fan [I] in areas

like fixed point theory, approximation theory, minimax theory, potential theory and variational

problems. For further applications we refer to [2].
Recently Prolla [4] proved the following result using fixed point theorems for multivalued

mappings. In this note we extend his theorem and our proof will follow KKM-map principle.
Let C be a compact, convex subset of a Banach space X, f:C --.’X a continuous function and

g: C -- C a continuous, almost affine and onto map. Then there is a Y0 C such that

g(yo)- f(yo) d(f(yo), C).

Recall that a map g:C - X is almost affine if

g(Al / ( A):r2)- y -< AII g(l)- ll / (1 A)[[ g(z2)- y I!
for all xl, x2 C and y E X.

Clearly a linear map is almost affine, but not conversely.
We have taken an almost quasi-convex map g.

DEFINITION. A map g: C- X is said to be almost quasi-convex if, for every E X and

r > O, the set {u E C: g()- ll < r} is convex.

An almost quasi-convex condition is more general than almost affine condition.
We use the following well-known result (Lin [3]) to derive our theorem given below.
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THEOREM 1.1. Let C be a nonempty convex subset of a topological vector space. Let
B C C x C be such that

i) for each x E C, the set {y E C: (x,y) E B} is closed in C;
ii) for each y e C the set {x C: (x,y) B} is empty or convex;

iii) (x,x) B for each x E C; and

iv) C has a nonempty compact convex subset D such that the set

A {y e C: (x, y) B for all x D}

is compact.

Then there exists a point Y0 C such that C x {Y0} C B.
2. MAIN RESULTS.

Now we prove our results.

THEOREM 2.1. Let C be a nonempty convex subset of a normed linear space X, f:C -- X a

continuous function, g: C C continuous, onto and almost quasi-convex function. (.) Assume
that C has a nonempty compact convex subset D such that the set

A {y e C: g(x)- f(y)[[ >_ g(y)- f(y)[[ for all x e D}

is cgmpact.
Then there is a point Y0 C such that g(YO)- f(YO)[[ d(f(Yo), C).
PROOF. Set

B {(, y) e C x C: g(=) f(Y)II >- g(Y) f(Y) }.

Then the set {y C: (x,y) E B} is closed in C since f and g are continuous. It is easy to see that

(z,x) B for each z C.
We have to show that the set

M {x E C: (x,y) B} {x E C: g()- f(Y)II < g(y)- f(y)II }

is convex or empty.
Since g is an almost quasi-convex function, therefore M is convex.

By Theorem 1.1 we get that there is a point Y0 6 C such that

(y0)- f(yo) d(f(yo), C).

In case the convex set C is compact we may take C D.
NOTE. Condition (.) is equivalent to the following.
Let D be a nonempty compact convex subset of C, K be a nonempty compact subset of C such

that for each y E C\K there exists an x0 E D such that

g(0)- f(y)II < g(Y)- f(Y)II.

If C K D and g is almost affine then we get Prolla’s result stated below. Let C be a

compact convex subset of a normed linear space X and f: C X a continuous function. Let
g:C ---, X be a continuous, onto and almost affine map. Then there exists a Y0 E C such that

(y0)- f(yo) d(f(yo), C),

NOTE. (i) If f(Yo) E C then we get a coincidence result; and (ii) If g 1, an identity function,
then the above result is a well-known theorem due to by Ky Fan [1]. This theorem has interesting
applications in fixed point theory, approximation theory and variational problems. We give a

sample application in fixed point theory.
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EXAMPLE: Let C be a compact convex subset of a normed linear space X and f:C X a

continuous map. If f(x) x, then assume that the line segment Ix, f(x)] has at least two elements

of C. Then f has a fixed point.

By taking g I, we get there is a Y0 E C such that

o- f(yo) d(f(yo), C).

Now, if Yo f(Yo) then there is a z E C such that

z-Xf(Vo)+(1-X)yo, O<X<l

and

yo f(yo)II z f(yo)II xf(yo) + (1 x)y0 f(Yo)II
(1 A)II f(yo)- yo < Y(y0)- y0

a contradiction, so Y0 f(Yo)"
We could derive several other interesting results on fixed point theorems as corollaries.
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