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ABSTRACT. The structure of a finite group having specified number of second and third

maximal subgroups has been investigated in the paper.
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1. INTRODUCTION.

It is easy to see that a group G with exactly one maximal subgroup M is cyclic
since the Frattini subgroup ®(G) coincides with M. In this note the structure of
groups having one/two/three second maximal subgroup and groups having one/two-third
maximal subgroups are investigated. All groups considered here are finite and the

notations used are all standard.

For the sake of completeness we mention below the following theorem or p-groups
[Theorem 7.6, p. 304] in Huppert [3] which will be used.

THEOREM H. Let G be a p-group and suppose all abelian normal subgroups of G are
cyclic. Then, (a) G is cyclic if p > 2 (b) if p = 2, G has a cyclic normal subgroup
of index 2.

We will first characterize groups having the desired number of second maximal

subgroups. The following lemmas will be required.

2. GENERAL RESULTS.

LEMMA 2.1. A p-group G which has exactly one nontrivial second maximal subgroup
is cyclic if p > 2 and has a cyclic normal subgroup of index 2 if p = 2,

PROOF. Evidently IGI > pz. Let |G| = pn, n > 2 and M be a maximal subgroup G.

Then M 9 G,lHI = p“-l > p and therefore the given second maximal subgroup MO &M M,

being the only maximal subgroup of M, it follows that M is cyclic and therefore

each abelian normal subgroup of G is cyclic. From Theorem H it now follows that G is

of the desired type.

LEMMA 2.2, A group G with no second maximal subgroup is a group of order P

2
or p or qt, p,q,t are different primes.
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PROOF. If G is a p-group and G has no second maximal subgroup then evidently
IG' =p or pz. Now suppose G is not a p-group, then every maximal subgroup is of

prime order and therefore the Sylow subgroups of G are cyclic and are of prime
orders. Consequently G is supersolvable and G has a Sylow basis. If IGI is divisible
by more than two primes then clearly G will have a second maximal subgroup and
therefore the order of G must be qt, for some primes q and t.

THEOREM 2.1. A group G having exactly one second maximal subgroup is a p-group.
For p > 2, G is cyclic and for p = 2, G has a cyclic subhgroup of index 2.

PROOF. Tt suffices to show that G must be a p-group if it has one second maximal

subgroup. Lemma 2.1 will then guarantee the structure of G as claimed.

Suppose G is not a p-group and without loss of generality we may assume G to be a
counter example of least possible order. Then every maximal subgroup of G is either
of prime order or else contains the given second maximal subgroup MO of G. 1In the
latter case, M is clearly cyclic of prime power order. Thus every maximal subgroup of
G is cyclic and therfore every Sylow subgroup of G is cyclic and G is supersolvable.
Hence G = PK, P 3 G, PNK = | where P is the Sylow subgroup corresponding to the

largest prime divisor p of |G| and K is a p-complement.

Let IKI # 1. Now K has at most one second maximal subgroup. If Kl and K2 are
two second maximal subgroups of K then Pl(l and PKZ are two different second maximal
subgroups of G, a contradiction. (If Pl(l = PK2 then Kl # K2 implies that s?:e

u e Kl’ u £ KZ and it follows that u = xv, x ¢ P, v ¢ Kz, x # e. Then uv "= x. But
uv-lc K, and 1is therefore a p'element. Hence PKl * PKZ)' [f K has exactly one
second maximal subgroup then K is a q-group for some prime q since G is the minimal
counter example and if K has no second maximal subgroup then we need consider IK' = t2
or st, r,s,t, are different primes. We first consider this latter case.

CASE I. IKl = r2. Consider the subgroup p < u >, ’<u>| =r. M = Pud> is a
maximal subgroup G and P is the second maximal subgroup. Hence ¢$(M) = P and R*IMI, a
contradiction. Thus |K| # r2.

CASE II. |K| = st. Let G = PST, where S and T are Sylow subgroups of G of orders s
and t respectively. Ml = PS 1s a maximal subgroup and P is the second maximal subgroup

of G. Hence ¢(Ml) = P and P*IHI', a contradiction. Therefore IK' # st.

We are thus left to consider the case when K is a q-group. Distinguish two
cases: CASE A. |K| = q. Observe that IPI # p as otherwise IGl = pq and G will have no
second maximal subgroup. We may therefore assume |P| = pn, n > 2. Let P1 be maximal
in P so that |P1| = pn_l. Note Pl_<_l G since P is cyclic and P G. Consider PIK’ a

maximal subgroup of G. If P, is maximal in Pl then Pz 4 G and PZK and PI are two
second maximal subgroups of G, contradicting the existence of only one.
CASE B, 'Kl = qm, m > 2. First suppose |P| = p and let K1 <* K. Then

lKll -qm-l and consider PKI. If K2 <. Kl then PK2 and Kl are two second maximal

subgroups of G which contradicts again the existence of only one. Now suppose

|P| = pn, n > 2 and let P, <* p and Kl ¢ K. Both PlK and Pl(l are maximal subgroups

of G. If P, <. P, and K, < K; then P,K and PK, are second maximal subgroups of G
which is a contradiction and so IK' must be 1. Hence G is a p-group. Thus there is

no minimal counter example and the theorem follows.
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w« uow investigate the structure of groups with two second maximal subgroups.
The following lemma is necessary.
LEMMA 2.3. A group G with exactly two maximal subgroups is necessarily cyclic and
the order of the group is divisible by two distinct primes.
PROOF. If either of the given maximal subgroups is not normal then it being its
own normalizer is of 1index 2 which however forces it to be normal. Thus G is

nilpotent and we claim that G cannot be a p-group.

Suppose the set S = {X'X is a p-group and X has exactly two maximal subgroups}
# ¢ If Sl = {Y'Y €S and Y is not cyclic} # ¢ then T, is an element of Sl of least
possible order.

Suppose M and M* are the two maximal subgroups of YO and 'YOI = pn. Distinguish
two cases: Case I. MAM* = <e>. Since M and M* are normal in YO’ YO = MM* and
IYOI = 'Ml.lM*'. Thus pn = p""l.p“”l and pn= pz. Therefore YO is elementary abelian
and YO is not cyclic. If a and b are elements of YO then <a>, <b>, <ab> are all
maximal subgroups of Yo and we have a contradiction.

CASE II. MNM* # <e>. Let T = MM* and observe T4 G. Now coasider YO/T. It
is a p-group, %, E% are two maximal subgroups of YO/T = YO and 70 does not have any
other maximal subgroup besides % =M and M* = %1 . It follows therefore that

YO € S\S1 so that Y0 is cyclic and Yo = <x,T> = <x> since T = O(Yo) and we have a
contradiction. Thus Sl = ¢ and every element in S is cyclic. But this implies every
element X in S has exactly-one subgroup of index p i.e. X has got exactly one maximal
subgroup. Hence S must be empty also and therefore G = Pl x P2. Thus P1 has exactly
one maximal subgroup, i = 1,2 and P1 is therefore cyclic. Hence it follows that G is
cyclic also and the assertion in the lemma is proved.

LEMMA 2.4. A p-group with exactly two second maximal subgroups is necessarily a
2-group.

PROOF. Let G be a counter example of the smallest possible order. Then every
maximal subgroup M of G has exactly one maximal subgroup. (By Lemma 2.3 there is no p-
group with exactly two maximal subgroups.) Hence M is cyclic and therefore by Theorem
H it now follows that G is cyclic. This however, implies G can haveone second maximal
subgroup which is a contradiction. Hence G cannot exist and the assertion in the
lemma follows.

LEMMA 2.5. A group G with exactly two second maximal subgroups is necessarily
supersolvable and G is either a 2-group or else its order is divisible by two primes
only.

PROOF. Every maximal subgroup of G is either of prime order or has one or two
maximal subgroups. Therefore every maximal subgroup of G is cyclic and consequently
every Sylow subgroup of G is cyclic. Hence G is supersolvable and G = PK, POK = 1,

P €G where P is the Sylow p-subgroup corresponding to the largest prime divisor of
IGI and K is a p-complement. If K = 1, then G is a p-group and by Lemma 2.4 is also a
2-group. Now suppose lKl # 1. To prove lGI is divisible by two primes we may without
loss of generality assume G to be a counter example of the least possible order. If K
has one second maximal subgroup then by Theorem 1, K is a q-group for some prime q and
if K has two second maximal subgroups then G being a counter example of least possible
order, K is either a 2-group or its order is divisible by two primes. Suppose K=RT

where R one T are two Sylow subgroups corresponding to the prime divisorr and tr > t,
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of |K|. If T, <. T, R, <. R then RT, and RT are maximal subgroups of K. (Note R

is cyclic and Rg K since K is supersovable). Then PRTl <. G. If T2 <. Tl, Pl {. P,
R2 <. R1 then PRT,, P,RT,, PR2T are three second maximal subgroups of G, a
contradiction. (Any of Ty, Ry, Ty, P; could be <e>.) We thus need consider the case
when K has no second maximal subgroup. By Lemma 2.2, IKI is p or p2 or qt, p,q,t are
primes. We thus need only consider the case when |K| = qt. Let G = PQT where Q and T
are Sylow subgroups of order q and t respectively and we may take P,Q,T as a Sylow
basis for G. IF ’Pl = p then P,Q,T are three second maximal subgroups of G. Now
1 <. P and P2 <. Pl' Then PZQT’ PlQ’ PIT are three

second maximal subgroups. Thus this case cannot exist and therefore there 1is no

suppose 'Pl = pn, n > 2 and let P

minimal counter example and the assertion in the theorem is proved.

We end our investigation of group structures through second maximal subgroup by
proving the following proposition.

PROPOSITION 2.1. A group G with exactly three second maximal subgroups is
solvable.

PROOF. Evidently each maximal subgroup M of G contains one, two or three maximal
subgroups. In the first two cases, M is necessarily supersolvable. 1If M has three
maximal subgroups then each of these three subgroups is normal and therefore M is
nilpotent. For, if any of these maximal subgroups is not normal then it being its own
normalizer it follows that all (three) maximal subgroups of M are conjugate and

therefore have the same index, which is impossible. Hence G is solvable.

The next two propositions describe the structures of groups which have
respectively one or two third maximal subgroups.

PROPOSITION 2.2. Let G be a group with exactly one third maximal subgroup. Then
all the sylow subgroups corresponding to odd primes are cyclic and a Sylow 2-subgroup
is either cyclic or else has a cyclic subgroup of index 2.

PROOF. Evidently every second maximal subgroup is cyclic. 1If P is a Sylow p-
subgroup of G then since it is contained in some maximal subgroup of G,it follows by
Theorem H that P has the desired property as claimed.

PROPOSITION 2.3. Let G be a group with exactly two-thirds maximal subgroups.
Then all the Sylow subgroups of G are cyclic and G is supersolvable.

PROOF. Follows immediately from Lemma 2.3.
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