ON PROBABILISTIC NORMED SPACES UNDER $\tau_{T,L}$

MINGSHENG YING

Department of Mathematics Fuzhou Teacher's College Jiangxi, China

(Received June 20,1988 and in revised form September 12, 1988)

ABSTRACT. We introduce the operation Θ_{L} copulative with $\tau_{T,L}$ to define PN space under $\tau_{T,L}$ and establish some basic properties of probabilistic seminorms and norms under $\tau_{T,L}$. Finally, we discuss so-called L-simple spaces.

KEY WORDS AND PHRASES. Probabilistic normed space, L-simple space. 1980 AMS SUBJECT CLASSIFICATION CODES. Primary 46B99.

1. INTRODUCTION.

In [1-4], Serstney introduced the concept of PN space. A triple (V, v, τ) is called a PN space, if V is a vector space over the field K of real or complex numbers, v is a function from V into Δ^+ , the set of all distance distribution functions, τ is a continuous triangle function, and for any p, q \in V, a \in K with a \neq 0, the following conditions hold.

(i) $v(0) = \varepsilon_0$,	(1.1)

- (ii) $v(p) \neq \varepsilon$ if $p \neq 0$, (iii) $v(ap) = |a| \odot v(p)$, (1.2)
- (1.4)(iv) $v(p+q) > \tau (v(p), v(q))$,

where $|a| \odot v(p) = v(p)(j/|a|)_r$ and j denotes the identity function. Since \odot and τ are not always cooperative as multiplication and addition, there is a certain difficulty in the further development of PN space theory. In fact, for any p, q E V, a ϵ K with a > 0, we can estimate v(ap+aq) in two ways and the two estimates are not always consistent (see Schweizer and Sklar [5], p 238). To overcome this objection, Mustari and Serstnev [6-7] had to focus their attention on homogeneous triangle functions.

In this paper, we establish the operation $\boldsymbol{\otimes}_{L}$ copulative with $\tau_{T,L}$ and use it to discuss PN spaces under $\tau_{T,L}$, where $\tau_{T,L}$, $\Delta^+ \times \Delta^+$, $\tau_{T_{1}}(F,G)(x) = \sup \{T(F(u), G(v)) \mid L(u,v) = x\}, x \in \mathbb{R}^{+}, F, G \in \mathbb{A}^{+}, T \text{ is a continuous}\}$

t-norm, and L: $R^+ \times R^+ \to R^+$ satisfies:

- 1) RanL = R;
- 2) L has 0 as identity;
- 3) L is a nondecreasing in each place, and if $u_1 < u_2$, $v_1 < v_2$,

(1.3)

then L(u_1 , v_1) < L(u_2 , v_2);

4) L is continuous on $R^+ x R^+$, except possibly at the points $(0, \infty)$ and $(\infty, 0)$;

5) L is associative;

6) L is Archimedean, i.e., for all $u \notin (0, \infty)$, L(u, u) > u.

First, we give some simple results which are needed in the sequel. From Theorem 5.7.4 in [5], it is easy to know that there exists an additive generator g of L, i.e., a strictly increasing and continuous function g: $\mathbb{R}^+ + \mathbb{R}^+$ with g(0) = 0, $g(\infty) = \infty$, such that $L(x,y) = g^{-1}(g(x) + g(y))$, x, $y \in \mathbb{R}^+$.

Now, we choose a fixed additive generator g of L, and note that the particular choice of g does not affect the validity of our results.

DEFINITION 1.1. $*_r$: $R^+ x R^+ + R^+$ is defined as

$$\alpha_{T}^{*} x = g^{-1}(\alpha g(x)), \alpha, x \in \mathbb{R}^{+}$$

Clearly, $\alpha^{*} = \alpha x$, α , $x \in \mathbb{R}^{+}$.

LEMMA 1.1. For any α , β , x, y $\in \mathbb{R}^+$, the following equalities hold.

(i) $\alpha^{\dagger}_{L} (\beta^{\dagger}_{L} x) = (\alpha \beta)^{\dagger}_{L} x$ (1.5)

(ii) $a_{L}^{*}L(x,y) = L(a_{L}^{*}x, a_{L}^{*}y)$ (1.6)

(iii)
$$(\alpha+\beta) \star_{x} x = L(\alpha \star_{x}, \beta \star_{x} x)$$
 (1.7)

Clearly, if $\alpha \in (0, \infty)$, then $f(x) = \alpha^*_L x$, $x \notin R^+$ is strictly increasing and continuous. So we may give

DEFINITION 1.2. For any $\alpha \in (0, \infty)$, $x \in \mathbb{R}^+$, $x \in_L \alpha$ is defined as the only solution of the equation α^* , t = x.

LEMMA 1.2. For any $\alpha, \beta \in (0, \infty)$, x,y $\in \mathbb{R}^+$, the following equalities hold.

- (i) $(x \delta_{\Gamma} \alpha) \delta_{\Gamma} \beta = x \delta_{\Gamma} (\alpha \beta),$ (1.8)
- (ii) $L(x,y) \delta_{\Gamma} \alpha = L (x \delta_{\Gamma} \alpha, y \delta_{\Gamma} \alpha).$ (1.9)

DEFINITION 1.3. \mathfrak{G}_{L} : $(0, \infty) \times \Delta^{+} + \Delta^{+}$ is defined as

$$\mathbf{\Phi}_{\mathbf{T}}\mathbf{F} = \mathbf{F}(\mathbf{j}\,\delta_{\mathbf{T}}\,\alpha), \ \alpha \,\boldsymbol{\epsilon}(0,\infty), \ \mathbf{F}\,\boldsymbol{\epsilon}\,\boldsymbol{\Delta}^{\mathbf{T}}.$$

In particular, $\alpha \Theta_{\text{end}} F = \alpha \Theta F$, $\alpha \in (0, \infty)$, $F \in \Delta^+$.

LEMMA 1.3. For any α , $\beta \in (0, \infty)$, $x \in \mathbb{R}^+$, F, $G \in \Delta^+$, the following equalities hold.

(i)
$$d = \varepsilon_{\alpha \star I, x}^{0}$$
, (1.10)

(ii)
$$\alpha \mathcal{P}_{L}(\beta \mathcal{B}_{L}^{F}) = (\alpha \beta) \mathcal{P}_{L}^{F},$$
 (1.11)

(iii)
$$d \mathbf{P}_{L} \tau_{T,L}(F,G) = \tau_{T,L}(d \mathbf{P}_{L}F, d \mathbf{P}_{L}G).$$
 (1.12)

COROLLARY 1.1. (cf. Lemma 15.1.3 in [5]) For any $\alpha \in (0, \infty)$, F, G $\in \Delta^+$,

$$\tau_{T,L}(F,G) = \tau_{T,L}(F(a*_{L}j), G(a*_{L}j))(j\delta_{L}a), \qquad (1.13)$$

i.e., $\tau_{T,L}$ is homogenous in the sense of (1.13).

DEFINITION 1.4. For any x, y \in [0, ∞) with y \leq x, x_L \sim y is defined as the only solution of the equation L(y,t) = x.

DEFINITION 1.5. For any a, bEI,

 $a\alpha_{r}b = Sup\{x | T(b,x) < a\}.$

LEMMA 1.4. For any a,b,c,
$$a_{\lambda}$$
, $b_{\lambda}(\lambda \in \Lambda) \in I$,
(i) $T(a,b)\alpha_{T} a > b$, (1.14)

(ii) If
$$a \leq b$$
, then $a\alpha_{\Gamma}c \leq b\alpha_{\Gamma}c$, $c\alpha_{\Gamma}b \leq c\alpha_{\Gamma}a$, (1.15)

(iii)
$$a \alpha_{T} \inf b_{\lambda} > Sup(a \alpha_{T} b_{\lambda}),$$
 (1.16)
 $a \alpha_{T} Sup b_{\lambda} = \inf (a \alpha_{T} b_{\lambda}),$ (1.17)
 $a \alpha_{T} Sup b_{\lambda} = \inf (a \alpha_{T} b_{\lambda}),$ (1.18)
 $inf a_{\lambda} \alpha_{T} b = \inf (a_{\lambda} \alpha_{T} b),$ (1.18)
 $\lambda \in \Lambda$

DEFINITION 1.6. $\eta_{T,L}$: $\Delta^+ x \Delta^+ + I^{R^+}$ is defined as: for all F, G \in G,

$$(F_{n_{T,L}}G)(\mathbf{x}) = \begin{cases} \inf \{F(\mathbf{u}) \alpha_{T}G(\mathbf{v}) | u_{\widehat{L}} \quad \mathbf{v} = \mathbf{x}, \quad \mathbf{v} \leq \mathbf{u}, \quad \mathbf{u}, \quad \mathbf{v} \in [0, \infty) \}, \quad \mathbf{x} \in [0, \infty) \} \\ 1, \quad \mathbf{x} = \infty. \end{cases}$$

It is easy to check that for any F, $G \in \Delta^+$, $\operatorname{Fn}_{T,L}^G$ is left-continuous and increasing, but it is possible that $(\operatorname{Fn}_{T,1}^G)(0) > 0$. In addition, from Lemma 2.4. (ii), we know that $\operatorname{n}_{T,L}$ is increasing in the first place and decreasing in the second place.

LEMMA 1.5. For any F,
$$G \in \Delta^+$$
,
 T , $L^{(F,G)}$ n T, $L^{, G > F}$. (1.20)

2. PROBABILISTIC SEMINORMS AND NORMS UNDER T.L

DEFINITION 2.1. Let V be a vector space over the field K of real or complex numbers, $v: V + \Delta^+$. Then (V, v) is called a PSN space under $\tau_{T,L}$ if for all p, q $\in V$, $\alpha \in K$ with $\alpha \neq 0$, the following conditions hold.

(i)
$$v(0) = \varepsilon_0$$
, (2.1)
(ii) $v(0) = |a|^{\frac{1}{2}} v(b)$, (2.2)

(11)
$$v(\alpha p) = |\alpha| \bigoplus_{L} v(p),$$
 (2.2)

(iii) $v(p+q) > \tau_{T,L}(v(p), v(q)).$ (2.3)

If (V, v) is a PSN space and satisfies: for all p $\pmb{\varepsilon}$ V,

(iv)
$$v(\mathbf{p}) \neq \varepsilon_0$$
 if $\mathbf{p} \neq 0$, (2.4)

then (V, v) is called a PN space.

THEOREM 2.1. If (V, v) is a PSN space under $\tau_{T,L}$, then for all p, q $\in V$, $v(p-q) \leq M (v(p)n_{T,L} v(q), v(q)n_{T,L} v(p)),$ (2.5)

where M denotes the minimum function.

PROOF. From Lemma 1.5, we have

In addition,

 $v(p-q) = 1 \bigoplus_{L} v(q-p)$

= v(q-p)

< v(q) n_{T,L} v(p).

THEOREM 2.2. In a PSN space (V, v) under $\tau_{T,L}$, for all $\varepsilon \in \mathbb{R}^+$, $\lambda \in I$, $p \in V$, the ball with center p and radius ε of level $\lambda B_p(\varepsilon, \lambda) = \{q \mid T(v_{q-p}(\varepsilon), \lambda) = \lambda\}$ is convex.

PROOF. If q_1 , $q_2 \in B_p(q, \lambda)$, $t \in [0, 1]$, then

- (1) +: $\forall x \forall + \forall$, (p,q) + p+q, p, q $\in \forall$ is continuous;
- (2) If Ran $v \in D^+$, then.: $k \times V + V$, $(\alpha, p) + \alpha p$, $\alpha \in \mathbb{R}$, $p \notin V$ is continuous, where $D^+ = \{F \notin \Delta^+ | \sup F(x) = 1\};$ (3) $v: V + \Delta^+$, p + v(p), $p \notin V$ is continuous.

PROOF. Straightforward.

To illustrate that the condition in Theorem 2.3. (2) is necessary, we give EXAMPLE 2.2. Let $v_{\alpha}: R \to \Delta^+$

$$v_{o}(x) = \begin{cases} \varepsilon_{o}, & \text{if } x = 0, \\ \varepsilon_{\infty}, & \text{if } x \neq 0. \end{cases}$$

Then (R, v_0) is a PN space under $\tau_{T,L}$. However, $1/n \rightarrow 0$, but $1/n \xrightarrow{\mathscr{P}(R, \tilde{v})} 0$ does not hold.

THEOREM 2.4. If (V, v) is a PSN (or PN) space under $\tau_{T,L}, \mathscr{F}: V \times V \to \Delta^+$ is defined as

$$F(p,q) = v(p-q), p, q \in V,$$
 (2.6)

then (V, F) is a PPM (resp, PM) space under $\tau_{T,L}$ which has the following properties: for all p, q, r & V, $\alpha \in K$ with $\alpha \neq 0$,

(1)
$$F(\alpha p, \alpha q) = |\alpha| \bigotimes_{i=1}^{\infty} F(p, q),$$
 (2.7)

(ii)
$$F(p+r, q+1) = F(p,q)$$
. (2.8)

Conversely, if (V,F) is a PPM (or PM) space under $\tau_{T,L}$ with (2.7), (2.8), then there exists a PSN (resp. PN) space under $\tau_{T,L}$ such that (2.6) holds.

PROOF. Immediate.

3. L-SIMPLE SPACES.

DEFINITION 3.1. Let (V, ||.||) be a normed space, and $G \in \Delta^+ \setminus \{\varepsilon_0, \varepsilon_\infty\}$. Then (V, ||.||, G), the L-simple space generated by (V, ||.||) and G, is the pair

$$(V, \psi) \text{ in which } \psi: V + \Delta^{+} \text{ is defined by } (P) = ||p|| B_{L}(p, p \in V, (3.1)$$
 In Particular, Sum-simple spaces are also simple spaces. DEFINITION 3.2. Let G be a class of pairs (V, ψ) in which V is a vector space, and $\psi: V + \Delta^{+}$ satisfies $(2,1), (2,4), \text{ and } \tau$ is a triangle function. If for any $(V, \psi) \in \mathbf{f}$ it holds that $(V, \psi) = \mathbf{f}$ (it holds that $(V, \psi) = \mathbf{f}$ (if (V, ψ)), $(q(Y)), p, q \in V$, (3.2) then τ is said to be universal for G. DEFINITION 3.3. If $F, G \in \overline{A}^{+}$ and there exists $a \notin (0, =)$ such that $G = aB_{L}^{0}F$, then F and G are said to be L-comparable. We write $(q_{L}A^{+}) = (T, G) \in A^{+} \times a^{+} | F, G$ are L-comparable). THEREOM 3.1. (cf. Theorem 8.4.2, 8.4.4 and Problem 8.8.1 in [5]). Triangle function τ is universal for the class S_{L} of all L-simple spaces if and only if $\tau|_{C_{L}(A^{+})} \in Y_{L}|_{C_{L}(A^{+})}$. PROOF. ((=) First, we show that $Y_{H,L}$ is universal for S_{L} . In fact, if (V, ψ) is a L-simple space, then for all $p \in V, y \notin I$, $(p)^{A}(y) = \sup [x] \langle V(p)(x) < y \rangle$
 $= \sup (||p|| + |_{L}\zeta) (G(z) < y)$
 $= (||p|| + |_{L}Q^{+}(Y_{2}), ||q|| + |_{L}G^{A}(y))$.
Therefore, from Lemma 1.1. (iii), we obtain that for all $p, q \in V, y \notin I$, $(\sqrt{p+q})^{A}(y) = ||p+q|| + |_{L}G(y)$.
 $< ((||p|| + ||q||) + |_{L}G(y)$.
 $= L(\langle p \rangle^{A}(y), \psi(q)^{A}(y)).$
and from (7.7.10) in [5], we have $\langle p + q \rangle$, $\langle q, |_{L}(\varphi) \rangle$, $\langle q \rangle$.
In general, if $\tau|_{C_{L}(A^{+})} \in Y_{H,L}((Q)), \forall (q)) = \sqrt{q}$ or $\langle p \rangle$, and if $p = 0$, or $q = 0$, then $\tau (\langle x \rangle \rangle, \langle x \rangle) = r \sqrt{q}$, $\sigma (Y, \psi)$ and for any $p \in V,$ $\tau (\langle x \rangle), \langle x \rangle, |_{L}(\varphi), \langle x \rangle)$.
In fact, if $p = 0$, or $q = 0$, then $\tau (\langle x \rangle), \langle x \rangle = r \wedge q \rangle$ or $\langle y \rangle$, $n = i, i, i, i \in F(C_{L}(A^{+}), C_{L}(A^{+}), C_{L}(A^{+}), C_{L}(A^{+}), C_{L}(A^{+}), C$

 $(G,F) \in \mathcal{C}_{I}(\Delta^{+})$, there exists $\alpha \in (\mathbb{V}, \infty)$ such that $F = \mathscr{P}_{I}G$. In addition, from $\tau(G,F) \leq \tau_{M,L}(G,F)$, we know that there exists $x_0 \in (0,\infty)$ such that $\tau(G,F)(x_0) > \tau_{M,L}(G,F)(x_0)$, and furthermore $\tau(v(1), v(\alpha))(x_{0}) = \tau(v(1), \alpha P_{1}v(1))(x_{0})$ = $\tau(G,F)(x_{o})$ > $\tau_{M,L}(G,F)(x_0)$ = Sup {M(G(u), F(v)) | $L(u,v) = x_0$ } > $M(G(x_0 \delta_L(1+\alpha)), F(\alpha^*_L (x_0 \delta_L(1+\alpha)))$ = $G(x_{\alpha} \delta_{L} (1+\alpha))$ = $v(1+\alpha)(x_{\alpha})$ because $L(x_0 \delta_L(1+\alpha)), \alpha^*_L(x_0 \delta_L(1+\alpha)) = (1+\alpha) *_L(x_0 \delta_L(1+\alpha)) = x_0$ and $F(\alpha^{*}_{L}(x_{\alpha}\delta_{L}(1+\alpha)) = G((\alpha^{*}_{L}(x_{\alpha}\delta(1+\alpha))\delta_{L}\alpha)$ = G $(x_{0} \delta_{L}(1+\alpha))$. This contradicts (3.2). COROLLARY 3.1. Any L-simple space is a PN space under $\tau_{T t}$. Let (V, ||.||) be a normed space, $\alpha \in (0, \infty)$ and $G \in \Delta^+ \setminus \{\varepsilon_0, \varepsilon_\infty\}$. By the α -simple space generated by (V, ||.||) and G, $(V, ||.||, G, \alpha)$, we mean the pair (V, ν) in which $v: V + \Delta^{\dagger}$ is defined by $v(p) = G(\delta/||p||^{\alpha}), p \in V.$ The following corollary characterizes α -simple spaces. COROLLARY 3.2. (cf. Problem 8.8.2 in [5]) For $\alpha \in (0, \infty)$, any α -simple space is a PN space under τ_{M} , $K_{1/\alpha}$.

PROOF. It is sufficient to note that $x \delta_{K} = x/a^{\alpha}$, $x, a \in (0, \infty)$, and so α -simple spaces are also $K_{1/\alpha}$ -simple spaces.

REFERENCES

- ŠERSTNEV, A.N., <u>Random normed spaces: problem of completeness</u>, Kazan. Gos. University Učen. Zap., 122(1962), 3-20.
- SERSTNEV, A.N., On the notion of a random normed space, Dokl. Akad. Nauk SSSR, 149(1963), 280-283.
- SERSTNEV, A.N., <u>Some best approximation problems in random spaces</u>, Dokl. Akad. Nauk SSSR, 149(1963), 539-542.
- SERSTNEV, A.N., <u>Some best approximation problems in random spaces</u>, Rev. Roumaine Mathematics Pures Application, 9(1964), 771-789.
- SCHWEIZER, B. and SKLAR, A., <u>Probablistic Metric Spaces</u>, North Holland (Amsterdam, 1983).
- MUŠTARI D.H. and ŠERSTNEV, A.N., <u>A problem about triangle inequalities for</u> <u>random normed spaces</u>, Kazan. Gos. University Učen. Zap., 125(1965), 102-113.
- 7. MUŠTARI, D.H. and ŠERSTNEV, A.N., <u>Les fonctions du triangle pour les espaces</u> <u>normés aléatoires, in General Inequalities 1</u>, (E.F. Beckenbach, ed.), Birkäuser Verlag (Basel, 1978), 255-260.