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ABSTRACT. We introduce the operation L copulative with T,L to define PN space

under T,L and establish some basic properties of probabilistic seminorms and norms

under T,L Finally, we discuss so-called L-simple spaces.
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1. INTRODUCTION.

In [I-4], Serstnev introduced the concept of PN space. A triple (V, v, ) is

called a PN space, if V is a vector space over the field K of real or complex numbers,

v Is a function from V into A+, the set of all distance distribution functions, T Is a

continuous triangle function, and for any p, q V, a K with a 0, the following

conditions hold.

(i) o) %,
(it) (p) ,

% if p o,
(lli) v(ap) [a () v(p),

(iv) p+q) > ((p), (q)),

where lal E)(P) (P)(J/lal)r and j denotes the identity function. Since

(1.1)

(1.2)

(1.3)

(1.4)

and T are not always cooperative as multiplication and addition, there is a certain

difficulty in the further development of PN space theory. In fact, for any

p, q E V, a E K with a > O, we can estimate ap+aq) in two ways and the two estimates

are not always consistent (see Schwelzer and Sklar [5], p 238). To overcome this

objection, Mutarl and Serstnev [6-7] had to focus their attention on homogeneous

triangle functions.

In this paper, we establish the operation copulative with T,L and use it to

+ + +
x A +A,discuss PN spaces under TT, L ,where T,L:

T,L(F,G)(x) sup {T(F(u), G(v)) L(u,v) x}, xER+, F, GEA+, T is a continuous

t-norm, and L:R+x R++R+ satisfies:

1) RanL R;

2) L has 0 as identity;

3) L is a nondecreasing in each place, and if u < u 2, v < v
2
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then L( Ul, v 1) < L(u2,v2)
4) L is continuous on R

+ +
x R except possibly at the points (0,-) and (-,0);

5) L is associative;

6) L is Archlmedean, i.e., for all u (0,(R)), L(u,u) > u.

First, we give some simple results which are needed in the sequel.From Theorem

5.7.4 in [5], it Is easy to know that there exists an additive generator g of L,i.e.,

a strictly increasing and continuous function g: R++ R
+
with g(0) =0, g() -, such

-1 +
that L(x,y) g (g(x) + g(y)), x, y R

Now, we choose a fixed additive generator g of L, and note that the particular

choice of g does not affect the validity of our results.

DEFINITION I.I. * R+x R
+ +

R is defined as
L

-I +
CLX g (c(x)), x R

+
Clearly, a x ax, x Rsum

LEMMA I.I. For any a, 8, x, y R the following equalities hold.

(t) a*L (Lx) (aS) *Lx (1.5)

(ii) c@
L

L(x,y) L(CLX, cLY) (1.6)

(iii) (a+8) *Lx L(CLX, 8*LX) (1.7)
+

Clearly, if a&(O,), then f(x) *Lx, xR is strictly increasing and continuous.

So we may give

DEFINITION 1.2. For any a(0,:), x&R+, x%a is defined as the only solution of

the equation CLt x.
+

LEMMA 1.2. For any ,8 (0,:), x,yR the following equalities hold.

(Ii) L(x,y) %- L X6L% yLa). (1.9)

+ +
DEFINITION 1.3. )L: (0,) x h a Is defined as

In particular, c)sumF
LEMMA 1.3. For any a, 8(0,m) xR

+
F, GA+, the followlng equalities hold.

(I) CLex ea,Lx (1.10)

(ii) CL(LF (aS))LF (1.11)

(iit) CL:T,L(F,G :T,L(CLF, CLG). (1.12)

COROLLARY 1.1. (cf. Lemma 15.1.3 in [5]) For any a(0,-), F, GA+,
Z,L(F,G ZT,L(F(a*LJ), G(a*LJ))(J%a), (1.13)

i.e., ZT, L is homogenous in the sense of (1.13).

DEFINITION 1.4. For any x, y6 [0,(R)) with y x, XL y is defined as the only

solution of the equation L(y,t) x.

DEFINITION 1.5. For any a, b6 I,

aotrb Sup{xlT(b,x) a}.
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LEMMA 1.4. For any a,b,c, a X, bx(kA) I,

(1) T(a,b)aT a ) b,

(il) If a b, then aaTc bTc coTb_<cfa
(iii) aT inf b

I
) Sup(ab),

a Sup b inf (ab),
inf alb inf (a
eA IEA
Sup a xb Sup (axb).

(1.14)

(1.16)

({.17)

({.18)

/ /
I is defined as: for all F, G G,DEFINITION 1.6. T,L: A x A

(Fr,LG)(x) =finf{F(U)OTG()lu x, u, u, [0,-)},

[ |, x

It iS easy to check that for any F, G A+, FBr,LG is left-contlnuous and

increasing, but it is possible that (F T,IG)(0)> 0. In addition, from Lemma 2.4.

(ll), we know that T,L is increasing in the first place and decreasing in the second

place.

LEMMA 1.5. For any F, GA+,
rT,L (F’G) T,L’ G )F. (1.20)

2. PROBABILISTIC SEMINORMS AND NORMS UNDER ZT,L
DEFINITION 2.1. Let V be a vector space over the field K of real or complex

+. ,Llfnumbers, 9 V Then (V,9) is called a PSN space under T for all p, q V,

6 K with n # 0, the following conditions hold.

(1) 0) %, (2.1)

,::,.,.) ,,,(p),

(iii) (P+q) "T,L (v(P), (q)). (2.3)

If (V,v) is a PSN space and satisfies: for all p V,

(iv) v(p) E if p , O, (2.4)o
then (V, ) is called a PN space.

THEOREM 2.1. If (V,) is a PSN space under T,L’ then for all p, q V,

P-q) (<P)" T,L (q)’ q)n T,L <P))’ (2.5)

where M denotes the minimum function.

PROOF. From Lemma 1.5, we have

v(p) n T,L (q) ) T,L(v(p-q)’ (q)) nT,L (q) ) (P-q)

because (p) ) T,L(V(p-q), (q)).

In addition,

v(p-q) )Lv(q-p)
(q-p)

(q) "r,L <P)"
THEOREM 2.2. In a PSN space (V,v) under T,L’ for all R+, tI, p V, the ball

with center p and radius e of level B (e,A) {ql T(q_p() k) k} is convexp
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PROOF. If ql’ q2 B (q,A), t[O,l], then
P

V[tql+ (l-t)q 2] -p(C) Vt(ql_p + (l-t)(q2-p)(C)
ZT,L IVt(q-p) v(l-t)(q-p) )( E)

Sup {TIvt(ql_p)(l) v(l_t)(q2_p)(2)) L(l’2) }

T(Vt(ql p)(t*L), V(l_t)(q2 p)((l-t) *L ))

T(ql_p(:), q2_p())"
T(V[tql+(l-t)q2 p

()’ ) T(T(I_p(), 2_p(c)), )

NgON 2,3,, In PN pee (V,) under ,L’ Iet

Then the family ffi{(e,X)e > 0, > 0, pV} generates a usdorff topology T which

is called the strong topolo of V. reover,
(I) +: V x V V, (p,q) p, p, qV is continuous;

(2) If n p+, then.: k V V, (a,p) , aR, p[V is continuous,

where V+ {F[ sup V(x) I};
x<+(3) v: V A P + p), p V is continuous.

PROOF. Straightfoard.

To illustrate that the condition n eorem 2.3. (2) is necessary, we give

EPLE 2.2. t u R A
+

o

E if x O,o,

o(X) (R), If x 0

Then (R, o) is a PN space under T,LY However, I/n O, but I/n--"(R’-v. 0

does not hold.

THEOREM 2.4. If (V,v) Is a PSN (or PN) space under _TT,L’r: V K V A
+

is

defined as

F(p,q) v (p-q), p, q f. V,

then (V,F) is a PPM (resp, PM) space under ZT,L
for all p, q, rV, aZ with a O,

(2.6)

which has the following properties:

(2.7)
(ll) F (p + r, q + I) F(p,q). (2.8)

Conversely, if (V,) is a PPM (or PM) space under ZT,L with (2.7), (2.8), then there

exists a PSN (resp. PN) space under ZT,L such that (2.6) holds.

PROOF. ImmedIate.

3. L-SIMPLE SPACES.

DEFINITION 3.1. Let (V, I1" II) be a normed space, and Ge A+\{O
Then (V, II.II,G), the L-simple space generated by (V, ll.ll) and G, is the pair
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(V,v) in which v: V A
+

is defined by

In Particular, Sum-slmple spaces are also simple spaces.

DEFINITION 3.2. Let be a class of pairs (V,v) in which V is a vector space, and

u: V satisfies (2.1), (2.4), and is a triangle function. If for any

(V,) it holds that

p) (v(p), v(q),p, q V, (3.2)

then is sad to universal for g.

DEFINITION 3.3. If F, G ’ and there exists a(O,-) such that G F, then

F and G are said to be L-comparable. We write

qL()-- {(F,G) x F, G are L-comparable}.

THEREOM 3.1. (cf. eorem 8.4.2, 8.4.4 and Problem 8.8.1 in [5]). Triangle

function is universal for the class 8
L

of all L-simple spaces tf and only

if I ,LCL() CL()
PROF. (<) First, we show that M,L ts universal for SL" In fact, if (V, v)

ts a L-simple space, then for all p V, yI,

p) (y) Sup{xv(p)(x) < y}

Sup{x G(xlpl) < y}

<

II PII*LSup(IG() < y}

eteote, tom Lena 1.1. (), e obtain that ot a p, qV, y ,

1 Ipll + lq[I) *LG(y)
L 1 Ipl I*LA(Y), lql I*LGA(Y))

and fr (7.7.10) in [51, we have

dp) [L(dp)A, v(q)A)] ,L(dp), dq)).

ge== f the. fo= .y L-.XpXe .p=e V, )In and for
CL(+) M,L CL(+)

any p, q V,

(P), q)) ,L(V(P), q)).

In fact, f p O, or q O, then (p), q)) q) or p), and if

q))CL(). Consequently, ia universal for S
L cauae ao ia(p), ,L.

(C,F) CL((such that (G,F) ,L(G,F). cause (,F) ,L(Eo,F) F, we have

and (e.,F) e,, that G{o,,}. Now, we consider the L-simple space

(R, v) (R,. , G) generated by the real line with the usual no and G. Since
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(G,F) L(A+), there exists (,,..) such that F LG. In

addition, from T(G,F) T M L(G’F)’ we know that there exists x (0 -) such that
O

(G,F)(xO) > M,L(G,F)(xo), and furthermore

(I), a)) (xo) (v(1), Ll))(Xo)
(C,F)(xo)

> H,L(G, F) (Xo)
Sup(G(u) F(v))[L(u v) =x

O

> H(G(Xo(I+a)), F(L (Xo(l+))
(x

o
(+a))

1+ (xo)
because

L(xo(t+a)), aL(Xo(t+a)) (t+a) L(Xo(t+a)) x

and

F(atL(Xo(l/a)) G ((a*L(Xo6(l/a))La
(x
o L(+a)).

This contradicts (3.2).

COROLLARY 3. l. Any L-slmple space is a PN space under ZT,L"
Let (V, ll. II be a normed space, a(O,=) and Ge \{Co,e.}. By the a-simple

space generated by (V, II.II and G, (V, II.II G,a), we mean the pair (V,v) in which

V A+ is defined by v(p) G(6/11 Pll, PV*
The following corollary characterizes a -simple spaces.

COROLLARY 3.2. (cf. Problem 8.8.2 in [5]) For a(O,-), any a -simple space

is a PN space under zM’ Xl/a"
PROOF. It is suicient to note that x a x/a a, x, a(O,-), and so a

1/a-simple spaces are also K1/a -simple spaces.
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