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ABSTRACT. The spectral function 0(t) exp(-t ), t > 0 where {m}m=l are the
mm--I

elgenvalues of the Laplacian in Rn, n 2 or 3, is studied for a variety of domains.

Particular attention is given to circular and spherical domains with the impedance

boundary conditions- + u 0 on (or Sj), j J where and Sj,
j J are parts of the boundaries of these domains respectively, while , J

l,...,J are positive constants.

1. INTRODUCTION.

The underlying problems are to deduce the precise shape of membranes from the

complete knowledge of the eigenvalues

0 < h < k2 < k3 <’’" < km < as m ,

for the Laplace operator A in Rn, n 2 or 3.
n

(PI): Let R {(r,0): 0 < r < a, 0 < 0 < 27} be a circular domain of radius a and

boundary r. Suppose that the eigenvalues (I. I) are given for the eigenvalue

equation (A
2
+ %) u 0 in R together with the impedance boundary conditions:

(-=-- + y.)u 0 on rj, J J, (1.2)
3

where yj, J J are positive constants and the boundary Y consists of parts Y.I’
j J such that

rj {(r, 0): r a, aj o aj+I, J J, ctl= 0, aj+1= 2}.

(P2): Let R {(r,0,): 0 < r < a, 0 < e < 7, 0 < < 2} be a spherical domain of

radius a and surface S. Suppose that the eigenvalues (I. I) are given for the

elgenvalue equation (A3+%)u 0 in R together with the impedance boundary conditons:

( + yj) u 0 on S
j, J J (1.3)

where the surface S consists of parts Sj, j 1,...,J such that
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Sj {(r,0,): r a, 0 0 < , aj < < a.+l,]. J:a1- 0,aj+l-- 2}.

The object of this paper is to determine the geometry of the domains in (PI) and (P2)

as well as the impedances , J ,J from the asymptotic expansion of the

spectral function

(t) }. exp(-tm)’

for small positive t.

Zayed [I] has recently investigated probems (PI) and (P2) in the special case

when J 2, that is, when the boundary r consists of two parts rI, r2 and when the

surface S consists of two parts $I, S2. Finally, we close this introduction with the

remark that the author [2,3] has recently generalized the results of [I] to the case

R
n

when c n 2 or 3 is a simply connected bounded domain with a smooth boundary.

2. CONSTRUCTION OF 0(t) FOR PROBLEM (PI).

Following the method of Kac [4] and following closely the procedure of section 2

in Zayed [I], it is easy to show that the spectral function (1.4) associated with

problem (PI) is given by:

e(t) ff G(x, x;t)dx, (2.1)

where G(x,x’;t) is the Green’s function for the heat equation

(A
2 --) u O, (2.2)

subject to the impedance boundary conditions (1.2) and the initial condition

llm G(x,x’;t) 5(x- x’), (2.3)
t-

where 5(x x’) is the Dlrac delta function located at the source point x x’. Let

us write

C(x.,x.’;t) C0(x;x’. ;t) + x(x,x’.. ;t), (2.4)

where

Go(,’;t) (4t) exp{- 4t }’ (2.5)

is the "fundamental solution" of tl)e l:eat ,lua+/-o (2.2), while is the
"regular solution" chosen so that G(,’;t) satisfies the impedance boundary
conditions (1.2).

On setting x x’ we find that

O(t) area_____fl + K(t),4t (2.6)

where K(t) ]/ x(x,x ;t)dx.
12 (2.7)



HEARING THE SHAPE OF MEMBRANES: FURTHER RESULTS 593

The problem now is to determine the asymptotic expansion of K(t) for small positive

t. In what follows we shall use Laplace transform with respect to "t" and use "s 2’’ as

the Laplace transform parameter; thus

+(R) 2
,,s2 e-S t(x x f G(x,x ;tldt.

0
(2.8)

An application of the Laplace transform to the heat equation (2.2) shows
2

that G(x,x’ ;s satisfies the two-dimenslonal membrane equation

2
(A2 s 2) G(x,x’;s (x x’) in , (2.9)

together with the impedance boundary conditions (1.2). The asymptotic expansion of

K(t) as t 0, may then be deduced directly from the asymptotic expansion of (s2) for

s % where

2
s
2K(s )= ff (x,x )axe. (2.[01

With reference to section 3 in Stewartson and Waechter [5], it can readily be

shown after some reduction that the impedance boundary conditions (1.2) give

2 J
K(s 2) [ [ (a

j+ aj) fj (m;s)},
m=-(R) j =I

(2.11)

where
2 I (sa)

m
fj(m;s) (I + --2 {Im(sa)Km(sa) a[sl’(sa) + 7. I (sa)]

s a m 3 m

I’ (sa)
I’ (sa)K’ (sa) I m (2.12)
m m sa[s I(sa) + j Im(sa)]

in which Im and Km are modified Bessel functions. The series (2.11) is slowly

convergent for large positive s and it is therefore, expedient to apply a Watson

transformation [5] to obtain

2 J +(R)

(s2) a__ 11 (aj+1 aj) O fj (v;s)dv2j=
as s = (2.13)

It now follows that the functions f.(v;s), J J may be expressed in terms of

the asymptotic expansions of the modified Bessel functions and their derivatives due

to Olver [6]. These expansions for s are uniformly valid in u for arg u < .
Now, the following cases can be considered:

CASE 1. (0 < rj << I, j j)

In this case, it can be shown for s / that

where T

}+s2a2 I/2
=V A ,n

(T)

fj (u;s)
2 2 L n

(2. I4)
s a n=0

v2+s 2a2 1/2" For n 0,1,2,3 we deduce that
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Aj,0 0 A. 3 2(a 3 6
.1,1 (r- ), Aj, 2 yj -) 4(ayj -)-

and
3 2 2 z5 23 2 2 41 21 9

Aj ,3 -T3( ayj+a yj )- (- -- + 3ayj -a yj) TT( 2aY.i) + -- z (2.15)

On inserting (2.14) into (2.13) we deduce after some simplification that

J
2 r {I 3a ZK(s

8s --j=! 6s
2

s
(2.16)

On inverting Laplace transforms and using (2.6) we have the formula:

o(t
J

area let_h r 3a+ + {I4t 8(t)I/2 J=l

l/2
(a,+l-J Ja’)Y’ }+ O(t as t O. (2.17)

CASE 2. (0 < Yi << l, J k and Yi >> 1, j k+l J)

In this case f.(v;s), j k have the same forms (2.14) and (2.15) while

f.(v;s), j k+l J have the form (2.14)where

5

Aj, 0 O, Aj, +
ayj ) ayj’

2
T + 4 19 T6 43

Aj ,2 8ayj 8ayj 5 (8ayj
25 8

) + s-yj ’
and

z3 z5 27
Aj,3 (4ayj ) + (4ayj

13 7 107 27
) 4a .j 8

141 15 15 II+ ? (4aj g) a T (2.18)

Consequently, we deduce after some reduction that

k J
-IO(t) _area4t fl +

8(at)
1/21 {a ,j-l aJ+l-J J=k+l aJ+l-aJ (a+yj)

k
+ {I 3 l (aj+l-aj) Yj o(t I/2) a8 t 0.

j=l

CASE 3. (Yi >> I, j k and 0 < yj << I, J k+1 J)

This case can be deduced from the previous one and ylelds:

(2.19)

J k
area 11+ {a Z (aj+1-3 I (aj+l-a3) (a+yjl)}O(t) 4t 8(t)I/2 Jfk+1 Jffil

J 1/2+ {x -3a Z (j+- j) yj}g+o(t
Jffik+1

as t O. (2.20)

CASE 4. (yj >> I, J J)

In this case fj(v;s), J J have the same forms (2.14) and (2.18).

Consequently we have the formula:

area R_
J

v I/2

8(t)i/2. Z (j+l-=j) (a+,]l)} ++ O(t as t 0. (2.21)O(t) 4 J=l

With reference to section in Zayed [I] and the articles by Kac [4], Gottlleb



HEARING THE SHAPE OF MEMBRANES: FURTHER RESULTS 595

[7], Pleijel [8], and Steeman and Zayed [9], the asymptotic expansions (2.17), (2.19),

(2.20) and (2.21) may be interpreted as:

(1) is a circular domain of radius a and we have the impedance boundary conditions

(1.2) with small/large impedances yj, j J as indicated in the specifications

of the four respective cases, or (li) for the first three terms, is a bounded
2

domain in R2 of area a Let h < be the number of smooth convex holes in

J
3a

j) holes and a boundary length ofIn case it has n >. (a
i+ 7j

j=l

2 together with Neumann boundary conditions, provided h is an integer.
k

In case 2, it has h (al+l- .I)71 holes, the parts r], j k of the

boundary 1" have lengths a (’+13 ’) together with Neumann boundary conditions
j=l

J
while the other parts rj, j k+l J have lengths - (j+l- j) (a*YI)
together with Dirlch]et boundary conditions,

j=k+l

J
In case 4, it has no holes (h 0) and a boundary length of (’+I -’)

-1 j =I(a + 7_. together with Dirlchlet boundary conditions.

We close this section with the remark that when J 2 the results (2.17), (2.19),

(2.20) and (2.21) are in agreement with the results of [I].

3. CONSTRUCTION OF (t) FOR PROBLEM (P2).

In analogy with the two dimensional membrane problem, it is clear that t)

associated with problem (P2) is given by:

(t) G(,;t)d, (3.1)

where G(,’;t) is the Green’s function for the heat equation

(A3 -) u 0, (3.2)

subject to the impedance boundary conditions (1.3) and the initial condition of the

form (2.3). As we have done in section 2, we can write G(x,x’;t) for problem (P2) in

a form similar to (2.4), where

2

G0(,’;t) (4t) exp(- 4t }" (3.3)

From (2.4), (3.1) and (3.3) we find that

where

O(t) volume n
(4t)3/2 + K(t) (3.4)

K(t) fff (x,x;t)dx. (3.5)

An appllcatlon of the Laplace transform to the heat equation (3.2) shows that

G(x,x’;t) satisfies the three-Plmenslonal membrane equation
2-- 2(A

3 s )G(x,x ;s (x x’) in , (3.6)
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together with the impedance boundary conditions (1.3), where

(s2) fff (x,x;s2)dx. (3.7)

With reference to section 2 in Waechter [I0], it can readily be shown after some

reduction that the impedance boundary conditions (1.3) give

2 J
(s2) a2 [ (m + ) [ (a.j+l- aj) f.j(m;s)},

m--0

where fj(m;s) have the same form (2.12) with m replaced by m +

The series (3.8) if fact diverges since K(t) for small positive t; however,

this difficulty may be easily removed by considering the asymptotic expansion for

large positive s of

2 N J
a(s2) i (m + ) (aj+ -aj) fj(m;s)}.

m=0 j--I
(3.9)

Inversion of the Laplace transform gives KN(t) and we may then write

K(t) lim KN(t).
N

On applying a Watson transformation [I0] to (3.9), we find that

(3.1o)

2 J N
(3.11)

Now, the four respective cases considered in section 2, can be applied as

follows

CASE I. (0 < ,{j << I, j J)

On inserting (2.14) and (2.15) into (3.11) and integrating and letting N (R), we

deduce after some simplification that

surface area SK(t) 16t +
12 3/2t I/2 [2a2 aj+l

+ 0(t I/2) as t 0.

%) (-

(3.12)

From (3.4) and (3.12) we have the formula

O(t) volume R surface area S +
J

(4t)3/2 +
16t 123/2tl2 {2a2

/2+ 0(t as t 0. (3.13)

CASZ 2. (0 < yj << I, j k and yj >> I, J k+l J)

On inserting (2.14), (2.15) and (2.18) into (3.11) and integrating and lettlng

N we have the formula

O(t volume R
k J

-I

(4t)3/2 + t2a2 [ (aj+ ) 2a . (aj+ aj)(a 2yo )}
j=l j=k+l
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2
k J

+
3/2 1/2 {2a j= (a

j+ aj)(- 3yj) + 2a . (a
j+ aj)}12 t j=k+l

+ 0(t I/2) as t 0.

597

(3.14)

CASE 3. (yj >> I, j k and 0 < yj << I, j k+l J)

This case can be deduced from the previous one and yields

8(t)
J kvolume +

(4t)3/2
{2a

2
(aj+I- aj) 2a . (aj+I- aj)(a-2yjl)}

j=k+l J =I

J k

I/2 {2a2 (aj+I- aj)( 3Tj) + 2a ).’ (aj+I- aj))123-2/t J=k+l j=l

+ 0(t 1/2) as t O. (3.15)

CASE 4. (yj >> I, j J)

On inserting (2.14) and (2.18) into (3.11) and integrating and letting N (R)we

have the formula

J
-I a 1/2volume {2a . (aj+ aj)(a- 2yj )} + + 0(t

(4t) 3/2 16c j=l 3(rt) 1/2

as t 0. (3.16)

With reference to section in [1] and the articles by Gottlleb [7], Waechter

[I0], P1eiJel [11], and Zayed [12] the asymptotic expansions (3.13) (3.16) may be

interpreted as (1) is a spherical domain of radius a and we have the impedance

boundary conditions (1.3) with small/large impedances , j J as indicated in

the specifications of the four respective cases, or (ii) for the first three
4 3

terms, is a bounded domain in R3 of volume a

2In case I, it has a surface S of area 4a the parts Sj, J I, J of the

J
surface S have areas 2a

2 ).’ (aj+ aj) and mean curvatures (;- 3yj), jffil J
j=l

together with Neumann boundary conditions.

In case 2, the parts Sj, J I, k of the surface S have areas

2a
2 k

" (aJ+l- aj) and mean curvatures (- 3Vj) J k together with Neumann

boundary conditions, while the other parts Sj, J k+1 J have areas

J
-I

j---k+1
and mean curvature together with Dirichlet boundary

a

conditions.
J -IIn case 4, it has a surface of area 2a (0+I- Ja4)(a- 2yj and mean curvature

j=l

--together with Dirichlet boundary conditions.a
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Finally, we note that when J 2 the results (3.13) (3.16) are in agreement

with the results of [I].

4. DISCUSSIONS.

This paper represents a sensible extension of the author’s previous publication

[I] when the boundary r in R2 or the surface S in R3 consists of two parts (J 2) to

the case when F oc S consists of J parts, where J is a finite positive integer, in

which a great deal of technical analysis has gone into obtaining the results. Zayed

[2,3] has recently generalized the results of [I] to the case when Rn, n 2 or 3

is a simply connected bounded domain, where a considerable amount of mathematical work
has gone into obtaining the results. With reference to the previous work (See [2],
[3], [II], [12]), we conclude that, there are technical difficulties and a

considerable amount of mathematical work in extending the results of the present paper

to the type of domains considered in [2] and [3]. This extension is still an open

problem which rlll be discussed in a forthcoming paper.
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