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ABSTRACT. Let R be an associative rlng with unity. It is proved that if R satisfies

Ohe polynomial identity Ixn y ymxn, x] 0 (m I, n > I), then R is commutative.

Two or more related results are also obtained.
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I. INTRODUCTION.

Throughout this paper, R will be an associative ring, Z(R) the center of R, N the

set of all nilpotent elements of R, N’ the set of all zero divisors of R, and C(R) the

commutator ideal of R. For any pair of elements , y in R, we set as usual

Ix,y] xy yx.

Recently, generalizing some results from Bell [1] Quadrl and Khan [2,3]) proved

that if R is a ring satisfying the polynomial identity [xy ym xm, x] 0

(m >I, n > I), then R is commutative. In [4], Psomopoulos has shown that an s-unital

ring R in which the polynomial identity [xny y x,x] 0 (m > I, n > 0) holds, must

be commutative.

In this paper, motivated by the above polynomial identities, we intend to prove

results on commutativlty of a ring R with unity satisfying the fo]lowin property:

(i) "there exist positive integers m > and n > such that Ix n m n
y- y x x] 0 for

all x,y in R".

Our property (i) can be regarded as an amalgam of those constder,.t by the above

authors.
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2. PRELIMINARIES.

In preparation for the proof of our results, we first state the following well-

known results.

LEMMA 2.|. (Psomopoulos [4]). Let , y e R. If ix,y], x 0, the for any

positive Integer k, ixk, y] k xk-l[x,y].
LEMMA 2.2. (Nicholson and Yaqub [5]). Let R be a ring with unity I. Suppose

k
that for some positive integer k, x y 0 (x+|)

k-
y for all x, y In R. The y 0.

LEMMA 2.3. (Bell [6]). Let be a polynomial [dentlty in a finite number of non-

commuting Indetermlnates with i,tegral coefficients. Then the following are

equivalent

(i) For any ring R satisfying 0, C(R) is a nll ideal.

(ll) For every prime p, (GF(p)) 2 fails to satisfy f 0.

LEMMA 2.3. (Tong [7]). Let R be a ring with unity I. Let It(x) x
r

If k >
o

let I (x) Ik_l(X+l) Ik_l(X). Then Ir r
r_l(X) =I/2(r-l) r! + r!x" I (x) r! and

r
It(x). 0 for j > r.

3. RESULTS.

Throughout the rest of the paper, R stands for a ring with unity I, and satisfies

the property (I). Let us first note that for any x, y in R, the property (i) can also

be expressed as:
n ym n

x ix,y] ix, x (3.1)

Then for any positive integer t, we obtain

tn (t-|)n ym n (t-2)n
x ix,y] x ix, x x

2 3
2n (t- 3)n ym 3n[x,ym x x [x, x

By repeating the above process and using (3.1), we get
t

tn ym tn
x [x,y] [x, x (3.2)

We also need the following two results for the proof of our main theorem.

LEMMA 3.1. Let R be a ring with unity which satisfies the property (P). Then N

Z(R).

PROOF. Let u e N. Then by (3.2) for any x e R and a positive integer t, we have

xtn[x,u] ix, u
m

xtn.
t

But we have u as a nilpotent element, then u 0, for sufficiently large t.

x
tn

Therefore, ix,u] 0 for all x in R. Then we have (x+l) tn ix,u] 0 for all x in

R. By Lemma 2.2, this implies that [x,u] 0, which forces N Z(R).

LEMMA 3.2. Let R be a ring with unity which satisfies the property (i). Then

C(R) Z(R).
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PROOF. Replacing x by (x + 1) in (3.1) and multiplying both sides by xn on the

right and again using (3.1), we get

(x+l)n [x,y] n xn [x,y] (x+l)n, for x,y e R. (3.3)

Define

I), and E 2 ( 0/o 0 ol-

Let x Eli + El2 + E12 and y Eli. Then x and y fail to satisfy (3.3) in (GF(p)) 2,

for a prime p. So by Lemma 2.3, C(R) is a rill ideal, and hence by Lemma 3.1,

C(R) Z(R). This ends the proof.

In view of Lemma 3.2, it is guaranteed that the condition of Lemma 2.1 holds for

each pair of elements x, y in a ring R wlth unity which satisfies the property (i).

THEOREM 3.1. Let R be a rlng with unity satisfying property

(i) Then R Is commutative.

PROOF. We are given that R is a ring with unity. So R is isomorphic to a

subdlrect sum of subdlrectly irreducible rings R (i e I), each of which as a

homomorphlc image of R, satlsfing the property (i). Thus we may assume that R is a

subdirectly irreducible ring satisfying (I).

Let S be the Intersection of all non-zero ideals of Ri. Then clearly S $ (0).

Now, if n in the polynomial identity (3.1), we obtain [x,y-ym] (x+l) Ix,y]

[x,ym] (x+l) x[x,y] [x,ym] x 0 for all x,y R. Thus R is commutative by

Herstein [8, Theorem 18].

Henceforth we assume n > I. Consider the positive Integer k p p, where p is

a positive integer greater than I. Then by (3.1) we get

n pmxnk x [x,y] [x,y] pxn[x,y]
m n n

p [x,ym] x p x Ix,y]

Ix, (py)m] x
n xn[x, (py)]

n
x
n

x [x,(py)] [x,(py)].

Thus k xn[x,y) O, whclh on replacing x by (x+l) yields k Ix,y] O. Now combining

Lemma 3.2 with Lemma 2 we have Ixk x
k-I,y] k [x,y] 0. Therefore, it follows

that
k
x E Z(R) for all x In R. (3.4)

Now, replaclng y by ym in (3.1) we get

n ym m n
x Ix, Ix (ym x (3.5)

Then by Lemma 3.2, we have

n ym ym n
x [x, [x, x (3.6)

But
m-I[x,ym] m y [x,y]. (3.7)
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So using (3.6) and (3.7) we obtain

n ym m-I ym n
[, m y Ix, x

and
n[x,(ym)m] xn m(ym) m-l[x,ym] x

2
m-I (m-l) ym n

m y y [x, x

Thus (3.5) gives
m-I (m-l)2) m] xn=my (1-y [x,y O. (3.8)

ym-I (m-1) 2
Let us replace by (x+l) in (3 8). Then we get m (l-y [x,ym] (x+l)n=0. So

m-I (m-l) 2
by Lemma 2.2, m y (l-y [x,ym] 0. Therefore, by Lemma 2.3 of Quadrl and

Khan [3], we have

m-1 _yk(m-1)
2

my (l [x,ym] O.

k(m-l) 2 k(m-1)
Now, let u e N’. Then by (3.4), u e N’ Z(R), and S u

(3.9) we obtain
m-I

u
m _uk(m-l)

2
mu Ix, (I 0.

)2m-I k(m-1)’ k(m-l
If m u [x,um] 0, then (l-u E N’ and so S=S (l-u

a contradiction as S (0). Therefore

m-1
u
m

m u Ix, 0.

(3.9)
2

(0). Hence using

(0), which gives

Now, from (3.1) we have
2

2n
u
m 2n

x Ix,u] Ix, x

m(m-
u
m 2n

=mu Ix x

m-1 (m-l) 2
2n

m u u [x,um] x
2m-I

u
m (m-I) 2n

=mu Ix, u x

2n
This implies that x [x,u] 0. Hence by Lemma 2.2, we obtain [x,u] 0, that is

u Z(R). Therefore, N’ Z(R).

Clearly, for any x e R, xk and x
km Z(R). Then by (3.1) for any y e R, we have

the identity

Therefore,

n xkm(xk-xkm)xn [x,y] xk(x [x,y]) (xn[x,y])
n (xkm n

x (xk[x,y]) [x,y]) x

n n
x [x,xky] [x,(xky) m] x

N
X
n

x [x,xky] [x,xky].

k km
x
n(x x [x,y] 0, and

(-xt) xS[x,y] 0,

where t km-k+l, and s=n+k-l.

(3.to)
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Now, if xS[,y] 0, then Lemma 2.2 yields ix,y] O. But xS[x,y] 0 gives
t

x- N’ Z(R).

Therefore, ix xt, y] 0, for all x, y in R, which implies that ix,y] 0, by

Theorem 18 of [9] Thus in evey case ix,y] O.

This proves that R is commutative.

THEOREM 3.2. Let R be an s-unltal ring satisfying the property (i). Then R is

commutative.

PROOF This follows from Proposition of Hirano, Kobayashi and Tomlnaga [9]

since R with unity satisfying (i) is commutative by Theorem 3.1. Finally, we present

a short and easy proof of Theorem 3.1, but under an extra condition on the commutators

in the ring R. We use an Iteration technique as given in Tong [7].

THEOREM 3.3. Let R be a ring with unity satisfying the property (1). If every

commutator in R is m! torsion free, then R must be commutative.

PROOF. The ring R satisfies the identity

n ym x
n

x [,y] ix, n l, m > I).

We shall apply the iteration on ym. As in [7], let lj(y) IT(y)_ for 0,I,2,...

Then the above identity can be rewritten as

n n
x ix y] ix I (y)] x. (3.11)

Replacing y by (y+l) in (3.11), we obtain

n n
x [x,y] [x, I (y+l)] x

o

Now, using Lemma 24, we get

n n
x [x y] Ix, I (y) + ll(Y)] x (3.12)

o

Equations (3.11) and (3.12) when combined, give

n0 Ix, ll(Y)] x (3.13)

Again, let y=y+l In (3.13). Then using Lemma 2.4 we have

n0 [x, 12(Y)] x

Repeating the above process (m-l) times, we reach the identity

n
0 Ix, I (y)] x (3.14)

With an application of Lemma 2.4, we end up with

m![x,y] x
n 0.

Now replacing x by (x+l) in the above identity, and making ue of Lemma 2.2, we have

m![x,y] 0, for all x,y e R.

By every commutator in R is m!-torslon free, so ix,y] 0 for a11 x and y in R.

Therefore, R is commutative. This completes the proof.
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