A NOTE ON THE VERTEX-SWITCHING RECONSTRUCTION

I. KRASIKOV

School of Mathematical Sciences Tel-Aviv University Tel-Aviv Israel

(Received October 7, 1987 and in revised form November 15, 1987)

ABSTRACT. Bounds on the maximum and minimum degree of a graph establishing its reconstructibility from the vertex switching are given. It is also shown that any disconnected graph with at least five vertices is reconstructible.

KEY WORDS AND PHRASES. Vertex-Switching, Reconstruction. 1980 AMS SUBJECT CLASSIFICATION CODE. 05C06.

1. INTRODUCTION.

A switching G_{v} of a graph G at vertex v is a graph obtained from G by deleting all edges incident to v and inserting all possible edges to v which are not in G. Since switching is a commutative operation, i.e., $(G_{v})_{u} = (G_{u})_{v}$, the definition can be naturally extended to arbitrary subsets of the vertex set V(G). Thus, G_{A} is defined for all $A \subset V(G)$.

The Vertex-Switching Reconstruction Problem, proposed by Stanley [1], asks: Is G uniquely determined up to isomorphism by the set (deck), $\{G_{\nu}\}_{\nu \in V(G)}$? If the answer is "yes" then G is called reconstructible.

It was shown in [1] that any graph G with $n = |V(G)| \neq 0 \pmod{4}$ is reconstructible. It seems that a little is known about the case $n = 0 \pmod{4}$. However, Stanley pointed out [1], that the degree sequence of a graph, and consequently, the number of edges easily reconstructible, provided $n \neq 4$. Bounds on the number of edges in a graph, e(G), establishing its reconstructibility was given [2]. Namely:

$$e(G) \notin [\frac{n(n-2)}{4}, \frac{n^2}{4}], n \neq 4.$$

As might be expected, in virtue of the last result, G is reconstructible if it has a vertex of degree not close to n/2 or if G is disconnected. Here we will prove the last claim (Theorem 2) and show that for sufficiently large n a graph is reconstructible if max $(\Delta, n - \delta) > 0.9n$, where Δ and δ are the maximum and the minimum degree of G respectively. Actually, we prove a little more, namely: 2. MAIN RESULTS.

THEOREM 1. If min $\left(n \begin{pmatrix} n-1 \\ \Delta \end{pmatrix}$, $n \begin{pmatrix} n-1 \\ \delta \end{pmatrix}\right) < 2^{n/2-3}$,

then G is reconstructible.

PROOF. In virtue of the quoted result of Stanley, we may assume $n = 0 \pmod{4}$. We will consider a graph G as a spanning subgraph of a fixed copy of the complete graph K_n . The switching equivalence class G^* of G is the set of all $H \subset K_n$ isomorphic to G such that $H = G_A$ for some switching $A \subseteq V(G)$.

For each subgraph $g \subset G$, let $\mu(G^* \supset g)$ be the number of those elements of G^* which contain a fixed copy of g.

First we show that G is reconstructible if

$$\frac{\mu(G^* \supset g)s \ (g \rightarrow K_n)}{s(g \rightarrow G)} < 2^{n/2-2},$$
(2.1)

where $s(H \rightarrow F)$ is the number of the subgraphs of F isomorphic to H.

Observe that

$$|G^{*}|s(g \rightarrow G) \leq \mu(G^{*} \supset g)s (g \rightarrow K_{n}).$$
(2.2)

On the other hand, consider the set $S_i = \{A : G_A \in G^*, |A| = i\}$. Observe that $\Sigma|S_i| = 2|G^*|$ since G_A and $G_{\overline{A}}$, $\overline{A} = V(G)\setminus A$, are identical. It is known that for a nonreconstructible graph $|S_{4i}| \ge {n/2 \choose 2i}$ ([2], Corollary 2.4). Thus,

if G is not reconstructible then

$$2|G^*| \ge \Sigma {n/2 \choose 2i} = 2^{n/2-1}.$$
 (2.3)

Comparing (2.2) and (2.3), we get that (2.1) is enough for the reconstructibility of G.

Let now g be a star $K_{1,\Delta}^{}$. Observe that $\mu(G^* \supset K_{1,\Delta}) \leq 2$ since the only proper switching, possibly preserving a fixed copy of $K_{1,\Delta}^{}$, is $A = V(K_{1,\Delta})$. Furthermore,

$$s(g \rightarrow K_n) = n \begin{pmatrix} n-1 \\ \Delta \end{pmatrix}$$
. Hence, by (2.1), G is reconstructible if $n \begin{pmatrix} n-1 \\ \Delta \end{pmatrix} < 2^{n/2-3}$

Now, to complete the proof, one has to consider the complementary graph \overline{G} , which is reconstructible iff G is. \Box

Now we will prove that disconnected graphs are reconstructible. First we need the following simple lemma:

LEMMA 1. Suppose that nonisomorphic graphs G and H have the same deck. Then for any $v \in V(G)$ there is $u \in V(G)$, $v \neq u$, such that $G_{vn} \cong H$.

PROOF. Since the decks of G and H are equal then there is a bijection $\phi:V(G) \to V(H)$ such that $G_{\nu} \cong H_{\phi(\nu)}$. Let $h_{\nu} : H_{\phi(\nu)} \to G_{\nu}$ be an isomorphism. Choosing $u = h(\phi(\nu))$ we obtain $G_{\nu H} \cong H$. Moreover, since $G_{\nu H} \equiv G$, then $\nu \neq \phi(\nu)$.

826

COROLLARY 1. Let $n \neq 4$. If G_{vu} and $G, v \neq u$, have the same deck then deg (v) + deg (u) = n or n - 2, depending on whether v and u are adjacent in G or are not. PROOF. Let e(v,u) be the number of edges between v and u. Since e(G) = e(H) then

deg (v) + deg (u) - 2e(v,u) =
$$\frac{1}{2} \cdot 2(n-2) = n-2$$
.

COROLLARY 2. If G is not reconstructible and $n \neq 4$ then $n - 2 \leq \delta + \Delta \leq n$.

PROOF. This easily follows from Lemma 1 and Corollary 1. We omit the details. $\mbox{\tt D}$

THEOREM 2. Any disconnected graph is reconstructible, provided n \neq 4.

PROOF. Assume the contrary. Then there are two nonisomorphic graphs G and H with the same deck, $n \neq 4$, and, say, G is disconnected. Denote by C a minimal connected component of G. First we show that G has exactly two connected components and C \cong K_{$\delta+1$}.

Let v be a vertex of the minimal degree in C, and let u be such a vertex that $G_{vu} \cong H$. We claim that either $u = \phi(v) \in \overline{C}$ or G is regular of degree $\frac{n-2}{2}$. Indeed, otherwise,

$$|C| \ge \max(\deg(v) + 1, \deg(u) + 1) > n/2,$$

which contradicts the minimality of C. Furthermore, if G is regular then again v and u are in different components since, otherwise, the degree sequences of G and G_{vu} are different. Now it follows by Corollary 1, deg(v) + deg (u) = n -2. Therefore, G has exactly two components, C is regular, and $\Delta \ge n/2$.

Let us show that C is just $K_{\delta+1}$. Since all vertices of degree Δ are in C, we have

deg (v) + 1 \leq |C| \leq n - Δ - 1.

Hence, applying Corollary 2, we get

 $n - 2 \leq \delta + \Delta \leq deg(v) + \Delta \leq n - 2.$

Thus, deg $(v) = \delta$, deg $(u) = \Delta$, and $C \cong K_{\delta+1}$.

Finally,
$$G_{vu} \cong G$$
 since deg $(v) = |C| - 1$, $u \in C$ and deg $(u) = \Delta = |C| - 1$,

which is a contradiction. This completes the proof. □

REFERENCES

- STANLEY, R.P. Reconstruction from vertex switching. <u>J. Combin. Theory (B) 38</u>, (1985), 132-138.
- KRASIKOV, I. and RODITTY, Y. Balance equations for reconstruction problems. <u>Archiv der Mathematik</u>, Vol. 48 (1987), 458-464.

827