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I. INTRODUCTION.

The problem of making the theory of Lebesgue integration accessible to a wide

audience, including students of mathematics, science and engineering, is not easily

solved. And yet, the Lebesgue integral is an indispensable tool in many branches of

mathematics and its applications, such as Fourier analysis and signal processing.

The inaccessibility of the theory is mainly due to the fact that the usual pre-

sentations, both those that are and those that are not based on measure theory, are

lengthy and indirect and rely on a number of new basic concepts that must be assimila-

ted first. For instance, in Royden [I] the general definition of the Lebesgue inte-

gral is preceded by definitions for simple functions, then for bounded functions over

a set of finite measure and then for nonnegative functions, and in each particular

case some amount of theory is elaborated. In Apostol [2] the general definition is

preceded by definitions for step functions and then for upper functions, and again a

certain amount of theory is developed in 4ach particular case. Furthermore, these

classic presentations represent a new start, with all knowledge of Riemann integra-

tion to be abandoned in favor of the new Lebesgue theory. To avoid this, McShane

[3] has recently developed a unified theory of Riemann and Lebesgue integration that

is, hopefully, elementary enough for presentation to a wide audience. While sharing

McShane’s concern and agreeing that he succeeds in constructing an appealing unified

theory, this author believes that, regarding simplicity and accessibility, the answer

lies elsewhere.

There is an entirely different approach to te definition of the Lebesgue in-

tegral, due to Mikusi6ski [4], which is very direct and does not need the previous

development of either measure theory or the Riemann integral. It is based, instead,

on a series representation of the function to be integrated, but, since this series
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representation need not be unique, it requires a somewhat lengthy proof of consis-

tency. In addition, it is not readily apparent how the definition of the Lebesgue

integral in any of the approaches mentioned so far can be immediately used for the

quick computation of simple integrals.

Our task is, then, to construct a simple theory that builds on concepts familiar

to any audience and that is based on a very direct and general definition, capable of

dealing with the computation of simple integrals. To this end, the best course of

action is to define the Lebesgue integral s a (possibly improper) Riemann integral.

This is not only brief but allows for complete generality at once and, moreover, we

know how to compute Riemann integrals (there is no need to develop a theory of impro-

per Riemann integrals as a prerequisite because, beyond the definition, all that is

needed is the fact that such an integral is a linear and increasing function of the

integrand). Such a theory is presented in Rey Pastor [5], but only for functions

defined on a set of finite measure and his development makes use of the Riemann-

Stieltjes integral. The main object of this paper is to reconstruct this theory from

the beginning (with one minor modification} for functions defined over sets of

arbitrary measure and, for additional simplicity, avoiding all use of the Riemann-

Stieltjes integral. This has necessitated a complete set of new proofs and a collec-

tion of new auxiliary results (Propositions 2, 3 and 4 and Lemmas 3, 4 and 5 below).

In addition, we have included the Levi monotone convergence theorem and have adopted

an entirely different approach to the Lebesgue dominated convergence theorem. Instead

of basing its proof on the additivity of the integral (not an easy fact to establish),

our approach highlights the role of uniform convergence. Lemmas 3 and 4 show that the

contribution of the dominated convergence is just to enable the uniform convergence to

do the job via Egorov’s theorem and Proposition 4.

2. THE LEBESGUE MEASURE AND MEASURABLE FUNCTIONS.

For easy reference, and to specify how much Lebesgue measure theory is necessary

for our presentation, we collect in this section those results that will be used in

the rest of the article. For proofs see [I] or [6]. By a rectangle in n we shall

mean the product space of n bounded intervals, open, closed, or neither. The volume

of such a rectangle R, denoted by v(R), is the product of the lengths of its com-

ponent intervals.

DEFINITION I. The outer measure of a set E Cn
is

defm(E) : inf v(R.) (2.1)

where the infimum is taken over all finite or countable collections of open rectan-

gles {Ri such that ECRi.
It turns out that it is not always true that the outer measure of a finite union

of disjoint sets is the um of their outer measures. But this will always be true if

we restrict ourselves to sts of the following type.

DEFINITION 2. A set E n is called measurable if and only if for any set

S n m(S) m(SE} + m{S/hEC), where Ec is the complement of E in n. If

E is measurable m{E) is called the Lebesgue measure of E.

Notice that n and the empty set are measurable with Lebesgue measures oo
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and zero respectively. It is also clear that a set is measurable if and only it its

complement is measurable and that if E and F are measurable with F C E then

m(F) < m(E).

THEOREM I.

(I) If E is a finite or countable set then m(E) O.

(2) If {Ei} is a finite or countable collection of measurable sets then their

union E is measurable and m{U Ei) < m(E If, in addition, the E
i

are
i i

disjoint then equality holds.

(3) If {El} is a finite or countable collection of measurable sets then their

intersection E
i

is measurable. If, in addition, m(E I) < and Ei+1 C E
i

for

all i then m(Ei) -- m(f]Ei) as i --.
(4) If E and F are measurable then E F

def {x E x F} is

measurable. If, in addition, m(E) < and F C E then m(E F) m(E) m(F).

(5) Every half space in n is measurable.

(6) Every rectangle in n is measurable and its Lebesgue measure is its

volume.

(7) Open and closed sets are measurable.

DEFINITION 3. A function f:E C Bn B is measurable if and only if E is

measurable and for any y e the set {x e E f(x) > y} is measurable.

THEOREM 2. The following statements are equivalent:

(I) For each y e the set {x e E f(x) > y} is measurable.

(2) For each y e the set {x e E f(x) y} is measurable.

(3) For each y the set {x e E f(x) < y} is measurable.

(4) For each y e the set {x e E f(x) y} is measurable.

EXERCISE I. If E is measurable and f:E -- B is continuous then f is

measurable.

THEOREM 3. Let E cn be a measurable set.

(I) If f,g:E-- are measurable then f + g is measurable.

(2) If {fN} is a sequence of measurable functions on E and if fN-- f on

E then f is measurable.

THEOREM 4. (Egorov’s theorem) Let E Cn
be a measurable set and let

be a sequence of measurable functions on E such that fN-- f on E. For any

0 there is a subset G of E with m(G) < d and such that fN -- f uniformly on

E Go

3. THE LEBESGUE INTEGRAL.
The Lebesgue approach to define the integral of a function f:E n __

is

to partition its range, not its domain as in the Riemann theory. To be specific,

consider the case of a measurable set E with m(E) < and a measurable function

f:E-- whose values are between zero and M > O. If 0 YO < Y < < Yk M

is a partition of [0, M] and if we define S. {x e E f(x) > Yi} for i O,

k, then f is said to be integrable on E if and only if

i
k ksup :I m(Si)(Yi- Yi-1 inf .

i:I m(Si-1)(Yi- Yi-1 )’ (3.1)

where the supremum and infimum are taken over all partitions of [0, M], and this
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common value will be denoted by IE f.

EXERCISE 2. Define a set E. {x e E yi_
that

for each i. Prove

k k" i m(Ei)Yi-1 i:I m(Si)(Yi- Yi-1 (3.2)

and

k k }(Y Yi- (3 3)" i:I m(Ei)Yi Z {:I m(Si-1 i

Now, if we define a function f:[O, M] 3 by f(y) m {x e E f(x) > y}

then f is clearly bounded and decreasing and, thus, Riemann integrable on [0, M].
PROPOSITION I. Let E C ]Rn be a measurable set with m(E)<=o. Every bounded,

nonnegative measurable function f:E is integrable on E and

IEf: RI M
0 f (3.4)

where the R indicates Riemann integral.

PROOF. Notice that m(Si) f(yi and then, since f is decreasing,

i=kl m(Sl)(Yi Yi-1 and i=kl m(Si_1)(yi Yi_1 (3.5)

are, respectively, the lower and upper Riemann sums of f with respect to the parti-

tion 0 YO < Y < < Yk M of [0, M]. The result follows because f is

Riemann integrable on [0, M], Q.E.D.

If f is nonpositlve instead of nonnegative we would like its integral on E to

equal the opposite of the integral of -f, that is, we want

IEf :-RI M R 0 0
M0 -f M -f RI --f(-Y) dy (3.6)

This suggests that we define Mf(y) -M_f(-y) if y < O, and then the entire prece-

ding discussion motivates the following general definitions.

DEFINITION 4. Let E n be a measurable set and let f:E be a measu-

table function. The measure function of f on E is the function f defined by

m{ x e E f{x)> y
f(Y)

-m {x e E f(x)< y}

if y>O

if y< 0
(3.7)

Notice that f 0 on (-, O) and f 0 on (O,oo), and that Yl Y2
f(yl f(y2 on each of these intervals. The measure function can have infinite

values if m(E) oo, but, if it does not, it is Riemann integrable on every bounded
subinterval of (-, O) or (0,o}, and then the improper integrals

and R
0 ’f (3.8)

exist (they may be infinite). For convenience, if f
(-oo, O) or on (0,=o) we define

has infinite values on

RI o-f or R Of: oo- (3.9)
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DEFINITION 5. Let E C n be a measurable set, f:E-- a measurable func-

tion, and f the measure function of f on E. Then the (Lebesgue} integral of f

on E is defined to be

E f R - f (3.10)

if the right-hand side exists {that is if the two improper Riemann integrals over

(-4, O} and {0,} exist} If, in addition, the right-hand side is finite then f

is said to be {Lebesgue} integrable on E nd we write f e [{E}.

EXAMPLE I. If E {x 0 < x < I} and f(x} I/-- we have f(y} 0
-2

if y < O, f{y} if 0 < y < and f(y) y if y I, and then

iy_2dy R dy 2 (3 11}IE f
0

EXAMPLE 2. If E ix e 0 < x < I and f(x} I/x then f(y} 0 if

y < 0, f(y) if 0 < y < and f(y) I/y if y

_
I. We have

dy + dy o (3 12}E f
0 1

Examples and 2 show that the product of integrable functions need not be inte-

grable.

EXAMPLE 3. If E {x ]R 0 < x < I} and f(x) when x is rational and

f(x) 0 when x is irrational, then f{y) 0 for all y 0 and f O.
E

EXERCISE 3. Show that if f > 0 and E f 0 then m {x e E f(x) # O} O.

4. BASIC PROPERTIES OF THE LEBESGUE INTEGRAL.

First we establish the basic properties of the measure function. We shall write
E
f instead of f when we need to specify the domain E of f.

LEMMA I. Let E cn be a measurable set, let f,g:E be measurable

functions and let c e Then

(I} f<_ g f g.
(2) cf is measurable and cf(y} sgn(c}f(y/c} for all y O.

PROOF.

(I} If y > O, {x e E f(x) > y} x e E g(x} > y} f(y) <_ g(y}. If

y < O, {x e E g(x} < y} {x e E f(x} < y} -g(y} -f{y} f(y} g(y}.
{2) We shall consider the case c < O, y > O, and the others are similar

cf(y} m {x e E cf(x} > y}

m x e E f(x} < y/c}

-f(y/c}

sgn(c}f(y/c} (4.1}

Q.E.D.

LEMMA 2. If {Ei} is a finite or countable collection of disjoint measurable

sets in n Eif E Ei
and if f:E -- is a measurable function, then fEi

PROOF If y > O, {yl m {x E f(x} > y} m{.Tix e E
i

f{x} > y}
m {x e E. f(x} > y} i. Similarly if y < 0 Q E D

1
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COROLLARY I. If E,F C ]R
n

are measurable sets with F E and if f:E ]R

F E F E
is a measurable function, then f <_ f on (0, } and f >_ f on (-, 0).

E F E-F E-F F
PROOF. E FL)(E F) f f + f Then f > 0 on (0,) f <_

E E-F F E
f on (0,) and f

_
0 on (-, O) f >_ f on (-o, 0), Q.E.D.

THEOREM 5. Let E,F ]Rn be measurable sets, let f,g:E ]R be measurable

functions and let c e Then, if the integrals below exist,

g |E f IE g and if, in addition, f 0 then g L(E)(I) f

f (E).

(2) IEcf c E f and then f [(E) cf (E).

(3) If F C E then f [(E) f i(F) and if, in addition, f > 0 then

fc def fc(4) If c 0 and if f as c ---oomin f, e} then
E E

PROOF. () is obvious from Lemma ().

(2) Assume that c < 0 (proceed analogously if c > 0). By Lemma I(2),

I b (y) dy I b
0 cf 0 -f(y/c) dy c 0b/c f(u) du (4.2)

and taking the limit as b-- ee,

0 gcf cIO_f (4.3)

Similarly for the integral from - to O. Adding the two proves (2).

(3) By Corollary I,

IO E IO F I F E
(4.4)

If the outer integrals are finite, so are the inner integrals. Thus, f e L(E)

f [(E). The last assertion follows from the last two inequalities on the right.

c c I"(4)
E f -- f f (4 5)- fc E

as c -- oo, Q.E.D.

THEOREM 6. Let El, EN be a finite collection of disjoint measurable sets

in Bn, let E E
i

and let f:E be a measurable function. Then

IEf Z IE. f (4.6)

Furthermore, if f has a constant value c. on each Ei, then

IE f cim(Ei) (4,7)

PROOF. The first assertion follows from Lemma 2 and Definition 5. Now, if c. >
E. Ei0 then f(y) m(Ei) when 0.< y < c. (here m(E.) can be ) and f (y) 0

otherwise. Then

ci Ei m(EElf R 0 f ci i

Similarly if c. < 0, Q.E.D.

(4.8)
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EXERCISE 4. If there are constants a,b e such that a f(x} b for all

x e E, then am(E) E f bm(E) and m(E)< f e [(E).

EXERCISE 5. Let E c Bn be a measurable set and let f,g:E -- B be measu-

rable functions If f g on E except, possibly, on a subset of E of measure

zero, then IE f =IEE
THEOREM 7. Let E C n be a measurable set and let f:E B be a measurable

function If IE f exists, then

Also, f L(E) Ill e L(E).

PROOF If y > 0 the identity {x e E f(x)l > Y) {x e E f(x) > y} U

{x E f(x) <-y} shows that Ifl is measurable and that Ifl (y) f(Y)-f
Now,

R
0 /f(-Y) dy :-/

0 .f(u) du R p.f(y) dy (4.10)

so that

0 Ifl R
0 (f(Y)- f(-Y))dy R

0 f f (4.11)

The right-hand side is always well defined as a real number or oo since f
_

0 on

(-, 0} and f >_ 0 on (0, ), and it is finite if and only if both integrals are

finite, that is f e [(E} fl e i(E}. In either case, the inequality la + bl
a b holds when a > 0 and b < O, when a > 0 and b -, and when a and

b <_ O. Thus,

(4.12)

Q.E.D.

EXERCISE 6. Let R be a rectangle in Bn If f:R is Riemann integra-

ble then f e i(E) and IE f RIE f

5. THE ADDITIVITY OF THE LEBESGUE INTEGRAL.

This is one of the week points of the Lebesgue theory and it will not be

straightforward to establish this fact. We start by considering two particular cases:

those of piecewise continuous functions and nonnegative bounded functions.

PROPOSITION 2. Let E cn be a measurable set and let f,g:E B be measu-

rable functions each of which has a finite number of values. Then

IE (f + g) IE f+ IEg (5..I)

PROOF. If f has only a finite number of values ci, c
N on disjoint sub-

sets F1, F
N

of E and if g has only a finite number of values CI, CK
on disjoint subsets GI, GK of E, then f + g is the function whose values

are c + C on F G Noticing that F is the disjoint union . jK Fi G andi j i j" i =I j
using Theorem 6 we have

E (f g) " i " j:1 (ci + Cj) m(Fif]Gj)
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N K . K
Cj . i

NZ i:I ci Z j:1 m(FiGj j:1 :I

i
N K

Cj m(G" =I ci m(Fi) j=1 j

m(Gjf] F
i

(5.2)

Q.E.D.

PROPOSITION 3. Let E c n be a measurable set and let f,g :E-- be non-

negatlve, bounded, measurable functions. Then

IE(f + g): IE f + IEg (5.3)

PROOF. Let f have values in [0, M], M > O, and let 0 YO < Yl < < YW
M be a partition of [0, M]. Then define F.I {x e E f(x) > yi }_ and a func-

tion sf } by sf(x} Yi-1 if x e Fi_ Fi, i 1, k. Noticing that YO
mlFk) 0 and using Theorem 6 we have

kIESf Z i:i Yi-1 m(Fi-1 Fi)

iI Yi-1 (mlFi-1) mlF.))1
k

m(Fii:I (Yi Yi-1
k

i:I f(Yi)(Yl Yi-I

IE f (5.4)

and, as the norm of the partition approaches zero,

If Sg is defined for g as sf was defined for f, applying Proposition 2 to sf
and Sg, observing that sf + Sg <_ f + g, using Theorem 5(I}, and letting the norm

of the partition approach zero, we obtain

The first integral above is well defined because f + g is measurable, nonnegative

and bounded. Similarly, if we define a function Sf f by Sf(x) Yi if x

Fi F. and if S is defined for g as Sf is for f, a similar argument would1 g
yield

IE (f + g) IE f + IEg (5.7)

and the conclusion follows from the last two inequalities, Q.E.D.

THEOREM 8. Let E c n be a measurable set and let f,g [(E}. Then f + g

L(E) and

IE(f + g): IEf + IEg (5.8)
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PROOF. Assume first that f and g are nonnegative and for M > 0 define fM
M Since fM g f + g, Proposi-mln {f, M) and, similarly, g and {f g}M M

tlon 3 gives

gM (fM M)fM IE E EE + g < (f g) (5.9)

and then Theorem 5{4} implies that

MfM IE E’ E EE + g f+I g (f + g) (5.10)

as M--* It is not difficult to see that (f g)
M fM M

+ g and then

IE (f + g)M fM gM fM IE E E

Hence

as M--o It follows that

E (f + g) IEf + IEg (5.13)

and, since the right-hand side is finite, f g e [(E).

If, instead, f > 0 and g < O, define E {x E f + g >_ O} and E

{x E f g < 0}. Since f + g, -g and f f + g + (-g) are nonnegative on

E+, the preceding proof shows that

IE+f +(f + g + + (-g): +(f + g) +g
E E E E

(5.14)

Similarly, -(f + g), f and -g -(f + g) f are nonnegative on E and

-:) I_ +gl + _. 5.5)E- E E

Subtracting the last equation from the previous one and using Theorem 6 proves the

desired result in this case.

The two cases proved above imply the truth of the assertion in the general case

after decomposing E into the union of four disjoint subsets, on each of which f

and g do not change sign, Q.E.D.

6. THE CONVERGENCE THEOREMS.

In this section we study the validity of the limit IE fN IE f when fN f"

In the case of Riemann integration the uniform convergence of this sequence is a

sufficient condition. We start by proving a similar result for the Lebesgue integral.

PROPOSITION 4. Let S n be a measurable set with m(S) < o and let {fN}
be a sequence of measurable functions such that fN [(S) and fN f e [(S)

uniformly on S. Then

ISfN-- IS f (6.1)

PROOF. Given e > 0 there is a K e + such that f 6 fN f ’ and
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then f- fN f+e’ for N > K.

For y > 0 and N > K,

and then

f{y + ) m {x S f(x) > y + }

m {x e S f(x) > y}

0 f em(S) <_ i oo f oo0 gf (y + e) dy

_
i

For y > and N > K,

fN(Y f+(Y)
m{x e S f(x) + e >y}

m {x e S f(x) > y e}

f{y }

and then

fN fN0 <- m(S) :
e m(S) +

0 f

Z+
Thus, given e > 0 there is a K such that

I,fN-m(S)
0 0 Pf m(S)

for N > K and, since e is arbitrary,

gf0 0

as N =o. Similarly,

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

RI O
pfN I 0

as N . The last two limits and Definition 5 establish the desired convergence,

Q.E.D.

The following theorem is usually cited as one of the triumphs of the Lebesgue

theory because it replaces the uniform convergence of {fN by the less restrictive

condition that the fN be unifdmly bounded. It also allows the domain of these

functions to have arbitrary Lebesgue measure.

THEOREM 9. (The Lebesgue dominated convergence theorem) Let E Cn
be a

measurable set and let {fN} be a sequence of integrable functions on E that con-

verges to an integrable function f on E. If there is a function g [(E) such

(6.8)
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.+that fNl <_ g for all N e then

IEfN 1E f (6.9}

as N --oo,

This theorem is sometimes stated with the fN and f measurable rather than

integrable, but, in fact, these functions must be integrable. For the fN this is so

because g 6 [(E) -g (E) and -g IN g -g fN g" For f because

fN f and -g < fN < g -g < f < g"

The mechanism through which the uniform boundedness by the integrable function g

operates in this theorem can be better understood by means of the next two lemmas,

whose proof is temporarily postponed.

LEMMA 3. Let E n be a measurable set and let g e [(E). For any e > 0

there is a subset F of E with m(F) < oo such that

IIE_Fg < (6.10)

LEMMA 4. Let F c ]Rn be a measurable set, let g e (F) and let G be a

subset of F. For any > 0 there is a > 0 such that if m(G) < then

IIGgl <e (6.11)

Because of Lemma 3, the integrals of all functions involved in Theorem 9 are

negligeable outside a set F of finite measure and, because of Lemma 4, the same is

true in a sufficiently small subset G of F. This is significant because, according

to Egorov’s theorem (Theorem 4), the set G can be chosen so that fN f uniformly

on F G. And now, as in the case of Riemann integration, uniform convergence is

seen to be the main driving force in the proof of Theorem 9 through Proposition 4.

PROOF OF THEOREM 9. Given > 0 let F be as in Lemma 3, let be as in

Lemma 4 and, for this choice of , let G be as in Egorov’s theorem. Using the

triangle inequality and Theorems 6 and 7 we obtain

Ifl + 2 IE_F g

<-- IF-G fN F-G fl + 21Gg + 21E-Fg

By Proposition 4, N can be chosen so large that the first term on the right is

smaller than , and, since e is arbitrary, the result follows, Q.E.D.

PROOF OF LEMMA 3. In view of Theorem 7 we need only consider the case g > O.

By Definition 5, given > 0 there is an a > 0 such that

la E
0 g < (6.13)
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E(a) < ee since g e L(E).If we define F {x e E g(x) > a} we have m(F) gg
EE-F(y) (y) if y < a andBut E F {x E 0 g(x) a}, so that g g

E-F(y) 0 if y a. Theng
E-F a E

E_Fg R 0 g <_ R
0 g <e (6.14)

Q.E.D.

PROOF OF LEMMA 4. In view of Theorem 7 we need only consider the case g O.

Given e > 0 there is an a > 0 such that

(6.15)

G G F Then, if we choose e/2a and ifIf G C F we have g m(G7 and g
_

Mg-
m(G7 < , we obtain

IG g RI aO ggG RIGag
am(G} R[F

a g

< am(G) + < (6.16)

Q.E.D.

In some applications the sequence {fN} may not be uniformly bounded by an inte-

grable function. Such a case frequently occurs when the fN are the partial sums of

a series of positive functions. In this type of situation Theorem 11 below is useful,

but in order to prove it we need some preparation. First we observe that the Lebesgue

integral of a nonnegative function can be characterized in terms of those of bounded

integrable functions.

LEMMA 5. Let E Cn
be a measurable set and let f:E-- be a nonnegative

measurable function. Then

IE f suPlEg (6.177

where the supremum is taken over all bounded functions g e L(E7 such that 0 g f.

PROOF. If f e {E), given e > 0 there is a b > 0 such that

b
0 <_ IEf RIO f < e (6.18)

If we define g min {f, b} then g is bounded, 0 g f, g(y) f(y7 if O<

y < b and g(y} 0 if y >_ b. We have

b bIE g RIO g RI O f (6.19)

so that g e [(E) and

0 IE f IEg < (6.207

If f [(E) define E {x E f(x) > a} for each a > 0 and consider two

cases.
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{I} m(E < oo for all a > O. For any M > 0 there are a,b e such that
a

0 < a < b and

bla f > M (6.21}

If we define g:E by g min {f, b} on E and g 0 on E E then g
a a

is bounded, 0

_
g

_
f, g(y} m(Ea} if 0 y < a, g{y) f(y} if a

_
y < b

and g{yl 0 if y b. It follows that g [{E} and that

0
m(E b

a a f > a m(Ea + M (6.22)

(2) m(E o for some a > O. Given M > 0 let R be a rectangle so large
a

that m(RE > M/a. If we define g(x) a if x e RE and g(xl 0 otherwise,
a a

then g is bounded, 0 g f and

IE g IRfE a am(Rf]E > M (6.23}
a

a

Q.E.D.

THEOREM 10. (Fatou’s lena} Let E :21R
n

be a measurable set, let {fN) be a

sequence of nonnegative measurable functions on E and let fN f" Then for any

2Z
/> 0 there is an M e such that

f IE fN + e (6.241

for N > M.

PROOF. For any > O, Lemma 5 implies that there is a bounded function g

[(E}, such that 0

_
g f and

f- IE g<-e2 (6.25}

2Z
/

If we define gN min {g, fN} for each N then g is measurable because

{x e E :gNIx} > y} {x e E :g{xl > y}h{x e E :fN(x} > y} for each y > O, and

gN fN implies that

IEgN IEfN (6.26}

Also, since gN -- g on E and IgNl g, the Lebesgue dominated convergence theo-

rem implies that

IEg (6.27}

as N e. Therefore, there is an M >0 such that

E g E fN 2
{6.28}

for N > M, or else we would have

{6.29}

for arbitrarily large N, contradicting the limit above. We conclude that
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e
f + (6 30)

E f< Eg+ E N

for N > M, O.E.D.
n

THEOREM 11. (The Levi monotone convergence theorem) Let E c be a measura-

ble set, let {fN} be a sequence of nonnegative functions on E such that fM fN
for M < N, and let fN f" Then

f {6.31)
E fN E

as N oo.

PROOF fM fN for M < N fN <- f for all N

(6.32)

/for all N By Fatou’s lemma, given

f < E fN (6.33)

for N large enough. These two inequalities imply that

IE f (6.34)

as N oo, Q.E.D.
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