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1. INTRODUCTION.

The problem of making the theory of Lebesgue integration accessible to a wide
audience, including students of mathematics, science and engineering, is not easily
solved, And yet, the Lebesgue integral is an indispensable tool in many branches of
mathematics and its applications, such as Fourier analysis and signal processing.

The inaccessibility of the theory is mainly due to the fact that the usual pre-
sentations, both those that are and those that are not based on measure theory, are
lengthy and indirect and rely on a number of new basic concepts that must be assimila-
ted first. For instance, in Royden [1] the general definition of the Lebesgue inte-
gral is preceded by definitions for simple functions, then for bounded functions over
a set of finite measure and then for nonnegative functions, and in each particular
case some amount of theory is elaborated. In Apostol [2] the general definition is
preceded by definitions for step functions and then for upper functions, and again a
certain amount of theory is developed in each particular case. Furthermore, these
classic presentations represent a new start, with all knowledge of Riemann integra-
tion to be abandoned in favor of the new Lebesgue theory. To avoid this, McShane
[3] has recently developed a unified theory of Riemann and Lebesgue integration that
is, hopefully, elementary enough for presentation to a wide audience. While sharing
McShane's concern and agreeing that he succeeds in constructing an appealing unified
theory, this author believes that, regarding simplicity and accessibility, the answer
lies elsewhere,

There is an entirely different approach to the definition of the Lebesgue in-
tegral, due to MikusiAski [4], which is very direct and does not need the previous
development of either measure theory or the Riemann integral. It is based, instead,

on a series representation of the function to be integrated, but, since this series
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representation need not be unique, it requires a somewhat lengthy proof of consis-
tency. In addition, it is not readily apparent how the definition of the Lebesgue
integral in any of the approaches mentioned so far can be immediately used for the
quick computation of simple integrals.

Our task is, then, to construct a simple theory that builds on concepts familiar
to any audience and that is based on a very direct and general definition, capable of
dealing with the computation of simple integrals. To this end, the best course of
action is to define the Lebesgue integral ds a (possibly improper) Riemann integral.
This is not only brief but allows for complete generality at once and, moreover, we
know how to compute Riemann integrals (there is no need to develop a theory of impro-
per Riemann integrals as a prerequisite because, beyond the definition, all that is
needed is the fact that such an integral is a linear and increasing function of the
integrand). Such a theory is presented in Rey Pastor [5], but only for functions
defined on a set of finite measure and his development makes use of the Riemann-
Stieltjes integral. The main object of this paper is to reconstruct this theory from
the beginning (with one minor modification) for functions defined over sets of
arbitrary measure and, for additional simplicity, avoiding all use of the Riemann-
Stieltjes integral. This has necessitated a complete set of new proofs and a collec-
tion of new auxiliary results (Propositions 2, 3 and 4 and Lemmas 3, 4 and 5 below).
In addition, we have included the Levi monotone convergence theorem and have adopted
an entirely different approach to the Lebesgue dominated convergence theorem. Instead
of basing its proof on the additivity of the integral (not an easy fact to establish),
our approach highlights the role of uniform convergence. Lemmas 3 and U4 show that the
contribution of the dominated convergence is just to enable the uniform convergence to
do the job via Egorov's theorem and Proposition 4.

2. THE LEBESGUE MEASURE AND MEASURABLE FUNCTIONS.

For easy reference, and to specify how much Lebesgue measure theory is necessary
for our presentation, we collect in this section those results that will be used in
the rest of the article. For proofs see [1] or [6]. By a rectangle in R”  we shall
mean the product space of n bounded intervals, open, closed, or neither. The volume
of such a rectangle R, denoted by v(R), is the product of the lengths of its com-
ponent intervals,

DEFINITION 1. The outer measure of a set EC R" is

m(E) %" int T v(r) (2.1)

where the infimum is taken over all finite or countable collections of open rectan-
gles {Ri} such that ECUR,.

It turns out that it is not always true that the outer measure of a finite union
of disjoint sets is the sum of their outer measures. But this will always be true if
we restrict ourselves to sets of the following type.

DEFINITION 2. A set E c r” is called measurable if and only if for any set
SCR? m(s) = m(SNE) + m(Sf\Ec), where EC 1is the complement of E in . If
E is measurable m(E) is called the Lebesgue measure of E.

Notice that r" and the empty set are measurable with Lebesgue measures oo
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and zero respectively. It is also clear that a set is measurable if and only it its
complement is measurable and that if E and F are measurable with F C E then
m(F) < m(E).

THEOREM 1.

(1) If E 1is a finite or countable set then m(E) = 0.

(2) 1f {Ei} is a finite or countable collection of measurable sets then their
union LJEi is measurable and m(klEi) < X m(Ei). If, in addition, the E, are
disjoint then equality holds.

(3) If {Ei} is a finite or countable collection of measurable sets then their
intersection /'\E1 is measurable., If, in addition, m(E1) < o0 and Ei+1<: Ei for
all i then m(Ei)—*m(f\Ei) as i —> o0, 4

(4) If E and F are measurable then E - F ef {x e E: x ¢F} is
measurable. If, in addition, m(E) < 0o and FCE then m(E - F) = m(E) - m(F).

(5) Every half space in R"  is measurable,

(6) Every rectangle in R"  is measurable and its Lebesgue measure is its
volume,

(7) Open and closed sets are measurable.

DEFINITION 3. A function f:E cR" — R is measurable if and only if E is
measurable and for any y e R the set {x € E : f(x) > ¥y} is measurable.

THEOREM 2. The following statements are equivalent:

e B the set {x e
R the set {x e
R the set {x e
R the set {x e

(1) For each
(2) For each
(3) For each
(4) For each
EXERCISE 1., If

: f(x) > y} is measurable.

\%

: f(x) > y} is measurable.

f(x) < y} 1is measurable.

-
mmomom

: f(x) < y} is measurable.
is measurable and f:E — R 1is continuous then f is
measurable,

THEOREM 3. Let E € R" be a measurable set.

(1) If f,g:E—> R are measurable then f + g is measurable.

(2) If {fN} is a sequence of measurable functions on E and if fN —> f on
E then f is measurable.

THEOREM U4, (Egorov's theorem) Let E < R" be a measurable set and let {fN}
be a sequence of measurable functions on E such that fN — f on E. For any d >
0 there is a subset G of E with m(G) < d and such that fN — f uniformly on
E - G,

3. THE LEBESGUE INTEGRAL.

The Lebesgue approach to define the integral of a function f:E cR" — R is
to partition its range, not its domain as in the Riemann theory. To be specific,
consider the case of a measurable set E with m(E) < © and a measurable function
f:E — R whose values are between zero and M >0, If 0 = Vg< ¥ < e 2y = M
is a partition of [0, M] and if we define S = {x e E : f(x) > y,} for i=0,
...y, kK, then f 1is said to be integrable on E if and only if

sup &K mis) vy, -y =it &K mts, oy, -y, ), (3.1)

i-1

where the supremum and infimum are taken over all partitions of [0, M], and this
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common value will be denoted by SE: f.
EXERCISE 2. Define a set E, = {x e E: Vi < f(x) < yi) for each 1i. Prove
that

k k
20 4o MEDY, o= Yooy msyy -y ) (3.2)

and

k k
Loy ™EDYy = 2l mis Dy, -y, ) (3.3)

Now, if we define a function ,ur:[o, M] = R by p.r(y) =m{xeE: flx)>y}
then p. is clearly bounded and decreasing and, thus, Riemann integrable on [0, M].
PROPOSITION 1. Let E C R be a measurable set with m(E) <e . Every bounded,

nonnegative measurable function f:E — R is integrable on E and
M
= R
foe=r[Mu, (3.4)

where the R indicates Riemann integral.

PROOF. Notice that m(Si) = P‘f(yi) and then, since ke is decreasing,
K oms)ty, -y, ) and Koms, Oy, -y, ) (3.5)
i=1 i i i-1 i=1 i-1 i i-1 °

are, respectively, the lower and upper Riemann sums of #f with respect to the parti-
tion 0=y ,<y;< ...y, =M of [0, M]. The result follows because pe is
Riemann integrable on [0, M], Q.E.D.

If f is nonpositive instead of nonnegative we would like its integral on E to

equal the opposite of the integral of -f, that is, we want

fpr=-RIbu = R[Qu,=R[% oty ay . (3.6)

This suggests that we define p.(y) = “p_g(-y) if y < 0, and then the entire prece-
ding discussion motivates the following general definitions.

DEFINITION 4. Let E € R" be a measurable set and let f:E — R be a measu-
rable function. The measure function of f on E 1is the function He defined by

m{x e E: f{x)> y} if y>o0

Bely) = { (3.7)
-m{x e E: f(x) < y} if y< 0

Notice that /,tf <0 on (-,0) and Hr 2 0 on (0,0), and that y1 <V, =
;Lf(yl) > p.f(yz) on each of these intervals. The measure function can have infinite
values if m(E) = oo, but, if it does not, it is Riemann integrable on every bounded

subinterval of (-0, 0) or (0,°0), and then the improper integrals

R]?wpf and RS:I’T (3.8)

exist (they may be infinite). For convenience, if pf has infinite values on

(-, 0) or on (0,c0) we define

0 S°°
Rs-m“f = - o0 or R o Mg = oo (3.9)
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DEFINITION 5. Let EC R" be a measurable set, f:E — R a measurable func-
tion, and He the measure function of f on E. Then the (Lebesgue) integral of f
on E 1is defined to be

for=rl"_ u (3.10)

- co

if the right-hand side exists (that is if the two improper Riemann integrals over
(-e0, 0) and (0,o) exist). If, in addition, the right-hand side is finite then f
is said to be (Lebesgue) integrable on E and we write f e L(E).

EXAMPLE 1. If E={xe R : 0<x <1} and f(x) = 1/¥X we have p.(y) =0
iIf y <0, ply) =1 if 0<y <1 and pcly) = y-2 if y > 1, and then

fg = RS;dy»f RST’y'Z dy = 2 . (3.11)

EXAMPLE 2. If E={xe R : 0<x<1} and f(x) = 1/x then p.(y) = 0 if
y<o0, ;Af(y)=1 if 0<y< 1 and ;Lf(y):1/y if y > 1. We have

fgr=rllayerfTday=-00. (3.12)
y

Examples 1 and 2 show that the product of integrable functions need not be inte-
grable.

EXAMPLE 3. If E={xe R : 0<x< 1} and f(x) = 1 when x is rational and
f(x) = 0 when x 1is irrational, then pf(y) = 0 for all y # 0 and !Ef = 0.

EXERCISE 3. Show that if f > 0 and IEf =0 then m{x e E : f(x) # 0} = 0.
4, BASIC PROPERTIES OF THE LEBESGUE INTEGRAL,

First we establish the basic properties of the measure function. We shall write
p? instead of e when we need to specify the domain E of f.

LEMMA 1. Let E c R" be a measurable set, let f,g:E —> R be measurable
functions and let ¢ € R. Then

(1) f<eg :pfﬁus.

(2) c¢f 1is measurable and ucf(y) = sgn(c)/.if(y/c) for all y # 0.

PROOF.

(1) If y>0, {xeE: f(x)>y}c{xekE: glx)>y} =>ut.(y) gp.g(y). If
y<0, {xeE:glx)<ylc{xekE: fix) <y} :-ug(y) < -pely) = pely) < ;Lg(y).

(2) We shall consider the case ¢ < 0, y >0, and the others are similar.

l.tcf(y) =m{x e E : cf(x) > y}

m{x e E: f(x)< y/e}

—#f(y/c)

1}

Sgn(c)#f(y/c) (4.1)
Q.E.D.

LEMMA 2. If {Ei} is a finite or countable collection of disjoint measurable
sets in an , if E = UE‘1 and if f:E —> R 1is a measurable function, then u? =
DI

f E

PROOF. If y> 0, Woly) =m{xe E: f(x) >y} =mUixe E, ¢ f(x) > y}) =
Tomixe E, ¢ £(x) >y} = 1 u?i. Similarly if y < 0, Q.E.D.
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COROLLARY 1, If E,FcC R" are measurable sets with F € E and if f:E — R
F E
is a measurable function, then p.!;. < y? on (0,00) and p, > p. on (=00, 0).

PROOF. E = FU(E - F) = ¢t = pf + 427 then ufF 20 on (0,0 = uy <
ptE. on (0,00) and p.?'Ff_ 0 on (-09,0) =y 2 u? on (-, 0), Q.E.D.

THEOREM ., Let E,F cC R"  be measurable sets, let f,g:E — R be measurable
functions and let c¢c e R . Then, if the integrals below exist,

(1) f<g= IEfs IES and if, in addition, f >0 then g e L(E) =
f e L(E).

(2) ]ch = c ‘Ef and then f e L(E) = cf € L(E).

(3) If FCE then f e L(E) = f e L(F) and if, in addition, f > 0 then
fpf< gt

) 1r ¢ >0 andif % min{r, c} then [ €= [ f as o oo

PROOF. (1) is obvious from Lemma 1(1).

(2) Assume that ¢ < 0 (proceed analogously if ¢ > 0). By Lemma 1(2),
b b 0
Rfp uopty) day = R{2 —p.(y/e) ay = cklb/c He(u) du (4.2)

and taking the 1limit as b —» o0,

RIS e = oRI% u . (4.3)

Similarly for the integral from -oco to 0. Adding the two proves (2).
(3) By Corollary 1,

F

f

R[gwp?g Rggwuigog R[:u < RI:“? . (4.4)

If the outer integrals are finite, so are the inner integrals. Thus, f e L(E) =
f ¢ L(E). The last assertion follows from the last two inequalities on the right.

[e) @

(4) foe® = RIS ue = RIS uo—= RIT u. = [.f (4.5)

as ¢ —> o0, Q.E.D.

THEOREM 6. Let E1, ceey EN be a finite collection of disjoint measurable sets

in R" , let E = UEi and let f:E —> R be a measurable function. Then

fgr= 0, r. (4.6)
i
Furthermore, if f has a constant value ¢, on each Ei’ then
sEf =y c,mE,) . (4,7

PROOF. The first assertion follows from Lemma 2 and Definition 5. Now, if ci

>
E E,
i = =
0 then e (y) m(Ei) when 0 <y < N (here m(Ei) can be o0 ) and prl(y) 0
otherwise. Then

c E;
IEif = R Ioi bel = oym(E,) . (4.8)

Similarly if ey < 0, Q.E.D.
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EXERCISE 4. If there are constants a,b e R such that a < f(x) < b for all
x ¢ E, then am(E) < [ f< bm(E) and m(E)<e = f e L(E).

EXERCISE 5, Let EC R" be a measurable set and let f,g:E — R be measu-
rable functions. If f = g on E except, possibly, on a subset of E of measure
zero, then SEt‘ = gEg .

THEOREM 7. Let E c R" be a measurable set and let f:E — R be a measurable
function. If IEf exists, then

lSEflé fgiel (4.9)

Also, f e L(E) = Ifl e L(E).

PROOF. If y > 0 the identity {x e E : |f(x)| >y} = {x e E : f(x) > y}U
{x € E: f(x) < -y} shows that |fl is measurable and that u|f|(y) = uf(y) -ur(-y).
Now,

oo -00 0
RIO pel-y) dy = -RIO pelu) du = Rs_wuf(y) dy , (4.10)

so that

o0 -] o 0]
RIS kg = RSO (ely) = pl=y)) ay = R{Gws - RIZ wp (4.11)

The right-hand side is always well defined as a real number or oo since ke < 0 on
(-0, 0) and He 2 0 on (0,%), and it is finite if and only if both integrals are
finite, that is f e L(E) => Ifl € L(E). 1In either case, the inequality |a + bl <
a-b holds when a>0 and b< 0, when a>0and b= -oc, and when a =o and
b < 0. Thus,

I§ce] = RIS u, + RIO ue| < foiet (4.12)

Q.E.D.

EXERCISE 6. Let R be a rectangle in R". If f:R— R is Riemann integra-
ble then e L(E) and [ f=Rf_f.

5. THE ADDITIVITY OF THE LEBESGUE INTEGRAL.

This is one of the week points of the Lebesgue theory and it will not be
straightforward to establish this fact. We start by considering two particular cases:
those of piecewise continuous functions and nonnegative bounded functions.

PROPOSITION 2. Let E CR" be a measurable set and let f,g:E — R be measu-

rable functions each of which has a finite number of values. Then

foeesm = fprefie. (5.1)

PROOF. If f has only a finite number of values Cps eeer C on disjoint sub-

C
EEREEY
on disjoint subsets Gl’ ceey GK of E, then f + g 1is the function whose values
are ci + Cj on Fif\Gj. Noticing that Fi is the disjoint union 2:
using Theorem 6 we have

N

sets FI' ey FN of E and if g has only a finite number of values C K

K
=1 Fif\Gj and

.5 N K
IE (£ +g) =3 0y L 5oy (o +Cy) mFNGy)
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N K K N
= Xarey X mENG) + Xy g Xy mIGNFY)

N K
= 24y ¢y mF) b g1 €5 MGy

IEf+ ]Eg , (5.2)

Q.E.D.
PROPOSITION 3., Let EC R"  be a measurable set and let f,g :<E—> R be non-
negative, bounded, measurable functions. Then

Jptr+ e = Jor+ foa. (5.3)

PROOF. Let f have values in [0, M], M >0, and let 0 = Yg< ¥y < eee < ¥y
= M be a partition of [0, M]. Then define F, ={xeE: f(x) >y} and a func-
tion Sp < f by sf(x) R if x e Fi-1 - Fi, i=1, ..., k. Noticing that Yo
= m(Fk) = 0 and using Theorem 6 we have

k
[gse = 25 vy nEy_ - Fp

k
2 1oy Yioq WFy_) - m(F)

k
=1 Vg = ¥y ) m(Fy)

k
Loy kel lyy = vy p)

IA

gt (5.4)

and, as the norm of the partition approaches zero,

fgsp = RIpu, = for . (5.5)

If sg is defined for g as sf was defined for f, applying Proposition 2 to s

and sg, observing that Sy + sg < f + g, using Theorem 5(1), and letting the norm
of the partition approach zero, we obtain

f

SE(f +8) > !E(sf + sg) = Jgpsp + ‘Esg - SEf + ng . (5.6)

The first integral above is well defined because f + g 1is measurable, nonnegative
and bounded. Similarly, if we define a function Sr >f by Sf(x) =Yy if x e

Fi_1 - Fi and if S8 is defined for g as Sf is for f, a similar argument would
yield

fgev@ < e [Le, (5.7

and the conclusion follows from the last two inequalities, Q.E.D.

THEOREM 8. Let E < R" be a measurable set and let f,g € LIE). Then f + g
e L(E) and

fptrver= e { e, (5.8)



LEBESGUE INTEGRAL AS A RIEMANN INTEGRAL 701

. M
PROOF. hssume first that f and g are nonnegative and for M > 0 define f

M M M X
= min {f, M} and, similarly, gM and (f + g) . Since f + g < f + g, Proposi-

tion 3 gives
M
sEfM + gEgM = EE(fM +8) < SE(f + g) (5.9)

and then Theorem 5(4) implies that

M

iEfM+ iEs - lE'f+ issg SE(f+g) . (5.10)

M M M
as M—>oc0 . It is not difficult to see that (f +g) < f + g, and then

P L O T T for+ foe. (5.11)
Hence
SE(f«rg)M — SE(f+g)5 &Ef-v SEg. (5.12)
as M-—>o00. It follows that
fpirem = forefie, (5.13)

and, since the right-hand side is finite, f + g e L(E).

If, instead, f >0 and g< O, define E' = {xeE: f +g>0} and E =
{x e E:f+g< 0}. Since f +g, -g and f = f + g + (-g) are nonnegative on
E+, the preceding proof shows that

SE+f = SE*(f +8) + SE+(-g) = §E+(f +8) - SE+3 . (5.14)

Similarly, -(f +g), f and -g = -(f + g) + f are nonnegative on E- and

-8 = - §E_(r +g) 4 SE_r . (5.15)

Subtracting the last equation from the previous one and using Theorem 6 proves the
desired result in this case.

The two cases proved above imply the truth of the assertion in the general case
after decomposing E 1into the union of four disjoint subsets, on each of which f
and g do not change sign, Q.E.D.

6. THE CONVERGENCE THEOREMS.

In this section we study the validity of the 1limit iEfN - !E f when fN - f,
In the case of Riemann integration the uniform convergence of this sequence is a
sufficient condition. We start by proving a similar result for the Lebesgue integral.

PROPOSITION 4. Let S ¢ R" be a measurable set with m(S) < o and let {rN}
be a sequence of measurable funétions such that fN e L(S) and fN — f € L(S)
uniformly on S. Then

fsty— Jgrf - (6.1)

PROOF. Given € > 0 there is a K e Z' such that f - e < f, < f +¢€, and

N
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then “f—esqusufﬁ:’ for N > K.
For y>0 and N >K,
uf(y+e)=m{xeS:f(x)>y+€}

=m{xeS: f(x) -e>y}

= uf-e(y)
< He (y) , (6.2)
N
and then
oo oo -] oo
RIS #p - em(s) 5R§e ke = RIS Hply + e)dysRSO qu . (6.3)
For y >e¢ and N>K,
ke (V) < pe ()
N
=m{xe S : f(x) + € >y}
=m{xeS: flx)>y-¢e}
= pf(y - €) (6.4)
and then
RS;"f < em(S) + RS:V‘f
N N
< em(S) + RS:uf(y - €)dy
=em(s) + R|Tk, . (6.5)
Thus, given € > 0 there is a K € Z*  such that
o« )
-em(S)gRSop.fN - Rsoursem(s) (6.6)
for N >K and, since e 1is arbitrary,
oo -
Rgoqu—»RSOuf (6.7)
as N — o, Similarly,
0 0
RS_“urN—»RI_auf (6.8)

as N — o0, The last two limits and Definition 5 establish the desired convergence,
Q.E.D.

The following theorem is usually cited as one of the triumphs of the Lebesgue
theory because it replaces the uniform convergence of {fN} by the less restrictive
condition that the fN be unifo'ley bounded. It also allows the domain of these
functions to have arbitrary Lebesgue measure.

THEOREM 9. (The Lebesgue dominated convergence theorem) Let E C ]Rn be a
measurable set and let {fN} be a sequence of integrable functions on E that con-

verges to an integrable function f on E. If there is a function g € L(E) such
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that [fy| <& forall Ne z*, then
oty = Jet (6.9)

as N — oo,
This theorem is sometimes stated with the fN and f measurable rather than
integrable, but, in fact, these functions must be integrable. For the f this is so

because g € L(E) = -g € L(E) and -g< fy<g = bgs qu < Mg For Nf because
fN — f and -g < fN <8 =>-g<f<g.

The mechanism through which the uniform boundedness by the integrable function g
operates in this theorem can be better understood by means of the next two lemmas,
whose proof is temporarily postponed.

LEMMA 3. Let E < R"  be a measurable set and let g € L(E). For any € >0

there is a subset F of E with m(F) < oo such that

|§E-Fg| <€ . (6.10)

LEMMA 4, Let F c R" be a measurable set, let g e L(F) and let G be a
subset of F, For any e >0 there isa @ >0 such that if m(G) < § then

[{oe] <e . (6.11)

Because of Lemma 3, the integrals of all functions involved in Theorem 9 are
negligeable outside a set F of finite measure and, because of Lemma U4, the same is
true in a sufficiently small subset G of F. This is significant because, according
to Egorov's theorem (Theorem 4), the set G can be chosen so that rN —> f uniformly
on F - G. And now, as in the case of Riemann integration, uniform convergence is
seen to be the main driving force in the proof of Theorem 9 through Proposition 4.

PROOF OF THEOREM 9. Given € >0 let F be as in Lemma 3, let J be as in
Lemma Y4 and, for this choice of &, let G be as in Egorov's theorem. Using the
triangle inequality and Theorems 6 and 7 we obtain

HEfN - SEfIS HFfN - SFfI + Vo Ityl + gE-Fm

< |fpty- (el + 205 re

< Voot Vpatl+ Totegl + Tgter + 2§E_Fg

< ot Jearl+2lge+2l; s

< [Teeafy - e f] * be - (6.12)

By Proposition 4, N can be chosen so large that the first term on the right is
smaller than €, and, since € 1is arbitrary, the result follows, Q.E.D.

PROOF OF LEMMA 3. 1In view of Theorem 7 we need only consider the case g > 0.
By Definition 5, given € > 0 there is an a > 0 such that

E
R[S Hg << . (6.13)
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If we define F = {x € E : g(x) > a} we have m(F) = uE(a) < oo since g e L(E).
But E-F = {xeE: 0gglx) <a}, so that ug‘F(y) < ug(y) if y< a and
‘LE'F(y) =0 if y>a. Then
- ® E-F a E
(ppe = RIT uEF < RS e <e, (6.14)
Q.E.D.

PROOF OF LEMMA 4. 1In view of Theorem 7 we need only consider the case g > 0.

Given € > 0 there is an a > 0 such that
RS“uF<§- . (6.15)
If GCF we have ug < m(G) and pg < ug. Then, if we choose J = €/2a and if

m(G) < 4, we obtain

foe = R[3 0l + /[T

IA

am(G) + Rg:ug

< am(G) +f'2-<e , (6.16)

Q.E.D.

In some applications the sequence {fN} may not be uniformly bounded by an inte-
grable function. Such a case frequently occurs when the fN are the partial sums of
a series of positive functions. In this type of situation Theorem 11 below is useful,
but in order to prove it we need some preparation. First we observe that the Lebesgue
integral of a nonnegative function can be characterized in terms of those of bounded
integrable functions.

LEMMA 5, Let E < ®" be a measurable set and let f:E — IR be a nonnegative
measurable function. Then

SEf = supSEg , (6.17)

where the supremum is taken over all bounded functions g € L(E) such that 0 < g < f.

PROOF. If f e¢ L(E), given € >0 there isa b > 0 such that
0<f f-Rgbu <€ (6.18)
= 'E o"f : :

If we define g = min {f, b} then g is bounded, 0 <g< f, pg(y) = ur(y) if 0<
y< b and pg(y) =0 if y >b. We have

b b
fes=Rigu, = Rlg K (6.19)
so that g e¢ L(E) and
0< [Ef-SEg<e. (6.20)

If f ¢ L(E) define Ea

cases.

{x e E: f(x) >a} for each a >0 and consider two
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(1) m(E ) < oo for all a > 0. For any M >0 there are a,b e R such that
a
0O <a<b and

b
Rga e > M . (6.21)

If we define g:E—> R by g = min {f, b} on Ea and g =0 on E - Ea’ then g
is bounded, 0 < g< f, ug(y) =m(E ) if 0<y<a, as(y) = pely) if agy<bd
and ug(y) =0 if y > b. It follows that g e L(E) and that

a b
fge=RIEmE) +R{2 . >amE) + 1. (6.22)

(2) m(Ea) = o0 for some a > 0. Given M> 0 1let R be a rectangle so large
that m(RﬂEa) > M/a. If we define g(x) = a if x e Rf\!ita and g(x) = O otherwise,
then g 1is bounded, 0 < g < f and

SEg= SR(\E a:am(RﬂEa)>M, (6.23)
a

Q.E.D.
THEOREM 10, (Fatou's lemma) Let E < R” be a measurable set, let {fN) be a

sequence of nonnegative measurable functions on E and let fN — f. Then for any
e >0 there is an M e Z' such that

fer<ipgtyre (6.24)

for N > M.

PROOF. For any € >0, Lemma 5 implies that there is a bounded function g e
L(E), such that 0 < g< f and

for - Jpe<s. (6.25)

If we define 8y = min {g, fN} for each N e Z' then g 1s measurable because

{x ¢ E :gN(x) >y} ={xeE:glx)> yIN{xeE :fN(x) >y} for each y > 0, and
gN < f'N implies that

leay< lety - (6.26)

Also, since gy —> g on E and |gN| < &, the Lebesgue dominated convergence theo-
rem implies that

foey — Jce (6.27)

as N — oo. Therefore, there is an M >0 such that

£
SESE fety + S (6.28)
for N >M, or else we would have

Isgnﬁ SEfN< SES‘% (6.29)

for arbitrarily large N, contradicting the limit above. We conclude that
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£ _ 6.
SEf < SES +3 SEfN + € (6.30)
N > M, Q.E.D.
THEOREM 11. (The Levi monotone convergence theorem) Let E < R" be a measura-
set, let {fN} be a sequence of nonnegative functions on E such that fM < rN
M < N, and let fN —> f. Then
fpty — Jor (6.31)
N — oo,
PROOF. f, < fy for M<N = f < for all NezZ" =
SEst SBf (6.32)
all Ne Z*. By Fatou's lemma, given € > 0
fer< oy +e (6.33)
N large enough. These two inequalities imply that
SEfN" ng (6.34)

N — o0, Q.E.
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