
Internat. J. Math. & Math. Sci.
Vol. i0, No. 3 (1987) 495-502

495

ON SOME CLASSES OF ANALYTIC FUNCTIONS

KHALIOA I. NOOR lind HAILA MADIFER
Mathematics Department, Science College
of Education for Girls, Sitteen Road,
Malaz, Riyadh, Saudi Arabia.

(Received April 18, 1986)

ABSTRACT: Let ml,m 2
be any numbers and let Vml,m 2

be the class of

functions of analytic in the unit disc E={z: zl<l} for which
m I’(z))(s

1f’(z)
m
2’(z))(s

2

(0)=(S’ (0)=i Moulis [i]where S
1

and S
2

are analytic in E with S
1 2

gave a sufficient condition and a necessary condition on parameters

m
I

and m
2

for the class V to consist of univalent functions if
ml,m 2

S and S are taken to be convex univalent functions in E. In fact
1 2

he proved that if feV where S
1

and S
2

are convex and
mI

m
2

k+2 -is k-2
ml= -- e (l-o)cose m

2 ---(l-0)e cos, 21ml+m21 _< i,

then f is univalent in E.

In this paper we consider the class V in more general way and
ml,m 2

show that it contains the class of functions with bounded boundary

rotation and many other classes related with it. Some coefficient

results, arclength problem, radius of convexity and other problems

are proved for certain cases. Our results generalize many previously

known ones.
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i. INTRODUCTION.

Let Vk(0) be the class of all functions f, analytic in

E={z: Izl<l}, f’(0)=l, f(0)=0, f’(z)# such that for z=re 0<r<l

IRe e zf’ (z))’-0coseld@<k cose,
1-0

where k>2, 0<0<I, real and lel <
2
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The class V
e
k(0) has been introduced and studied by Moulis in [i]. For

e
introduced and studied in [2]. 0=0 and e=O0=0, we obtain the class V

k
give us the well known class V

k
of functions with bounded boundary rota-

tion first introduced and discussed by Paatero [3] and Lowner [4]. Func-

tions in V and V(0) may not possess boundary rotation.

Also a class T(0) of analytic functions which is a generalization

of V(0) has been discussed in [5]. A function f, analytic in E,f(O)=O=

f’(O)-i is in Tk(O) if for zEE, there exists a function g in Vk(0) such that

f’(z)
Re g- > 0

The cases when 0=0 and 0=0, e=0 have been discussed in [6] and [7]

respectively.

Definition i.i

Let m I and m
2

be any numbers and S
1

and S
2

be analytic functions

(0)=I=S (0). Then fgVmlin E with SI(0)--0=$2(0) and S I 2 m
R

m I’(z))(s
1f’(z) (i.i)

m
2’(z))(S

2

if and only if

We have the following special cases.
k+2 k-2

Case A. Let ml= ---, m2= ---, k>2_ in (i.I). Then

=V
k

(i) Vml,m2 the class of functions with bounded boundary rotation if

S
1

and S
2

are convex univalent functions. This was proved by Brannan in

[8].

(ii) V m2--TOml, k(O) T
k

if S I
and S

2
are close-to-convex univalent func-

tions, see [7].

V
k

and zS’ are a-spiral-like functions.(iii) V coincides with
e

if zS I 2mlm2This resu t is shown in [2].
e

(0) if S and(iv) V
m2

T
k

if S I and S2eT
e e

mI,
2(0)’ see [6] and Vml,m2 T

k 1

S2eT 2(0), see [5]

Case B. Let S and S be convex univalent functions in (i.i). Then we
i 2

have the following subcases:
k+2 -ie k-2 -ie e

(i) If ml= e cose, m2= -- e cose then feV
k

in (i.i). See [2].
k+2 -i -ie

(ii) If mI ----(l-O)e ecos m2= (l-O)e cose then fEVk(O) in

relation (i.i). This is shown in [i].

2. MAIN RESULTS

We now proceed to prove the main results for the class V

and m mal’n2ver needed, certatin restrictions on the parameters m
I 2

lytic functions S
I

and S
2
will be imposed.

Theorem 2.1

Where-

on and-

Let f E V such that
ml,m 2
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where S and S
i 2

m
I’(z))(s

1f’(z)
m
2(s’ (z))2

are convex univalent in E. Let

27[

Ix(r)= / If’ (re dO, (2.1)
0

where 0<r<l_ and 2miX>l; ml,m2>0
Then

where

lim Sup (l-r)
r+l

I X(r)<A(ml,m 2,X)

A(ml,m2, X)

2m2X 1
2 F (m I X+ )
(2mlX-l) F(mlX

Proof m X

o
Is(z)

1
Then ’(z) I>_--------by the distortion theorems for convex functions [9]S

2 ( +rl
2

and SI’ is subOrdiNate to (l-z)
-2-

in E. Consequently

2m2X [i i0 2m

2m X
I X (r)<_(l+r) I 2xdO (l+r) J2mlX(r), say (2.2)

1-re
i

Now it has been shown by Pommerenke in [I0] that

r(p-) 1J (r) p>l r+l
P 2P-IF2 (D) (l_r)P -I’

i ir(- p + ) I (2.3)

(p-l) r (p) (l-r) p-1

using the recurrence and duplication formulae for the Gamma function.

Substitution of (2.3) in (22) completes the proof.

Corollary 2.1

k+2 k-2Let ml= ---, m2= --. Then feV
k

and

(k- i) X-I
lim Sup (l-r) I X(r)<A(k,X)_ where
r+l

2
(--k-l) I

i i

A(k,X)
T1/2(. kX+X-l)r(1/4k,+ X)
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This result was proved in [8].

Theorem 2.2

Let fVml,m2 and SI,S 2
be convex functions. Let L(r) denote the

i@
length of the arc f( zl =r) given by the formula for z=re

2
L (r)----I zf’ (z)Ide

0

> 1 > 0 we haveThen for m
I , m

2

iL(r)=0(1)" 2m -i
(i-r) 1

where 0(i) is a constant depending only on m I and m 2.
The proof follows immediately from Theorem 2.1 by taking =i.

From Theorem 2.1 and the standard inequality [9,p.ll]

la <e (i- i
n n i Y)’

we have the following.

Theorem 2.3

Let feV and be given by (i.I)with f(z)=z+
ml,m 2

i>
1

>0 Then for n>2in (2.1) are convex, m ,m 2
2m 1

2-2m
e2 2F(ml+

lim Sup n lla I<=--
n+ n -- (2ml-l)F(ml

n
z where S and

i

Corollary 2.2

If ml=--,k+2 m2 --k-2 in Theorem 2.3 then feV
k

and

i
1 -k (k+ i)i- k e 2 F

4
lim Sup [n la I] <

(_k + 1n+ n 1/2(k)r
4 )

This result was proved in [8].

Theorem 2.4

Let feV with S and S
I 2mmI m

2
nf(z) z + 7. a z Then for n>l

n= 2 n

lan+ll-I a <c(ml,m )n
n 2

where C(ml,m 2) is a constant depending only on m I

Proof

For ZleE and n>l,_ we have

(n+l)Zlan+l-nanl=
i
n+l

2r

convex and ml>l, m2>0.

and m

2r

2[
I I.-ZlllZf’(z)lde, z=r
0 m

1
2 IS I

" Z-zll m
de

o Is’ (z) 2
2

2"

Let f be given by

ie

(2.4)
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It is known [9] that for convex univalent functions S
2

’(z) l> 1 (2 5)IS2 2
(l+r)

Also, by a result of Golusin [Ii], there exists a ZlEE with Iz11=r
such that for all z, zl =r

2
2 r (2.6),

IZ-Zll ISl(Z) l_<
l-r

,
where S l(z) (z) is univalentzS

1

Using (2.5) and (2.6), (2.4) becomes

2m

(n+l)Zlan+l-na I< (l+r)
n-in 2r

2m2-i
< (l+r)

2
2r

2 m-i
[S’(z)[ 1

l_r
2 1

rn-3 2mi-2
(l-r)

d

where we have used subordination for the function S I.
Putting Zll =r, r= -, we obtain the required result.

Corollary 2.3
k+2 k-2

Taking ml= m2=-q-, k>2’-- k
-2

2
obtain fV

k
and .llan+ll-lan II<C(k)-- n where C(k) is a constantwe

depending only on k.

Now we give the radius of convexity problem for the class V
ml,m 2

where the functions S I
and S

2
are in Vk.

Theorem 2.5

Let fgV such that
ml,m 2

f’(z)

where Sl,S2eVk and ml,m2>0 and real.

r is the least positive root of

m
’(z))(s
1

(z)) m2(s
2

Then f is convex for zl < r where

k k
[l+m2(l- )]-k(ml+m2)r+[2ml-m2(l+ )-l]r

2
0 (2. 7)

Proof

From definition it easily follows that

’(z))’(z)) (zS
2(zf’ (z))_’ (zSI

f’(z) ml m2 ’(z)’(z) s
2

S
1

+ (l-mI + m 2)

eVNow, for S
1 k

it is known [12] that

(zS l(z))’ > l-kr+r
’(z) 2Re

S1 1-r
(2.8)
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Also, by the Paatero representation theorem [3] we have, for S2sV k,

’(z))’(zS
2

’(z)s
2

k+ 2 k- 2-- h I (z) -----’h2 (z)
’4 Re h.1 (z) _> 0 i=1,2, and hi(0) i

so that

’(z))’(zS
2

’(z) <Re
$2

’(z))’(zs
2
’(z)s
2

k l+r
<2 1 r

Thus, using (2.8) and (2.9) we have

Re (zf’ (z))
f’(z) --< 2

l-r

k k
[l+m2(l -) ]-k(ml+m2)r+[2ml-m2(l+ )-l]r

and this gives us the required result.

Corollary 2.4

If k=2, then SI,S2EV 2
C, the class of convex functions and equation

(2.7) reduces to

2
1-2(ml+m 2)r+(2ml-2m2-1)r =0

k+2 k-2 reduces to V
k

andand in this case if m I 4 m2 4
then Vml,m 2

equation (2.7) reduces to the known result

2
l-kr+r 0

which was given in[ 12].

Corollary 2.5

If mI >0, m2--0, then f is convex for Izl< r, where r is the least

positive root of

2
l-kr + (2a- l)r 0

This result has been proved in [13].

Theorem 2.6

Let feV such that
ml,m 2

m
’(z))(s
1f’(z)

m
2’(z))(s

2

and SI,S2eVk ml,m2_>0, ml-m2<_l.
Then feVk,, where k’ {ml(k-2)+m2(k+2)+2

From the above result, we deduce the following:

(i) If Sl,S2eV2 then feV4m2+ 2
k+2

and in this case if m
I --we have the well known result [8] that feVk"

(ii) If mI e, m2=0 0<_a_<l, then feVa(k_2)+2.

k-2
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