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ABSTRACT: Let $ be an irrational number and let {t} denote the fractional part of

t. For each N let I0, I, I
N

be the intervals resulting from the partition of

[0,I] by the points {k25} k 1,2,...,N. Let T(N) be the number of distinct lengths

these intervals can assume. It is shown that T(N) =o. This is in contrast to the

case of the sequence {nS}, where T(N) <_ 3.
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1. INTRODUCTION.

Let 5 be an irrational number and let {t} denote the fractional part of t

({t} t (mod I) t It], where [.] is the greatest integer function). For each

fixed N the points {9}, {29}, {3 {NS} partition on the interval [0,,] into

N+I subintervals. It is well known that the lengths of these intervals can assume

only 3 values: a, and a+. The values of a and can be actually given explicitly

in terms of N and the continued fraction expansion of 9. This is known as Steinhaus

conjecture and it was first proved by Swierczkowski in [|]. For an excellent

exposition of all this, see [2]. In this note we investigate the analogous problem

for the sequence {n25}. It turns out that in this case the number of different

lengths these subintervals can assume, is unbounded. More precisely we have the

following results.

2. MAIN RESULTS.

Theorem Let 5 be an irrational. For each integer N let I0,_I|, I
N

be the

N+I subintervals resulting from partition of [0, I] by the points {k25} k 1,2 N.

Let T(N) be the number of distinct lengths these subintervals assume. Then for each

> O,

T(N) > Nexp {-( +E) in 22 In N
for N > N(E) (2 I)

In In N
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In particular T(N) >N for every 6 > 0 and N > N(6).

In what follows $ > 0 is some fixed irrational. We need the following four

simple lemmas.

LEMMA I. For any integers r,s

{(r+s)$} {r$} + {s$} m (2.2)

where E 0 or ;.

PROOF. We have

(r + s)$ {(r+s)6} + [(r+s)$]

{r$} + {uS} + [r] + [s$] {r$} + {s6} + integer

Thus, if 0 < {r$} + {s$} < then (2) holds with E O,

and if < {r$} + {s} < 2 then (2) holds with E I.

LEMMA 2. Suppose x,y are integers, {x6} < {y$}. Then

{y$} {x$}
{(y-x)$} (iif x < y} (2.3)

{(x-y)$} f y < x

PROOF. Suppose x < y so that y x + k. Then by Lena

{y6} {x6} + {k$} E

If m then {y6} < {x$} contrary to hypothesis, so that E 0 and (2.3) holds.

If y < x, let x y + k, k > 0. Again, by Lena

{x&} {y&} + {k&} m

If E 0 then {x$} > {y$} so that E -; and (2.3) holds again.

e 3. For any two non-negative integers x,y, {x$} # {y$}
PROOF. If {x$} + {y$} then by ee=a

{(x+y)$} {x$} + {y$} m m 0 or

contradicting the fact that $ is irrational.

L 4. Suppose x;, y, x
2, Y2 are non-negative integers and let

A {y]$} -{x,$}>0 B {y26} -{x25}>0
If A B then y x Y2 x2

PROOF. We will use Leman 2 and 3 and consider 4 cases

I: x; < yl, x
2

< Y2
II: x < y, x

2
> Y2

III: x > y;, x
2

< Y2
IV: x] > y;, x

2
> Y2

In case I we get from Lena 2

A {(y] x])$} B {(Y2 x2)6}
so A B implies Y xl Y2 x2
In case II, by Lena 2 we get

A {(yl x])$} B {(x2 Y2)6}
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so A B cannot hold by Lemma 3.

Similarly, A B cannot hold in case III, and A B implies y; x;
Y2 x2 in case IV.

We are now ready to prove the Theorem I. Let N be fixed and consider the

partition of [0,1] by the points {029} 0, {129}, {229}, {329} {N29}. If we

exclude the right most interval (i.e. the interval [{x29},I] for some x), we are left

with a collection A(N) of N intervals. If two of these intervals [{x2|9}, {y219 }] and

[{x9}, {y9}] are of equal length then

2 2 2 2
Y; xl Y2 x2 (2.4)

by Lemma 4. Let T(N) be the number of distinct lengths these intervals from A(N) can

assume. The collection A(N) is then divided into T(N) subsets, any two intervals from

one subset are of equal length. One of these subsets must contain N/T(N) intervals.

Thus, by (2 4) there exists an integer k, < k < N
2

such that the equation

2 2
k y x (y-x)(y+x) (2.5)

has N/T(N) solutions in integers x,y, < x < y < N
2

Each such solution produces 2
2 2 2 2

N2distinct divisors of k. If Yl xl Y2 x2’ <- xi < Yi < for ,2 and

(xl,y I) (x2,Y2), then Yl xl Y2 x2 and y| + x Y2 + x2" Thus

N/T(N) < d(k) (2.6)

where d(z) is the number of divisors of d. It is well known that for each e > 0

In z %0( z) for z > z(e)d(z) < exp{(l+) in 2
in in z

This was first proved by Wigert in [3] see also [4], Satz 5.2 Since k < N
2
we get

from (2.6)

2N/T(N) < %0(e,k) < 0(e,N2)

2 InN (2 7)exp {(I+g) in 2
in 2 + in in N

< exp {(+6) in 2
2 in N

for N > N(6)in in N

Solving this inequality for T(N) gives (2.1).

The argument carries over almost without any change to the sequence {nPg} for any

integer p > I. The corresponding estimate is then as follows.

THEOREM 2. Let 9 be an irrational and p > an integer. For each integer N let

I0, I], I
N be the N+| subintervals resulting from partition of [0,] by the

points {k29}, k 1,2,...,N. Let T (N) be the number of distinct lengths these
P

intervals can assume. Then for each > 0

T (N) > N exp{-(l+e) In 2p
in N

for N > N()
p In In N
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