Internat. J. Math. & Math. Sci. 17
Vol. 10 No. 1 (1987) 17-33

DIFFEOMORPHISM GROUPS OF CONNECTED SUM OF A PRODUCT OF
SPHERES AND CLASSIFICATION OF MANIFOLDS

SAMUEL OMOLOYE AJALA

School of Mathematics Mathematics Department
The Institute for Advanced Study and University of Lagos
Princeton, New Jersey 08540 Akoka-Yaba

Lagos-Nigeria, West Africa

(Received April 21, 1986)

ABSTRACT, In [1] and [2] a classification of a manifold M of the type (m,p,1l) was
given where HP(M) = Hn-p(M) =2 is the only non-trivial homology groups. In this
paper we give a complete classification of manifolds of the type (n,p,2) and we
extend the result to manifolds of type (n,p,r) where r is any positive integer
and p=3,5,6,7 mod (8).
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0. INTRODUCTION.

In [1] Edward C. Turner worked on a classification of a manifold M of the type
(n,p,r) where this means that M is simply connected smooth n-manifold and
HPCM) L] Hn-l(M) ~Z' the only non-trivial homology groups except for the top and
bottom groups., He gave a classification of such manifolds for the case r=1 and
p=3,5,6,7 (mod 8), So Turner gave a classification of M of type (n,p,1) and
p=3,5,6,7 (mod 8). In [2] Hajime Sato independently obtained similar results for
M of the type (n,p,1). The question which naturally follows is: Suppose r=2,3,4
and so on, what is the classification of such M ? i.e,, what is the classification
of M of the type (n,p,2), (n,p,3) and so on? In this paper we will study
manifolds for the type (n,p,2) and give its complete classification and then gen-
eralize the result to manifolds M of the type (n,p,r) where r is an integer
and p=3,5,6,7 (mod 8).

In §1 we prove the following

THEOREM 1.1 Let M be an n-dimensional oriented, closed, simply connected
manifold of the type (n,p,2) with p=3,5,6,7 (mod 8). Then M is diffeomorphic

to sP x DQ'H'#Sp X Dq+1 U sP x DcrH'#SP X Dq+1 where n=ptqtl, # means connected
) h [} -}
sum along the boundary as defined by Milnor and Karvaire [3] and h : SP x s94sP yxsl—

—> sP x s9#5sP x s is a diffeomorphism.
In §2 we compute the group ?TODiff(Sp X Sq#SP X Sq) of pseudo-diffeotopy
classes of diffeomorphisms of SP x s94#sP x s9p < q.
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Let GL(2,Z) denote the set of 2 X 2 unimodular matrices and H the subgroup
of GL(2,Z) consisting of matrices ( : 2) such that q6= cd=0 mod 2 and 24 the
_‘]). :') ) . We will adopt the notation

Mp q = DJ'.ff(Sp X sq#sp X Sq) and M; " the subgroup of Mp q consisting of

subgroup of GL(2,Z) of order 4 generated by (

b 2 )
diffeomorphisms which induce identity map on all homology groups., We will then prove
the following

THEOREM 2.1 (i) If p+q is even, then
Z4 (] Z4 if p is even, q is even
;O(Mp, % & ~ :Liz;z)i: GL(2,2) if p,q=1,3,7

0™, o p,q odd but # 1,3,7

- GL(2,z)®H if p=1,3,7, q is odd but § 1,3,7
(ii) If p+q 1is odd then

5w ) . 2, @B if p is even q is odd but # 1,3,7

0 p’q/?l"o(M.'- ) Z4OGL(2,Z) if p is even and q=1,3,7

P4
We will further prove the following |

THEOREM 2,15 If p<gq and p=3,5,6,7 (mod 8) the order of the group ?r'o(M'; q)
is twice the order of the group TTq(SO(p+1)) ® ep-#-q-l-l . ’

In §3 we apply the result in §2 to prove the following

THEOREM 3,7 Let M be an n-dimensional, smooth, closed, oriented manifold
such that n=ptq+tl and

z i=0,n
H,) = Z@Z i=p,q+l
0 elsewhere

then if p=3,5,6,7 (mod 8) the number of differentiable manifolds up to diffeo-
morphism satisfying the above is equal to twice the order of the group
TI‘q(SO(p-i-l)) 3 ep+q+1 . With induction hypothesis and technique used in §1 and §2,

one can prove the following

THEOREM 3.8 If M is a smooth, closed simply connected manifold of type
(n,p,r) where n=ptqtl and p=3,5,6,7 (mod 8) , then the number of differentiable
manifolds up to diffeomorphism satisfying the above is equal to

r times the order of WqSO(p-O-l) ® quﬂ' .
1. MANIFOLDS OF TYPE (n,p,r)
DEFINITION: Let M be a closed, simply connected n-manifold. M is said to
be of type (m,p,r) if
2z if i=0,n
H ) = 2" if i=p,qtl
0 elsewhere
where n=ptqtl
We recall from Milnor and Kervaire [3]
gPrarl

DEFINITION: Let Ml and M2 be (p+qtl)-manifolds with boundary and
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be half-disc, i.e.,

1
HP"‘CH' = [x=x1:x2,'-'yxp+q+1 le < 1:"120}

Let Dp+q be the subset of Hp+q+1 for which X = 0 . We can choose embeddings

.. Pt ptqy =
1(1.(1{ ,D0 > M) a=1,2

so that 120111 reverses orientation. We then form the sum (Ml-il(O))+ (M2-12(0))
by identifying il(t:u) with iz((l-t)u) for 0<t<1lwu ESp+qﬂl-lp+q+1 . This sum
is called the connected sum along the boundary and will be denoted by MI#MZ .
d
REMARK: (1) Notice that the boundary of M, #+ M, is aml + M, .
9

@) M # M, has the homotopy type of M,V M, : the union with a single

point in common.

THEOREM 1,1 If M is a smooth manifold of type (n,p,2) where n=ptqtl and
p=3,5,6,7 (mod 8) then there exists a diffeomorphism

h:sP x s sPx s9—>sP xsTgsPyxst
which induce identity on homology such that M is diffeomorphic to
sP x DT 4 5P x DTFLysP x pTHL § P  DTL |
d h d
PROOF:  Let (M},

the generators of the first and second summands of HP(M) ~Z®Z ., We can choose

)\2} be a manifold of type (n,p,2) and )\1,)\2 represent

embeddings cpi: sP —>M so as to represent the homology class >‘i i=1,2 , Since

P < q, two homotopic embeddings are isotopic. Let oy € ﬂp_lso(q-l-l))' be the

characteristic class of the embedded sphere sP , since p=3,5,6,7 (mod 8), the
normal bundle of the embedded sphere is trivial. It follows that @y extends to an
Then we can

X Dq‘"1 to

embedding cpi : sP x Dq+1 —> M such that its homology class is )‘i .

form a connected sum along the boundary of the two embedded copies of sP
get sP X Dq+1 + sP X Dq+1 . We then have an embedding 1i: sP xDqH'#SP xDq+1 —>M

% . 1a= a+l,.p, at+l
such that i,[s"] = X1+X2 € HP(M) . Notice that the boundary of S xD' #S"xD
)
is SPxs9#sPxs? and since SPx Dq-'-]'#sP XDqH' has the homotopy type of
d
prDq"'lv prDq+1 then it is easy to see that
z for i=0
m, (sP xp™! 457 x T -
-} ZO®Z for i=p .

It is also easy to see that

4 for i=0

B, (-Int(sP x DT 457 xp¥*y) =

-} ZO®Z for i=p .

prDqH' is a trivial disc bundle over SP then it has cross sections;

xDTFL 4 P  p+1
d

Now since

hence, there exists orientation reversing diffeomorphism of sP onto
itself, Thus there exists an orientation reversing embedding

3: 8P x DL 4Py o — Mo1ne(sP x DT # 5P x0T
3 2

19
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such that j,[ SP] = )\1+)\2 and in fact this embedding is a homotopy equivalence. It

follows by [4, Thm. 4.1] that SPxDT14#sPxp™! is diffeomorphic to
3
M-Int(sP x DT # 5P xDT)) . Consequently, it follows that M is diffeomorphic to

d
sP x Dq+1 #5Px DqH' usP x Dq+1 # sP x DqH' for an orientation preserving diffeomorphism

3
h:sPx Sqa# sPxs? —> sPx Sq#Sp xs% . From the embeddings in the proof, it is clear
that h induce identity on homology.

2. THE GROUP ’r"romff(sp x s34 sP xs%

For convenience, we adopt the notation M q" Diff(sP x s34 sP x Sq) and M: q
2 »
the subset of Mp q consisting of diffeomorphisms of sP xSq#Sp xSq which induce

s
identity on all homology groups.

DEFINITION: Let M be an oriented smooth manifold. Diff(M) is the group of
orientation preserving diffeomorphisms of M . Let f,g € Diff(M) , f and g are
said to be pseudo-diffeotopic if there exists a diffeomorphism H of MXI such
that H(x,0) = (£(x),0) and H(x,1) = (g(x),1) for all x €M ., The pseudo-diffeotopy
class of diffeomorphisms of M 1is denoted by ?“I‘O(Diff M) . We wish to compute

T M ) for p<q. If £, €M then f induces an automorphism
0% p,q P, 4

£, 1 H (P xsT#sPxsY) —> H (sPxsT#sPxsD
of homology groups of sP x Sq#Sp xs% . since pseudo-diffeotopic diffeomorphisms
induce equal automorphism on homology then we have a well-defined homomorphism
#:Fy00 ) —> auto@, (s" xs%# sP xs%)
2
where Auto(H*(Sp x s # sP x Sq) denotes the group of dimension preserving automorphisms
of H (sPxsi#sPxs? .

THEOREM 2.1 (i) If p+q is even then

24 ® 24 if p,q are even
~ GL(2,Z) & GL(2,z) if p,q are 1,3,7
Q(ﬂo(M )) = 2 b ’ >
P, q HOeH if p,q are odd but # 1,3,7
GL(2,Z) @ H if p=1,3,7 and q is odd but # 1,3,7

The following propositions give the proof of Theorem 2.1,
PROPOSITION 2,1 If ptq is even, p 1is even, then

§Gro(14p’q)) =z, 02 .

PROOF: Since ptq 1is even and p 1is even then q must also be even. We
have
z if i=0, phq
B (sPxsl#sPxsh =¢zez if i=p or q
0 elsewhere .

Generators of HO(SP xs9#sPxsY) and l-lp_'_q(Sp x 534 5P xs%) are mapped to the same
generators but H (Sp x 894 sP qu) =2@Z, 1If f € Mp,q , we shall denote by Q(f)p
the automorphism f_ : ]:lp(Sp x 814 8P x5ty —> HP(SP xS14SP xsY induced by the image
f under & in dimension p . Then @(f)p = f* :ZOZ—>Z O X is the induced
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automorphism. If e,e, are the generators of the first and second summand of

Hp(prSq#prSq) if o denotes the intersection themn e.,oe, =0, e,o e, = 0

1771 2 ?
4 %2
ejce, =1 and e,oe, = -1 . Let (a3 aa) € GL(2,2) , if Q(f)p takes e;,e, to
[} ' 5 [ [ -
epe, respectively then e = a8 + a5e, and e, = aze; + a4e2 then

Ll = .
ejoe; = (alel + azez) (alel + azez)
= alale1°e1 + a.lazel-e2 + a alez-e1 + ayaze,-e
alazeloe2 + azalezoe1 = a1a2 -

= a132=0.

- toal =
Similarly eyce, 0

teal =
but e;re,y (alel + a2e2) o (ase1 + a4e2)

= 3133610 el + 8134810 62 + 3233620 el + 3284320 ez

= a3, -aa; = 1 since GL(2,Z) is unimodular.
el = . =
ey ey (a3e1 + a4e2) (alel + azez) aja e, o e + a3a2elo e, + a4a1e2o el
+ aase o e, = aja, -a,a; = -1

hence for p even @(f)p is an element of a subgroup of GL(2,Z) generated by

01 +1 0 0 +1
( 10 ) . This subgroup has elements :( o +1 ), (i'.l o )} ~ Z4 . Hence @(f)p€z4.
Similarly for i=gq Q(f.)q € 14 , it then follows that

@(?ro(mp,q)) cz, ez, .
We now show that Za @ 24 c Q(;O(Mp, q)) . We need to show that the generators
of 24 ® 14 can be realized as the image of & . We shall adopt the notation
(SPX Sq)l# (Sp )(Sq)2 where the subscripts 1 and 2 denote the first and second summands
of sP )(2'5q=II‘SP xSq and let Rp and R be reflections of sP and s4 respectively.

If (xl,yl) € (prsq)l and (XZ’ yz) € (SPXSq)2 , we define f € Mp,q

f(xl, Yl) = (Rp(xz),Rq(Yz))
£(x),55) = (x1,¥))
In other words £((x},y;) (x),¥,)) = (R (x;),R (y5)) , (x,¥,))
(x93 € Pxsh, and (x5, € (Pxsh, .
For §(f)p € Auto Hp(Mp,q) , if e;pe, are the generators of the first and
second summands of HP(Sp xS94#sPxsY = z6 2z since f takes X, to Rp(xz)

and f takes X, to X then it is easily seen that §(f)p(e1) = -e, and
= | . L ' ! = o - =
Q(f)p(ez) =e . Hence el ey and e, = e and so ejoe e,o -e, 0,
' L = ' ' = - = ' ' = - = -
ejo e = ejo e 0, ejo ey ejo ey 1 and ejo e = e;0 e 1 . Hence §

01
-10

that & maps f in dimension q to (_(1) 3) which generates 24 . Then & maps

onto 24 @ Z4 hence the proof.

PROPOSITION 2.2 1If p+q is even but p,q = 1,3,7 then §(ﬂ0(Mp q)) =
2
= GL(2,2) @ GL(2,2) .

maps f in dimension to which generates Z, . Similar argument shows
P 4

PROOF: From [5, Appendix B] and [6] one sees that GL(2,Z) is generated by

01 and L1 . Since p,q= 1,3,7 it follows by [7, §1] that there exist
<10 01 4 4

maps f: sP — SO(p+l) and g: st —> SO(q+l) such that f and g have index +1.
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We then define h € M
P> 4
h(xl"yl) = (xly yl.) (xly y].) € (prsq)l
h(xy ¥,) = (E(x) %, , 8(y)y,)  (x,,5,) € (sPxsY),
i.e., h((xl,yl),(xz,yz)) = ((xl’yl)’(f(xl)'XZ’g(yl).YZ))
Since f ‘as index +1 and h takes X to X1 and X, to f(xl)-x2 then it

follows by an easy application of [7, Prop. 1.2] or [6, Prop. 2,3] that §(h)P is
11 . : .
( 0 1) also since g has index +1 and h takes vy to Y1 and Yy to g(yl) Y

then {>(h)q is (éi) . Hence ¢ maps h to{(ll),(ll)f. We now define

01 01
a €M by
P,q

= P q
alxp;yp) = Ro(),R(5))  (xp,57) € (STx87),
alxy, ¥,) = (x7,¥,) (x,5,) € (sPxs%,

i.e., (L((XI,YI),(XZ,YZ)) = ((Rp(xz),Rq(YZ)))(xljyl))
Since @ takes X, to Rp(xz) and X, to X it follows from Proposition 2.1
01 0 1)
-10 -10
01 01 .
that ¢ maps a to{( ), ( ) . Since GL(2,Z) 1is generated by (

01 <10 -10
and ( -1 0) then it follows that for p,q = 1,3,7

that Q(a)p is ( This means

11
01)

) and by similar reasoning @(cr.)q is (

1@, )~ 6L(2,2) @ 6L(2,2) .

PROPOSITION 2,3 If phq is even but p and q are odd but p,q  1,3,7
-~
then &(m ~#“HO®H.
n  §( o('Mp,q))

2

PROOF : By using Proposition 2.1 and [8, Lemma 5] it is enough to produce a

diffeomorphism in M q whose image under § is ((].; 2) in each of the dimensions

2 +1 12y
P and q . This is because (ié +(1)) , ( +2 -0 ) 5 (0 1) generate H . However
( i(])' +2 ) is trivially the image under ¢ of identity map and reflections on each
o 0 +1
+1 0

of Mp Q" However, there exists a map a : sP —> SO(p+l) of index 2 by [8] so
s

also is amap B: st — S0(qt+l) of index 2 and then we can define f € Mp q thus,
)

coordinate while ( ) is by Proposition 2.1 the image under § of an element

£(x,57) = (xp,9)) (x,9p) € (sPxsY)

f(xz:)'z) = (U-(xl)'xz) B(yl)’y2) (xzy}’z) € (prsq)z
i.e., f((xlyyl) k) (x2)y2)) = ((Xl,yl) ) (a(xl)'xz, B(.Yl)')’z)) .
It easily follows that since £ takes X to xy and takes Xy to cJ.(x1)°x2 with
a having index 2 then it follows by applying [7, Lemma 5] that &(f) is

((1) i) . Similar argument shows that §(f)q is ((])' i) ; hence Q("H‘O(Mp, q))~HOH.

PROPOSITION 2.4 If p+q 1is even, p=1,3,7 but q is odd and # 1,3,7 then
(W = GL(2,2) @ H .
( 0(Mp}q)) 2,2)

PROOF : {(_2 é), < 3 i)} generates GL(2,Z) while {( _2 (1)), ((])' i)} generates

H, since q ¢ 1,3,7 and by [8] there exists a:S? —> S0(q+l) of index 2, If

Rp is reflection of SP then we define h € Mp a
2
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= P q
h(xly Yl) = (RP(XZ),YI) (xl, y1) € (" xS )1

h(xzy)'z) = (Xl,a(yl)'yz) (xz,yz) € (prsq)z

Since h takes X1 to Rp(xz) and takes Xy to X it follows by Proposition 2.1
01 . .
that §(h)p = (_1 0) ;s similarly h takes 1 to y, and Y to c,(yl) Yy and

2
since a has index 2, it follows that @(h)q = ((1) 1)
Now if Rq is a reflectionon $% and g :SP —> Sopf-l is of index +1 then we

define f €M

P,q

£(xp,y7) = (xR (3)) (xp,yp) € (Pxsh,

£(xp,9,) = (B(x) %5,5)  (x,,¥,) € (s"xsq)2
then it is easy to see that Q(f)p = ((]i 1) and Q(f)q = (_g é)so the image of
h under ¢ is {( _2 (]5) B (; i)} and the image of f under & is%(_({ é),(é i)}
and since {( _‘; :')), (3 i)} generate H and {( _2 (1)>, ((1) })} generate GL(2,2)

then it follows that Q(ﬂO(MP q)) & GL(2,2) ® H . Hence the proof,
3

REMARK, For p odd but % 1,3,7 and q=1,3,7 , we have the same result as
.above using the same method but since by assumption p < q only one dimension (con-

sequently one manifold) comes in here, viz p=5, q=7, i.e., SSXS7#SS xS7 .

Combination of Propositions 2.1, 2.2, 2.3, and 2.4 proves Theorem 2.1(i).

PROPOSITION 2.5 Suppose p+q is odd and p is even and q odd + 1,3,7 then
U ~Z @H.
B0 ) M Z,

PROOF : Since ( _2 3) generate 24 and {(_(])_ 3),( ; i )} generate H ,

then we only need to find the diffeomorphism in MP q that & maps to these gen-

4
erators., Similar to Proposition 2.4, we define f € Mp q by
)

£(xp,97) = R (xp,¥7) (x;,9p) € Pxsh;
f(XZ’YZ) = (xlya(yl)'yZ) (XZ’YZ) € (prSq)z

where R is the reflection on SP and a: s —> so is of index 2 which exists

by [3] since q 4 1,3,7 . It then follows that &(f) q:l( Ol and ae) = (L 2)
23,7 - e e lo1/-

Also we define g €M thus
P, 4

g(x,¥q) = (xl,Rq(yz)) (x597) € (SPxSq)1 » (%5,5,) € (s"xs“)2
8(xy,¥5) = (%9,%,)

fee., 8((xy, 59, (xp,52)) = (xR (55)), (x5, ¥))
where Rq is the reflection on S9 . Since g takes x to X and X, to x

1 2
_ ... _ (1o .
then Q(g)p = identity = (0 1) and since g takes 2 to Rq(y2) and Yy to 1
it follows that by applying Proposition 2.1, Q(g)q = ( -2 é) . Hence f 1is mapped

by & to {(_gé),(éi)} while g 1is mapped by & to {(32),(_23)}&nd since

these matrices generate H and Z4 respectively then it follows that
s ~Z &H.
2@ M, )~ 2,

PROPOSITION 2.6 Suppose prq is odd and p is even q 1is odd and = 1,3,7.
Then Q(Wo(Mp’q)) ~ 24 ® GL(2,2) .



24 S. 0. AJALA

PROOF: Again since q=1,3,7 by [6, Prop. 2,4] there exists a map a:8% = so

01 11 01
of index 1. Since (_1 0) generates Z4 and g( 01 ) , (_1 0 )} generate GL(2,2Z)
we define elements of Mp q that are mapped onto these generators. Let h € Mp

b
be defined thus

qtl

IR}

h(xl,yl) = (Rp(xz),yl) where (xl, yl) € (prsq)l
h(xzyyZ) = (Xl,a(yl)')’z) (Xz,yz) € (prSq)z
Leo, hixp,yp), (x5,95)) = (Ry(x)),¥), (x),0(y7)-¥,))

where R_ is thi ;eflection of sP . Then it is easy to see that Q(h)p=( _(])_ é)
while §(h)q =( 0 1) . Also one can define f € Mp,q as
£(xpp97) = (xR (%)) where (xp,y;) € (SPx5h),, (x,,5,) € (sPxsh,
£(x),5,) = (x5,5))

i.e., f((xl,yl),(xz,yz)) = ((xl,Rq(yz)),(xZ,yl)) where Rq is a reflection of %

and so it is easily seen that Q(f)p= ((1)(:) while §(f)q= (_2(])') so h is
mapped by ¢ to {(_23),(3})} while f is mapped by @& '50{((1)2):(-2;)}

and since these sets of matrices generate GL(2,Z) and 24 respectively then

~
Q(WO(MP q)) ~ Z4 ® GL(2,Z) . Combining Propositions 2.5 and 2,6, we obtain Theorem
b
2.1 (ii).

REMARK. If p is odd but + 1,3,7 and q 1is even, we get the same result
as in Proposition 2.5 using equivalent method. Also if p=1,3,7 and q is even,

we obtain' the same result as that of Proposition 2.6,

+
Since Mp,q denotes the subgroup of Mp q consisting of diffeomorphisms of
2
sP xS9#sP xs9 which induce identity map on all homology groups, it follows that
+

Mp q is the kernel of the homomorphism & . We now compute M;
> 2

q° We define a
homomorphism

G :'T"rom:’ @ > MyS0(atD)

Given an element {f} € ;O(M; q) , since &(f) 1is identity, it means that if
1(sP x {pp}) is the usual identity embedding of SP X {py} into sP x 54 sP x s
where Py is a fixed point in sd far away from the connected sum, then the sphere
sP x {pO] in SPxSYT#5PxsY represents a generator of the homology
H (SPxsi4sPxst)y ~z @z . since 8(f) is identity, it follows that f(stpo)

il; homologous to i(sP Xpb) and since p < q and by Hurewicz theorem, f and i

are homotopic and in fact with the dimension restriction, they are diffeotopic. By
tubular neighborhood theorem, f is diffeotopic to a map say f" such that
£'(sPxpY) = sPxpd where f'(x,y) = (x,a(£")(x)-y) and a(£"):SP —> s0(q) . Let
i :80(q) —> S0(q+l) be the inclusion map and i, : ﬂpSO(q) —_ ﬂPSO(q+1) the induced

map on the homotopy groups. Then we define
6lf} = i,@@() .
LEMMA 2.7 G 1is well-defined.

PROOF: Let f£,h EM; q such that £ and h are pseudo-diffeotopic then
- )
gon7t € M: q is pseudo-diffeotopic to the identity. If G{f} = i 0a(f") and
2
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G(h) = ia(h") where f£(x,y) = (x,a(f")(x)*y) and h(x, y) = (x,a(h")(x)*y) for
(x,y) € SPxD? then it follows that

£ ) = Gua(Ea®™ te ) (xy) € sPxd? .
We wish to show that i a(f") = ia(h") . Since G(f) = ia(f") € ﬂPSO(q+1) and
Gh) = ia(") € ﬂpSO(q-l-l) then we can define maps £;,h; € Diff(sP xs%)  thus
fl(x,y) = (x,1,a(f")(x)*y) and h (x,y) = (%, i*o.(h")(x) y) then consider f hl €
Diff(spxsqi defined by f (x,y)— (%, 1*a(f") 1*cx.(h") (xi y) (x,y) € sPxsd .,
Since f*h~ is pseudo- dlffeotoplc to identity so is 1 1 by its definition.
Hence fl 1 € D].ff(prSq) is diffeotopic to the identity hence it extends to a
diffeomorphism g of DPH'XSq , i.e., there exists g € Diff(Dp+1XSq) such that
ngiff(prSq) = fl'hl1 . Let SB denote the q-sphere bundle over pt+l-sphere with
characteristic map B : sP — so (qt+l). Then we have

1
s _1=Dp+1xqu P x 59
ia(f) i) -

so this gives a q-sphere bundle over a pt+l-sphere with the characteristic class of
the equivalent plane bundle being i*a(f")-i*a(h")_l . However, flh;.l extends to
g € Diff(Dp.’-1 X Sq) then we have

ptl q_ pt+1 q 1 q
sP™ x s 1)11 X 51\1{[’? I s5
S aq - lexsqu Dp"'lxsq
L (E) 100" . h1
1

Hence we define a map H: Sp+1 X sl —> 5 -1
ia() i)

(x,y) if (x,¥) 61)""1xs;l
g(x,y) if (x,y)€1>1;+1><s‘1l ]

H is well-defined and is a diffeomorphism. This means that S

Al ] '1 15
Sp+1 ia(f)-i,a")

with characteristic class 1*a(f') oi a(h")'
It then follows from [1, Lemma 3.6(b)] that io(f") = ig%(h") . Hence G is well-

a trivial q-sphere bundle over

defined. It is easy to see that G 1is a homomorphism.
~ 4
LEMMA 2.8 G(m =i, (m_(So .
( 0(Mp,q)) %€ p( (9)))

PROOF : By the definition of G , G(1'r (M )) c i*(‘\T S0(q)) we then show that
1,(m 50(2)) © @yl ) . If a€ 1*rrp(50(q)) "and f{a} = o where a:SP —=> 50(qtl)
)

then we can define f €M by
P,q
(x,a(x) y) if (x,y) € (Sp X Sq)l
f(x,y) = P q
(%, y) if (x,y) € (s¥ x 879,

since a € i (m(S0(q))) then f£ X (Mp ) and so G(f) =a € i*(TTPSO(q)) .

In fact since p <q, then Tr (Sq) 0 hence it follows from the exact sequence

q 1 q
M. —>1TSO —> 1_8S0 —> M S* -==--> that i
ptl P P oqtl P *
easily seen that G 1is surjective., Hence the proof.

is an epimorphism and so it is
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The next lemma is similar to [6, Lemma 3.3].
LEMMA 2.9 Let u € ker G, then there exists a representative f € M: q of u
, .
such that f is identity on sPxp? .

PROOF: If p <q-1, then wp+1(sq) = 0 and also np(sq) =0 and so it follows
from the exact sequence
——-> np,_l(sq) —> T (509) i—*> m, (S0q+l) —> np(Sq) -———
that i,
a(f') = 0. Since f£(x,y) = (x,0(£")(x)°y) for (x,y) € SP xD? then it means
f(x,y) = (x,y) hence f is identity on sPxp? . However, in general let g € Mp q
be defined thus, if SPXDE ) prbil are subsets of (prSq)l , away from the ’

is an isomorphism hence if u = {f} € ker G then G(u) =ia(f") = 0 implies

connected sum in Mp q’ we then define
b4

5,0 (E) " Lx)ey) for (x,y) €SP x b} and P xplc (sPx 5%,

g(x}Y) =
Gy (Pxsh,
since i(f') € ﬂp(SO(q-l-l)) we define g' € MP q by
2
Goia(E) Ty if (xy) € (Pxsh
g'(x}}') =

(x,¥) if (x,y) € (sl’xs“)2
then g and g' are diffeotopic and since u € ker G, G(u) =0 = i a(£f") then
gl
diffeotopic to the identity in MP q° Then the composition go f is pseudo-

is pseudo-diffeotopic to the identity and so follows that g is also pseudo-

b

diffeotopic to f and clearly by the definition of g, gof keeps prDz fixed
and represents u because it is pseudo-diffeotopic to f . Hence the proof.

We now wish to compute ker G . To do this, we define a homomorphism

N : Ker G —> ;O(Diff"'(sp xsh) and
show that N is surjective. Here we adopt the notation Diff+(prSq) to mean
the set of all diffeomorphisms of sPxs? to itself which induce identity on all
homology groups, Given u € Ker G, let f € M+ q be its representative then it
E
follows from Lemma 2.9 that we can take f to be identity on sP >(Dcl . So we have
a map
£:(Pxsh #(Pxsh, —> (sPxsh, #(sPx s%), such that

f is identity on SPxD¥ c (sP ><s°‘)1 .

Using the technique introduced by Milnor [9] and [3], we perform the spherical
modification on the domain (sP xs%), #(sPx ) , that removes sPxpic(sPx s“)1
and replaces it with DP".1 >(Sq-1 . Clearly we obtain '(Sp xSq)2 since
prDq\/Dp.HXSq-l is diffeomorphic to sPtd . Since f is the identity on sP xp? B

id
we can assume that f(Sp xDq) = sPxplc (SP xsq)3 and then perform the corresponding
spherical modification on the range (Sp xSq)a# (Sp xSq)4 to obtain (Sp X Sq)4 .
After this modification we are then left with a diffeomorphism say f' of (sPxsd)
onto (sPxsh), , i.e., £' €Difr(sPxsh) since £ € M: g then £' € mff"'(s"xsa).
So we define N{f} = {f'} . ’
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LEMMA 2,10 N 1is well-defined.

PROOF : Let f,g € Ker G such that f is pseudo-diffeotopic to g , then f
is identity on sP xp? and g 1is also identity on sP x pd . Since f 1is pseudo-
diffeotopic to g then there exists a diffeomorphism

F € Diff((SP xS9#SPxs%) xI) such that F is identity on
sPxpIx1 and F|(sPxsV#sPxsh)x0 = £ while F|(sPxsi#sPxshxi-g. 1f
we now perform the spherical modification on the domain (Sp X Sq) + (SP X Sq) xI of
F by removing sP XDcl IC (SP xSq) X I and replacing it with Dp+ xsT” -1 xI,
then we obtain the manifold (SP x Scl)2 XxI and since F is identity on sP )(Dq xI,
we then perform the corresponding modification on the range (Sp X Sq) + (Sp xSq)4 xI
by removing sPxpix1c (Sp X Sq)3 X1 and replacing it with Dp.'-1 X Scl 1 to obtain

(SP XSq)th . We then obtain a diffeomorphism

F'o(sPxsh, x1 —> (sPxsYh, x1
i.e., F' € Diff'(sPxSIXI) hence N(F) = F' and F'|(sPx5¥x0) = £' and
F'Iprqul = g' hence f' is pseudo-diffeotopic to g' and so N 1is well-defined.

It is easy to see that N is a homomorphism.
LEMMA 2.11 N is surjective.

PROOF : Let h' € Diff+(prSq) , we need to find a diffeomorphism h € M: q
2
such that N(h) = h' . 1If Dpf-q is a disc in SPxScl then we can assume h' is
identity on DP.’-q then we have h' € Diff-"(sp x s _Dp'f'q) . We then define h € M+

Py 4
thus
() if gy € Pxsh -oPH
h(x, y) =
h'(x,y) if (x,y) € (Sl:’xsﬁl)z-bp"-q
where M; = D:lff"-(sp Sq) # (prsq)2 as earlier stated. h is well-defined and
)
h € M+ . Since h is 1dent1ty on (prsq) then it is identity on
sPxD C(Sp Sq) hence h € Ker G and clearly N(h) = h' and so N is surjective.

We recall from [6, §3] the homomorphism
B :Foniff’*(spxsq) —> 7 S0(qt]) vhich is similarly

defined as homomorphism G and where Sato gave a computation of Ker B . We will
apply this result of Ker B to the next lemma.

LEMMA 2.12 Ker N is in one-to-one correspondence with Ker B .

PROOF: Let f € Ker B, we will produce a diffeomorphism f' € M such that
£' €Ker N . Since f € Ker B then f € Diff'(sPx5%) and £|sPxp? =p’identity.
We define a diffeomorphism f' : (SP xs“)l#(sp xsh, — P xs“)3#(sp xsq)4 by

£(x,y) 1f  (x,y) € (sP x 5% -pP™d
£' (x, y) =

x,y) 1if (x,y) € (sP x Sq)2 -pPtd
f' is well-defined and f' €M+ q° Since f' = f omn (Sp X Sq) , and since
fISp x D e (sP x Sq)l is 1denlt):;’.ty then it follows that f']prDq= identity and so
f' € Ker G . However, using sPxpl c (Sp xSq)1 to perform spherical modification
on both sides of the domain and range of £' and the fact that f' 1is the identity
on (prSq)2 we clearly see that N(f') = identity € Diff (sP xSq)2 hence f'€KerN,



28 S. 0. AJALA

Conversely let f € Ker N, then N(f) = f' € ;ODiff-'-(Sp xSq) . We want to show
that f' € Ker B. Since f € Ker N then it means the image of f under N is
trivial hence N(f) = f' is pseudo-diffeotopic to the identity. We now consider
B(f') where B: nomff t(sP xsdy — T,(S0qtl) is defined in [6] similar to our
homomorphism G . Since f£' € Diff (SP xS9) and p < q then f£' ISPXDq-prDq
where f£'(x,y) = (x,b(£')(x)+y) for (x,y) € SPxDd and b(f') :sP —> so(q) . 1If
i :S0(q) —> S0(q+l) 1is the inclusion map and i, :‘erSO(q) —_— TrpSO(cﬂ-l) is the induced
homomorphism then B(f') = i,b(£') € ﬂpSO(q'i-l) .

However since f' is pseudo-diffeotopic to the identity then let
H:SPxs9x1 —> sPxsIx1I be the pseudo-diffeotopy between f' and identity id .
Then

pPHly s )pPtlys9-pPtly g9 )sPysdypy ) pPtlyxsd

ia 0 | idy 1d
sqL/v"'“lxsq—Dp+1 s prsqxIU DP*L 58
1d'

is the required diffeomorphism between Dp+1 X SqUDPH' xs? and Dp+1 X SquDP’-1 xsd=
£! id
1 .
= 5Pty 59 vhere id, (%, y) = (x,y,1) , 1di (x,5,0) = (x,%) , fi(x, y,0) = £'(x,y) and

idz(x, y) = id(x,y,1) = (x,y) . However, consider Si b(£') the q-sphere bundle over
*

a (ptl)-sphere whose characteristic class of the equivalent nommal bundle is
i,b(£') € npSO(q-"l) hence S; Db(ED = DPH'xSc‘\_'JDP“xSqﬂ'SP‘HxSq by the above
diffeomorphism and since p < q it follows by [f, Prop. 3.6] that i b(f') =
Hence f' € Ker B and so Ker N is in one-to-one correspondence with Ker B ,

Since N 1is surjective by Lemma 2.11 then we have

LEMMA 2,13 The order of the group Ker G equals the order of the direct sum
group

Ker B @ ?r'oniff+(sp x 5%

Also since G 1is surjective by Lemma 2.8 then it is easily seen that

LEMMA 2.14 The order of "O(M; q) is equal to the order of the direct sum
b
group

T S0(q+1) ® Ker B @ ﬂoDiff+(Sp x s%

However one can easily deduce from [6, §4]
LBOA 2,15 ker B ~ 1 SO(pHL) © gptatl
Also from [6, Thm. II] and [1, Thm. 3,10] we have

LBMA 2.16 T,
Combining Lemmas 2,12, 2,13, 2,14, 2.15, and 2,16, we obtain

pieet(sP xsY) = M SO(q+l) @ T SO(p+L) @ gPHatl

THEOREM 2.17 For p < q, the order of the group rr (M ) equals twice the
order of the group T SO(q+1) e SO(p+1) [ e"*‘“’l

3. CLASSIFICATION OF MANIFOLDS

Consider the class of manifolds {M,\ 2} where M is a manifold of type

,1’
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(n,p,2) where n=ptq+tl and p=3,5,6,7 (mod 8) and Xl’ )\2 are the generators of
HP(M) =2 ®Z ., By the proof of Theorem 1.1 we have an embedding cpi:Sp xDq+1 -=>M
which represents the homology class )‘i i=1,2 ., If we then take the connected sum

qt+l
X D

along the boundary of the two embedded copies of sP we have an embedding

£:P x0T #sPxp™h — M such that 1,[sP] = A 41,
3
Two of such manifolds {M’)‘v)‘z} and [M',Xi, )\é} will be said to be equivalent if
there is an orientation preserving diffeomorphism of M onto M' which takes )\1
to li i=1,2 . Let % be the equivalent class of manifolds satisfying these
conditions, This equivalent class which is also the diffeomorphism class has a group
structure. The operation is connected sum along the boundary sP x S':l#sp xsd of
span"'lifspxn‘”l . For if {,3,h,}, M, \,M) € A, then let
il : P xDq+1 #Sp xDq+1 —> M be an orientation preserving embedding such that
3

il*[ Sp] = A, +X, and since there is an orientation reversing diffeomorphism of

1
SF’xDq-H#Sp xDqH' to itself (because sP )(Dq"'1 is a trivial g+l-disc bundle over

Sp) then we have an orientation reversing embedding i2 : sPx Dq+1 + sP x Dq+1 —> M'
d
such that 12*[ SP] = X]'_+X' . We now obtain M#M' from the disjoint sum
2p
@ -1t i (8P x 0™ 4P xp™ ) U ' - Ine 1,(sP x0T #5P x D)) by identifying
3 3
1) with i,(x) for x € sPxs¥#sPxs? . We will call this operation the

connected sum along double p-cycle. Where the 2p in M#M' means that we are
2p
identifying along the boundary of embedded copies of connected sum along the boundary

of two copies of prDq+1 . It is easy to see that HP(M#M') NMNZOZXZ . Since we

2p
have identified il(Sp xs34sPxsd with 12(sp xs3#sP x59) we can define

il*[sp] = )‘1#)‘]'.4')‘2#)‘5 the generators of HP(M#M') then we see that MZtM' € ‘//n .

LEMMA 3.1 The connected sum along the double p-cycle is well-defined and

associative,

PROOF: We need to show that the operation does not depend on the choice of
the embeddings, Suppose there is another embedding cp;._ : prDqH‘ —> M which
represents the homology class )‘i i=1,2 and gives a corresponding embedding
ii : sP xDq"'.l’//’SP xDq"-1 —> M . By the tubular neighborhood theorem cpi(Sp xDq'”')

)
P, ~qtrl .
and cpi(S XD*' ") differ only by rotation of their fiber, i.e,, by an element of
TTPSO(q+1) =0 since p=3,5,6,7 (mod 8) hence the two embeddings are isotopic and so
the corresponding embeddings

i sPx DTl 5Py pTl oy and
d
1i . sP xDqﬂ.lg‘Sp xDqH' —>M are isotopic.
The definition does not therefore depend on the choice of 11 . With similar argu-
ment it does not depend on 12 . The connected sum is therefore well-defined.

Associativity is easy to check.
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LEMMA 3,2 If (M, ISPy {Ml, )\1 "N } E/ , such that they are equivalent,
If {M',)\i,)\é} € ‘//n then M#M', #X )» #XZ) is equivalent to (Ml #M )\ #l )‘1 #Xé).
2p 2

PROOF : Since M Ml are equivalent in % then there exists an orientation

preserving diffeomorphism £ :M —> M1 which carries )‘1 to )‘1 and )\2 to )Ll
1

hence it carries the embedding ®; (Sp xDq"'l) to the corresponding embedding
(SP X Dq+1) i=1,2 and so f carries the embedding i(Sp xDq"-1 #sP xDq+1) CM to
I:he embedding i (Sp )(Dq"-]'#sp xDq+1) c Ml hence f induces a dineomorphism

2

£':M - Int i(Sp XDQ+1#SP XDq+1) —>M
2

L -Int i (sPx pT1 4 gP y pTHly
?

which carries )‘1 to lll and )‘2 to Xlz

Trivially we have the identity map

1d:M' - Int 1'(sP x DT 48P x DY) — Mt - 1ne 1(sP x DT LgsP x DTH
-} =}
which carries Xi to X]'_ and lé to )\é . We then take the connected sum along
their boundary SPxS%sPxs? to have M#M' which is disjoint sum of
2p

M-Int i(SPxDT ISP x DTy U M'-Int i' (spxoq“#spanﬂ) by identifying i(x) and

-}
i'(x) for x € SPXSq#Sp xs?, Similarly M #M' is the disjoint sum of
2p
M-Int il(Sp x DT 1P x pT*ly U M'-1Int 1'(sP x DT 14sP y DMLy by identifying 1)
=} -}
and i'(x) for x € sPxs%sP xsd . Clearly we have a diffeomorphism

g :MEM' —> MI#M' which is f' on M and identity of M' and g carries
2

2p P
)\l#li to A l#k' and 1, #)\' to Xlz#)\é . Hence [MZtM',XI#Xi,XZ#Xé} is equiv-
alent to f,M #M' #X N #X 3} in ‘//n . That proves the lemma.

If we now t:ake two copies of sP XDq-l-l#sp xDqH' and identify the two copies on
-}
their common boundaries by the identity map, we will obtain the manifold
P x sl 4 sP x gL P x sThpsP y s (P x pTHysP « pTHly | (s"xn‘r*lavrsP pTly
3 id
where id=identity: sP x Sq#sP xs? —> sP X Sq#sp x s . 1f k )‘0 are the gen-
2
erators of H (" x xsHHsPx sy - 202 and -A + (A en (-M) Z0Z vhere
i [Sp] = -X +-X and i:M —> -M is the orientation reversing diffeomorphism then

, i.e.,

we have the following.

LEMMA 3.3 ‘/[n is a group with identity element (SP x sTHlgsP xSqH' 01, 102)

and for (M’)‘v)‘z) € ‘/fn (-M, -11, -XZ) is the inverse element.

To be able to prove our main theorem later, we need to investigate

ﬁoDiff'P(Sp xDq'H#Sp xDq+1) . As in the case of rr (M ) , we define a homomorphism

8 - mpife(sP an“#sp x0Ty — auto n,(sP xl)‘*”#sp D‘r”) by induced automorphism
° P, patlyp, patl 2

of homology groups. Since S° xD' "#S° xD has the homotopy type of

9

sP xDq"fl v sP xI)q"'1 then

zZ  if 1=0
Hi(sP x DL 4Py pTHLy
? ZOozZ if i=p
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Using similar ideas in §2, it is easy to prove the following.

LEMMA 3.4
‘N if p 1is even
8 (m,@ige(sP xp™ P xpthyyy = L2, 2) 1f p=1,3,7
3 H if p is odd but # 1,3,7

Let Diff (sP x DT L4sP x0Ty < Dife(sP x DT 4P x DTL)  be the set of all diffeo-
?

morphisms of sP XDq-'-l#Sp xDq+1 which induce identity automorphisms on its homology.
)

Then it follows that ﬁoDiff"'(SpXDq'H#Sp xDqH') is the kernel of &' . We define

a homomorphism

G' M S0(qtl) —> TDLEE! (sP x pT 4P x patly
3

If a € ﬂpSOq-!-l and o= {a} then we define a map

g, : P x pTlpsP y pTL — Py pTHlgsP y ptl
d 3

by

(x,a(x)'y) for (x,y) € (sprq+1)1
4 (x, y) =
a (x,a(x) y) for (x,y) € (prDqﬂ')2
g is clearly well-defined and it is a diffeomorphism and since 8, keeps sP fixed,
a 12 p gl
it induces identity on all homology groups hence gaEDl.ff (prDq" #prD ) .

We will define G'{g} = {38}
LEMMA 3.5 G' is well defined.

PROOF: If a' € ﬂpSO(q-f-l) such that a is homotopic to a' and let
H:SPxI —> 50(qtl) be the homotopy such that H(SPx0) = a and H(SPXx1) = a'
then we construct a diffeomorphism F of (SP x Dq-l-l#sp xDq+1) XI by

)
1
(HGx ©y) (x5 € PxdTh,

F(x,y,t) =
” (x,H(x, t)y) (X)Y) € SPXDq+1)2

This is the diffeotopy which connects 8, and 8yt -

LEMMA 3.6 G' 1is surjective.

PROOF: Let {f} € 1'r Diff (Sp xDq+1#prDq+1) then f induces identity on all
homology groups. However H (Sp D"""']'#SP DQ+1) N Z®Z and so if X and )\2

represents the generators of the first and second summand and the embeddings
1,:Px{p} —> &P ><1)°*+11gsp x0™ and 1, : 5P x {py} —> sP xn‘f“;gsp x D!
represents the homology class )‘1 and )‘2 respectively, since f induces identity
on homology then £(sP x {po} and il(Sp X {po] are homologous. Since p < q and by
Hurewicz theorem il and fo 11 are homotopic, by Haefliger [10] and by the diffeo-
topy extension theorem and tubular neighborhood theorem, there exists £' in the
diffeotopy class of £ such that f£'(x,y) = (x,a(x):y) for (x,y) € (prDq'H)l
vhere SPxDT! is the tubular neighborhood of SP x [po} and a:SP —> soqtl .

Similar argument applies to the embedding i,: sP x (po} —> sP xDq".]'#Sp xDq"-1 and



32 S. 0. AJALA

so we have a map f"' 1in the diffeotopy class of f hence in the diffeotopy class of
f' and so f" must be of the form f£"(x,y) = (x,a(x)*y) where (x,y) E(prncﬂ']')2 .
It follows that

1
(x,a(x)y) (x,y) € (sP x0T )

f(x) Y) =
(x,a(x-y) (x5 € PxdTh,

Hence G' 1is surjective.

One can easily deduce from Lemma 3.6 that ;0Diff+(sp xDq"']'#Sp xDq+1) is a factor
group of np(SOq+1) .

THEOREM 3.7 Let M be an n-dimensional closed simply connected manifold of
type (n,p,2) where n=ptq+l with p=3,5,6,7 (mod 8) then the number of differen-
tiable manifolds satisfying the above conditions up to diffeomorphism is twice the
order of the direct sum group T SO(p+1) e 6"

PROOF: We deflne a map C: Tr (M ) _ j and show that C 1is an iso-
morphism, Let {f} € rr (M ) then f 1s a dlffeomorphlsm of sP xsq#sp «s? which
)

1+
induce identity on homology We then take two copies (Sp x DY I#SP xDq-H’)l and
3

sP XD"I"']'iiFSp xDq'H)2 of SP xDq'H“#SP )(Dqﬂ' and attach them on the boundary by £ to

d
have (prDq"'l#prDq"'l) U (SPxDq"']'ai‘vSpxDq'H')2 . An orientation is chosen to be

o
compatible with (SP Dq-l-l#sp Dq+1)1 and the manifold obtained belongs to the group
?
"/n . The generators of the p-dimensional homology group is fixed to be the one

represented by the usual embedding sP x [p } — (Sp X Dq+1) c (SP X Dq+1 #Sp X Dq+1)1
and sPx{pg} —> (spxuq"l) c (sP x pTlgsP xl)‘”'l)1 . We then define

3
clf) = (sPx n‘*”#s"xr>°f‘“1)U(s‘°xv““#sp p™L) | We now show that C is well-defined.
£

Let fo,f € Mp q such that fo is pseudo-d:.ffeotopic to £, then there exists

1
H: (sPxsHsP xsh) x1 —> (sPxs%sP xs9) xI such that H(x,y,0)=£. and
H(x,y,1) = f1 then we wish to show that (SP x Dq-'-l#sp X Dq+1) U (sP x Dq‘"]'#sP X Dq+1) is

f d
diffeomorphic to (5P x Dq-l-l#sp X Dq+1) U (sP x D"H'I#Sg X DqH') . OWe then define a map

d fl

(sP x DT 1#sP x DTy UsP x pTHpsP x DT L - 5P x pTHpsP x DT U (5P x sWSP x 5% x1 U P x DT LgsP x pT*!

-] fo -] ? £6 ido

ljld H id

(s® x DT 14sP x D71y U (5P x DT L#sP x DY) = 5P x DT Lgp T U (sP x 534 5P x5 x TUSP x DT 4 5P x pTH)

3 fl ) -] 1d1 £! 3

1

where ido(x, y) = (x,y,1), idl(x, y,0) = (x,y), f(')(x, y,0) = fo(x, y) and fi(x, y) = fl(x, y, 1),
This is a well-defined map and is the required diffeomorphism from

(sPxDT LsPxp*Ly U (sPxoT IpsPxo™]) to  (sPxD¥ l4sPxpTHL) U (sPxpT ipsPxpT ) | Hence
? fo 3 -} £ °
C 1is well-defined and it is easy to see that C 1is a hamom&rphism. By Theorem 1.1

it follows that C 1is surjective, We now need to show that C is injective. Suppose
(£} € no(n; Q md C(®) = MA,)) is trivial, then it follows that
2
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M= (SpXDq+1#SPXDq+1)lU(SpXDq+1#SpXDq+1)2 is diffeomorphic to
3 £ 3
(sP x DT 4 5P x D‘*“)1 U (sP x 0¥t # 5P« D“"’l)2 = sPxsT 4Py s Uith p-dimensional
) id )
homology generators )‘O R )‘0 , by a diffeomorphism d which carries 11 to )‘0 and
1 2 1
)‘2 to )\0 , i.e,,
2
(sP x DT 4 5P x pThy U (5P x p¥L 4 5P x pTTLy
1 2
d f -]
(sP x DT 4 5P« DTy U (sP x DT 48P x DTy = 5Py 5T LgsP 4 5T+
1 2
2 id 3
It is easy to see that since d carries )\1 to )\0 and ,\2 to )\0 and because

1 2
p=3,5,6,7 (mod 8) then d is the identity on (s"><Dq“4,‘=s"xncr”‘)1 . On the
boundary SPXSQ‘#SPXSq , d is just f . Since d is 2 diffeomorphism it follows
that f extends to a diffeomorphism of (prDq'H#prDq.H) which means
£ e pifft(sPxsI#5P xs%) is extendable to Diff'(sP x DT 4P x D) | but by Lemma 3.5,
;oDiff-F(Sp xDq+1#SP)<Dq+1) is a factor group of Trp(SOq+1§ but since p=3,5,6,7,
mod 8 then TTP(SOq+1)=O . Hence f 1is pseudo-diffeotopic to the identity and so
C is injective. It then follows that C is an isomorphism. By Theorem 2.17 and
since p=3,5,6,7 (mod 8) it follows that the order of the group ;O(M:, q) is twice
the order of the group TrqSO(p-l-l) @ 0" and since C is an isomorphism the theorem
is proved. The methods used here if carefully applied can be used to obtain a general

result,

THEOREM 3.8 If M 1is a smooth, closed simply connected manifold of type
(n,p,r) where n=p+tqtl and p=3,5,6,7 (mod 8) then the number of differentiable
manifolds up to diffeomorphism satisfying the above is equal to r times the order
of T S0(ptl) @ G
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