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This paper investigates the stability of iteration procedures defined by continuous functions acting
on self-maps in continuous metric spaces. Some of the obtained results extend the contraction
principle to the use of altering-distance functions and extended altering-distance functions, the last
ones being piecewise continuous. The conditions for the maps to be contractive for the achievement
of stability of the iteration process can be relaxed to the fulfilment of being large contractions or to
be subject to altering-distance functions or extended altering functions.

1. Introduction

Banach contraction principle is a very basic and useful result of Mathematical Analysis
[1-7]. Basic applications of this principle are related to stability of both continuous-time
and discrete-time dynamic systems [4, 8], including the case of high-complexity models for
dynamic systems consisting of functional differential equations by the presence of delays
[4, 9]. Several generalizations of the contraction principle are investigated in [2] by proving
that the result still holds if altering-distance functions [1] are replaced with a difference of
two continuous monotone nondecreasing real functions which take zero values only at the
origin. The so-called n-times reasonable expansive mappings and the associated existence of
unique fixed points are investigated in [7]. The so-called Halpern’s iteration [10] and several
of its extensions in the context of fixed-point theory have been investigated in [11-13]. Further
extended viscosity iteration schemes with nonexpansive mappings based on the above one
have been investigated in [9, 10, 12-18], while proving the common existence of unique fixed
points for the related schemes and the strong convergence of the iterations to those points
for any arbitrary initial conditions. The stability of Picard iteration has been investigated
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exhaustively (see, e.g., [5, 19-22]). The Picard and approximate Picard methods have been
also used in classical papers for proving the existence and uniqueness of solutions in many
differential equations including those of Sobolev type (see, e.g., [23]).

This paper presents some generalizations of results concerning the stability of
iterations in the sense that the iteration scheme subject to error sequences converges
asymptotically to its nominal fixed point provided that the iteration error converges
asymptotically to zero. Several generalizations are discussed in the framework of stability
of iteration schemes in complete metric spaces including:

(a) the use of altering-distance functions (Definition 1.1) [1, 2], and the so-called
then defined extended altering functions (Definition 2.1 in Section 2) where the
continuous altering functions are allowed to be piecewise continuous;

(b) the use of iteration schemes which are based on continuous functions which modify
the Picard iteration scheme [5, 6];

(c) the removal of the common hypothesis in the context of T-stability that the set of
fixed points of the iteration scheme is nonempty by guaranteeing that this is in
fact true under contractive mappings, large contractions, or altering- and extended
altering-distance functions, [14, 6].

Definition 1.1 (see [1] (altering-distance function)). A monotone nondecreasing function ¢ €
CO(Ros, Ro,), with p(x) =0, if and only if x = 0, is said to be an altering-distance function.

If (X,d) is a complete metric space, T : X — X is a self-mapping on X, and
@(d(Tx,Ty)) < cp(d(x,y)), for all x,y € X and some real constant ¢ € (0,1), then T has
a unique fixed point [1, 2]. This result is extendable to the use of monotone nondecreasing
functions ¢ € C”(Ry,, R, ) satisfying

9(d(Tx,Ty)) < p(d(x,y)) - ¢(d(xy)), YxyeX, (1.1)

for some monotone nondecreasing function ¢ € C©(Ry,, Ro,) satisfying ¢(t) = ¢(t) = 0 &
t = 0. Those results are directly extended to monotone nondecreasing piecewise continuous
functions being continuous at “0” after a preliminary “ad hoc” definition in the subsequent
section.

2. Fixed Point Properties Related to Altering- and
Extended Altering-Distance Functions

Since ¢ € PCO(Ry,,Rg,) but continuous at + = 0, it can possess bounded isolated
discontinuities on R, and it is necessary to reflect this fact in the notation as follows. The
left (resp., right) limit of ¢ at t = d(x,y) is simply denoted by ¢(d(x,y)), instead of using
the more cumbersome classical notation ¢((d(x,y))”) (resp., by ¢*(d(x,y)) instead of using
the more cumbersome ¢((d(x,y))*)). Since ¢ is an extended altering-distance function, then
continuous at t = 0, ¢(0) = ¢(0*) = 0. If ¢ is continuous at a given t = d(x,y) > 0, then
e () = p(t*) = p(t). If  is has a discontinuity point (of second class), then ¢(t) # ¢* (t), with
o™ () — ()] < o0.
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Definition 2.1 (extended altering-distance function). A monotone nondecreasing function ¢ €
PCO(Ry,,Ro,) being continuous at “0”, with ¢(x) = 0, if and only if x = 0, is said to be an
extended altering-distance function.

Theorem 2.2. Let (X, d) be a complete metric space and T : X — X be a self-mapping on X. Then,
the following properties hold.

(i) Assume that ¢ € C©(Ro,, Ry ) is an altering-distance function such that ¢(d(Tx, Ty)) <

cp(d(x,vy)), for all x,y € X for some real constant ¢ € (0,1). Then T has a unique fixed
point [1].

(ii) Assume that ¢ € PCO(Ry,,Ro,) is an extended altering-distance function such that

¢(d(Tx,Ty)) < c(d(x, y)¢(d(x,y)) and ¢ (d(Tx,Ty)) < c*(d(x, y))¢* (d(x, y)), for
all x,y € X for some real function

c € PCO(Ry,, Ro: N [0,1))

2.1)
defined by
9y)
cdxy) =1 gy TV
0, ifx=y,
$(d(x,)) o >
ey =1 @y TP
0, ifx=y,

forall x,y € X for some monotone nondecreasing function ¢ € C (Ro,, Ry, ) satisfying ¢(t) < ¢(t),
forallt € Ry and ¢p(t) = ¢(t) = 0, if and only if t = 0. Then ¢ : Ror — Ro, N [0, 1) is monotone
nondecreasing and T has a unique fixed point. In particular, if (d(x,y)) = d(x,y) so that

gy
ey =1 d@y = T

(2.3)
0, ifx=y,

for all x,y € X for some monotone nondecreasing function ¢ € CO(Ro,,Roy) satisfying

¢(d(x,y)) < d(x,y), forall x,y#x € X and ¢(d(x,y)) =0, ifand only if y = x € X, then T
has a unique fixed point.

Proof of Property (ii). Note that c(d(x,x)) = 1 - lim,_,¢(d(x,y))/(p(d(x,y))) = 1 -
¢ (0)/¢ (0) = 0 from I'Hopital rule and the fact that both functions ¢ and ¢ are continuous at
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“0” with ¢(0) = ¢(0) = 0. Note that after taking left and right limits at each nonnegative real
argument

d(x,y .
P G20 ) B | C20)

@) @& y)
$(d(x,y)) (2.4)
>c(d(x, =1-——,
> c(d(x,y)) o(d(x,1))
d : d 7
C+(d(Z,Z)) =1- % = C(d(Z,Z)) =1- % =0,

for all x, x' (# X),Y, y'( #v),z € X, such that d(x’,y') > d(x,y), since

0<¢(d(xy)) <p(dxy)) <o [@dxy) <p(d(xy))>(d(x.v))

9" (d(z,2)) = p(d(z,2)) = §(d(2,2)) =0, Vx,x(#x),y,y (#y) € X.

(2.5)

Then, ¢ : Ros — Ro, N [0, 1) is monotone nondecreasing from simple inspection of the above
properties. Thus,

9(d(Tx, Ty)) < cp(d(x,y)) <c™(d(x, y))p(d(x,y)) <c™(d(x,y))¢"(d(xy))  (2.6)

so that

¢(d(Tx,Ty)) <" (d(Tx,Ty)) < c*(d(x,y))¢"(d(x,y)) <¢™(d(x,y)), Yx(#y) 6(>2<-7)

Now, it is proven by contradiction that there is no € € R, such that d(x,y) > ¢, for any
given x(#y) € X. Take two arbitrary xo(#yo) € X. Assume that ¢*(d(T/xo, T'yg)) > ¢, for all

j € kU {0}, and some given k € Z., so that if ¢*(d(T/xo, T'yy)) > ¢ also for all j € Zy,, then
for some ¢p € Ry,

e<gt (d <Tk+Nx0’TK+NyO>> < ﬁ [C+ <d<Tk+jx0, Tk+jy0>>](l,+(d(x,y))
) = (2.8)
= v J[e" (a0, 7))
j=1

for all N € Zo,. But, it always exist a finite Ny € Zo, such that 1_[]»]11 [c* (d(T i xy, T y0))] <
/(e + &) <1, forall N(> Ny) € Zy, since 0 < ¢*(d(xj,y)) <1; xj = T'xo(#y; = T'y) € X,
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what leads to a contradiction. Thus, there is no € € R, such that ¢* (d(T*xo, T¥yo)) > ¢, for all
k € Z,, for any given xo(#1o) € X. As a result, the subsequent relations are true:

e (4T )] o
= lim p(d(T*xo, T*yo) ) = lim * (d(T*x0, Tyo) ) =0 = lim d(Trx0, T y0 ) =0,

k— oo
(2.9)

for all xo(#yo) € X, with the above limits since ¢(t) is continuous at t = 0 and ¢(t) = 0, if
and only if t = 0. Furthermore, any sequence {x;} with x; = Tkx, forall x € X, is a Cauchy
sequence since for any arbitrarily small prefixed constant € € R, there exist sequences { N},
{nk}, and {my} of nonnegative integers satisfying Zo, > Ny — oo; 1 > N, myi > ny, such
that

Mg
1 1 i j
g (A (T, T X)) < ]|=1| [c+ (a(Tmx, fo))] <e. (2.10)

Thus, there is a unique z € cl X which is in F(T), the set of fixed points of T, that is, z =
Tz = limg_,,T*x, for all x € X. Since (X,d) is a complete metric space and the sequence
{xx} with xx = T*x is a Cauchy sequence, for all x € X, then X > F(T) = {z}. It holds
trivially that all the above proof also holds for special case ¢(d(x,y)) = d(x,y) and some
monotone nondecreasing function ¢ € C©(Ry,,Ro:) satisfying ¢(d(x,y)) < d(x,y) (ie.,
T : X — Xisaweak contraction) as may be proven [3] (see also [24]). Property (ii) has been
fully proven. O

Theorem 2.2 might be linked to the concept of large contraction which is less restrictive
than that of contraction. The related discussion follows.

Definition 2.3 (see [4] (large contraction)). Let (X, d) be a complete metric space. Then, the
self-mapping T : X — X on X is said to be a large contraction, if d(Tx,Ty) < d(x,y),
for all x(#y) € X, and if for any given ¢ € Ry, such that d(Tx,Ty) > ¢, then there exist
6=06(¢) € 0,1), such that d(Tx, Ty) < 6d(x,y).

It turns out that a contraction is also a large contraction with 6 € [0,1) being
independent of ¢ in Definition 2.3. The following result proves that the self-mapping T on
X satisfying Theorem 2.2(ii) is a large contraction.

Proposition 2.4. Let (X,d) be a complete metric space and T : X — X be a self-mapping on
X. If ¢ € PCO(Ryy,Ry,) is a modified altering-distance function which satisfies the conditions of
Theorem 2.2(ii), then T is a large contraction.

Proof. Given ¢(d(Tx,Ty)) < c(d(x,y))p(d(x,y)) < ¢(d(x,y)), for all x(#y) € X, since
c(d(x,y)) < 1,if d(x,y) > 0. Since ¢ € PCO(Ry,,Rp,) is an extended altering-distance
function it is monotone nondecreasing of nonnegative values and taking the zero value
only at “0”. Thus, [¢(d(Tx,Ty)) < ¢(d(x,y)), for all x(#y) € X] = d(Tx,Ty) < d(x,y).
Furthermore, it is proven by contradiction that for any given € € R,, such that d(Tx, Ty) > ¢,
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36 = 6(¢) < 1, such that d(Tx,Ty) < 6d(x,y). Take x(#vy) € X, such that d(x,y) > 0, and
assume that d(Tx, Ty) > d(x,y). Since ¢ € PC(Ry,, Ry;) is monotone nondecreasing, then
@(d(Tx,Ty)) > p(d(x,y)) >0, for all x(#y) € X, and one also gets that

¢ (d(Tx,Ty)) =2 max(p(d(Tx,Ty)), ¢ (d(x,y))) 2 9(d(x,y)), Vx(#y)eX. (211)
Then,

p(d(x,y)) > ¢(d(x,y)) - ¢(d(x,y)) 2 9(d(Tx, Ty)) 2 p(d(x,y)) > 0,

¢"(d(x,y)) > ¢ (d(x,y)) - ¢(d(x,y)) 2 ¢ (d(Tx, Ty)) 2 9" (d(x,y)) = p(d(x, y))(> 0/)
2.12

which are two contradictions. Thus, p = d(x,y) > 0= d(Tx,Ty) < 6(p)d(x,y) < p, for some
6(p) <1and T is a large contraction. O

It is now proven that the sequence {d(x, T*x)} is uniformly bounded if Theorem 2.2(ii)
holds.

Proposition 2.5. Let (X,d) be a complete metric space and T : X — X be a self~mapping on
X. If ¢ € PCO(Ro,, Ry, ) is a modified altering-distance function which satisfies the conditions of
Theorem 2.2(ii), then d(x, Tkx) < L < oo, forall x € X and k € Zy,.

Proof. Proceed by contradiction by assuming that d(x,T*x) < L < oo, for all x € X and
k € Zy,, is false so that {d(x,T*x)}, k € Zy, is unbounded. Thus, there is a subsequence
(T} jxeZ.cz,, Of self-mappings on X, with Z, 5 jx — oo, as Zy, 3 k — oo, such that the real
subsequence {d(x, T’*x)}; ez, is strictly monotone increasing so that it diverges to +oo, so that
Ly =d(x, T*'x) > Ly and Ly — o0, as Z, 3 k — oo. Since ¢ € PCQ(Ry,, Ry,) is monotone
nondecreasing, one gets

¢ (Lis1) > max(p(Lis1), ¢* (Lk)) > @(Lx), (2.13)

since ¢ € PC ©)(Ros, Rg,) is monotone nondecreasing. Since the inequalities are nonstrict, the
above subsequences might either converge to nonnegative real limits ¢ (x, z) and ¢, (x, z),
or diverge to +oo. The event that ¢, (x, z) and ¢ (x, z) are one finite and the other infinity is
not possible since ¢ € PC (Ry,, Ro;) so that any existing discontinuity is a finitejump type
discontinuity. Thus, both limits are either finite, although eventually distinct or both are +oo
so that ¢(Lx) — @o(x,z) < oo and ¢*(Lx) — ¢f (x,z) < oo (and simultaneously finite or
infinity) as Z, 3 k — oo, where z = z(x) = Tx € X for the given x € X. Such a z always exists
in X for each given x € X since T is a self-mapping on X. Then,

+oo 2> (Poo(xr Z) — (P(Lk+1) < (P(Lk) - d)(Lk) i (Poo(xr Z) - (l)(Lk)/ as Z, > k— oo,
(2.14)

which is a contradiction unless ¢(Lx) — 0,asZ, >k — oo = Ly — 0,asZ, 3 k — oo, since
¢ is continuous at t = 0 and ¢(t) = 0, if and only if ¢ = 0. But, if the subsequence {L }kez, has
a zero limitas Z, 3 k — oo, then it is a bounded sequence. Thus, Ly — o asZ, 3> k — oo is
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false and then {d(x,T*x)}, k € Zy, being unbounded fails so that the contradiction follows.
The right-limit convergence ¢*(Lx) — ¢} (x,z) < oo leads to the same conclusion. As a
result, there is no x € x such that {d(x,T*x)}, k € Zy, is unbounded and the result is fully
proven. O

An alternative proof to that of Theorem 2.2(ii) related to the existence of a unique fixed
point in X, follows directly by using Theorem 1.2.4 in [4] since T is a large contraction and
the sequence {d(x, T*x)} is uniformly bounded (Propositions 2.4 and 2.5).

Proposition 2.6. Let (x,d) be a complete metric space and T : X — X be a large contraction.
If ¢ € PCO(Ry,,Ry,) is a modified altering-distance function which satisfies the conditions of
Theorem 2.2(ii), then T has a unique fixed point in X.

Proof. T is a large contraction from Proposition 2.4, since it fulfils Theorem 2.2(ii). Also,
d(x,Tkx) < L < oo, for all x € X and k € Zy, from Proposition 2.5. Thus, from [4, Theorem
1.2.4], T has a unique fixed point in X. O

The following result is a direct consequence of Theorem 2.2, Propositions 2.4 and 2.5.

Proposition 2.7. Let (X, d) be a complete metric space and T : X — X be a weak contraction on X.
Then, d(x, TXx) < L < oo, for all x € X and k € Zy, and T has a unique fixed point on X.

3. (f,T)-Stability Related to a Class of Nonlinear Iterations Related to
Distance and Altering-Distance Functions

Assume that (X, d) is a complete metric space, T : X — X is a self-mapping on X. The
iteration process xxs1 = f(Txi) has a fixed point if F(f,T) := {z € x : z = f(Tz)} #0. A
necessary condition for f : X — X to have a fixed point is that it to be injective. The T-
stability of the Picard iteration has been investigated in a set of papers (see, e.g., [5, 19, 20]).
The Picard iteration is said to be T-stable if limy_, ,d (X1, Txx) = 0 = limg X = z € X,
for all xo € X. The subsequent result is an extension of a previous one in [5] for the so-called
(f, T)-stability of the iteration xx.1 = f(Txk), for all k € Zy, if the pair (f,T) satisfies the
so-called (L, h) property defined by

d(f(Tx),q) < Ld(f(Tx),x) + hd(x,q) (3.1)

forallx € X;qe F(f,T) ={ze€X:z=f(Tz)},with0 < h <1and L > 0, provided that the
set of fixed points F(f,T) is nonempty. If f : X — X is identity, then the above property is
stated as T satisfying the (L, h) property.

Theorem 3.1. Assume that

(1) (X, d) is a complete metric space, f : X — X is a continuous mapping, and T : X — X
is a self-mapping on X such that the set of fixed points F(f,T) of the iteration procedure
Xk+1 = f(Txx), for all k € Zy,., is nonempty;

(2) the pair (f,T) satisfies the (L, h) property; that is, d(f(Tx),q) < Ld(f(T,x),x) +
hd(x,q); forallq € F(f,T) ={z€X:z=f(Tz)} withO<h<land L >0;

(3) lim oo d(f (Tx), x) = 0, for all xo € X.
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Then, the iteration procedure xi.1 = f(Txy), forall k € Zy,, is (f, T)-stable and it possesses a unique
fixed point.

Proof. For any given g € F(f,T), which exists since F(f,T) #0, and for all xx € X such that
X 3 xk41 = f(Txx) + € with {&,} being the computation error sequence, one has

d(f(Txk),q) < Ld(f(Txx), xk) + hd(xk, q)
< (L+h)d(f(Txk), xk) + hd(q, f(Txk)) (3.2)
= (1-h)d(f(Txk),q) < (L+h)d(f(Txk), xk).

Since0<h<1,L>0,and d(f(Txk), xk) — 0,as k — oo, then,

d(f(Txx),q) — d(f(Txk),xx) — 0, ask — oo (3.3)

from (3.2), [5, 6]. Also, d(q, xk) < d(xk, f(Txk)) +d(q, f(Txx)) — 0,ask — oo = d(q,xx) —
0,as k — oo. Also,
d(f(Txk), xka) <d(f(Txk),q) +d(q, xxa)
< (L+h)d(f(Txk),xx) +hd(q, f(Txi)) +d(q, xx41)
< (L+h)d(f(Txk),xi) +hd(q, f(Txi)) +d(q, xk) + d(xk, Xis1)

— d(xkr xk+l)/

(3.4)

ask — oo, since d(q,xx) — d(f(Txk),q) — d(f(Txk),xx) — 0,as k — oo. From the above
inequalities either d(f (Txy), Xk+1) — d(xk, Xis1) — 0,as k — oo, or lim infy_, o d (X, Xk11) >
0, with d(f(Txx),xx) — 0,as k — oo, but in this second case, d(q,xx) — 0, as k — oo,
is false so that g¢ F(f,T). Then, d(f(Txk), xk+1) — d(xx,xk+1) — 0, as k — oo. Thus,
d(f(Txx),xk+1) — d(f(Txx),xk) — 0,as k — oo from (3.4). Then, x.1 — f(Txx) — xx
and f(T,xx) — g,ask — oo.Since f : X — X is injective, xy — g, as k — oo so that f is
T-stable. It is proven by contradiction that the fixed point of the iteration procedure xr; =
f(Txi), for all k € Zy, is unique. Assume that there exists p#q € F(f,T). Then,

0#d(p,q) =d(f(Tp),q) < Ld(p, f(Tp)) + hd(p,q) = hd(p,q) <d(p,q) =0, (3.5)

what is impossible if p #g. Then, F(f,T) = {q}. O

Theorem 3.1 is now extended by extending the (L, h) property of the pair (f, T) to that
of the triple (¢, f,T), where ¢ : Ro; — Ry, is an appropriate continuous function.

Theorem 3.2. Assume that

(1) (X, d) is a complete metric space, f : X — X is a continuous mapping, and T : X — X
is a self-mapping on X such that the set of fixed points F(f,T) of the iteration procedure
Xk+1 = f(Txx), for all k € Zy,., is nonempty;
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(2) ¢ : Ro+ — Ry, is continuous, satisfies ¢p(x) = 0 & x = 0, possesses the subadditive
property, and, furthermore, the triple (v, f,T) satisfies the (L, h) property defined by

p(d(f(Tx),q)) < Lo(d(f(T,x),x)) + hp(d(x,q)); for all g € F(f,T) == {z € X :
z=f(Tz)} with0<h<land L >0;

(3) limg— oo d(f(Txk), xx) =0, for all xp € X.

Then, the iteration procedure xy.1 = f(Txy), for all k € Zy, is (f, T)-stable and it possesses a unique
fixed point.

Proof. For any given q € F(f,T), which exists since F(f,T) #0, and for all x, € X such that
X 3 xps1 = f(Txx) + €k, with {e,} being the computation error sequence and, since ¢ : Ro. —
Ry, possesses the sub-additive property, one has

¢(d(f(Txx),q)) < Lo(d(f (T, xx), xx)) + hep(d(xk,q))
< Lop(d(f(T, xx), xx)) + hop(d (xk, f(T, xk)) +d(f (T, xc),q))
< Lyp(d(f (T, xk), xx)) + h(p(d(xk, f(T, xx))) + (d(f (T, xx),q)))
= (1-h)y(d(f(Txx),q)) < (L+m)e(d(f(Txi),xk))

L+h
< —

= 0= ¢(d(f(Txx),q)) < 7= ¢(d(f(Txi), xx)) — 0 as k — oo

(3.6)

according to Hypothesis (3) since 0 < h < 1 and L + h > 0 from Hypothesis (2). Since ¢ :
Ro: — Ry, is everywhere continuous and satisfies ¢(x) = 0 & x = 0, then d(f (Txx),q) —
d(f(Txx),xx) — 0as k — oo. Also, d(gq,xx) < d(xx, f(Txx)) +d(q, f(Txx)) — Oas k —
o = d(q,xx) — 0as k — oo. The remaining of the proof follows with the same arguments
as in that of Theorem 3.1. O

Theorem 3.3. Assume that

(1) (X, d) is a complete metric space, f : X — X is a continuous mapping, and T : X — X
is a self-mapping on X such that the set of fixed points F(f,T) of the iteration procedure
X1 = f(Txy), for all k € Zy,, is nonempty;

(2) ¢ : Roy — Ry and ¢ : Roy — Ry, are both continuous and monotone nondecreasing
while satisfying p(x) = ¢(x) = 0 © x = 0, and, furthermore, the quadruple (¢, p, f,T)
satisfies the (L, h) property: @o(d(f(Txk),q)) < @@LA(f(Txk), xx) + hd(xk,q)) -
@(LAd(f(Txx), xx) + hd(xx,q)), for all x € X; and for all g € F(f,T) = {z € X :
z=f(Tz)}withO<h<land L>0;

(3) limy— oo p(d(f (Txx),q)) = O, for all xo € X.

Then, the iteration procedure xj.1 = f(Txy), for all k € Zy, is (f, T)-stable and it possesses a unique
fixed point.
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Proof. Since ¢ : Rox — Ro: and ¢ : Rox — Ry, are both continuous and monotone
nondecreasing then Hypothesis (2) implies that d(f(Tx),q) < Ld(f(T,x),x) + hd(x, q), for
all k € Zp, and x € X; forallg € F(f,T) = {z € X : z = f(Tz)} with0 < h < 1
and L > 0 which is Hypothesis (2) of Theorem 3.1. Furthermore, lim _, . (d(f (Txx),q)) =
p(limg — d(f (Txx),q)) = 0 = limx_, o, d(f (Txx),q) = 0 from the continuity of ¢ : Rop, — Ro.
everywhere within its definition domain Ry, and its property ¢(x) = ¢(x) = 0 & x = 0.
Thus, the proof follows as in Theorem 3.1 since Hypothesis (1) to (3) of this theorem
hold. O

The following direct particular result of Theorems 3.1 to 3.3 follows.

Corollary 3.4. Theorems 3.1, 3.2, and 3.3 hold “mutatis-mutandis” stated for the function f : X —
X being the identity mapping on X and F(I,T) = F(T) #0.

Corollary 3.4 referred to Theorem 3.1 was first proven in [5]. It is now of interest the
removal of the condition of the set of fixed points to be nonempty by guaranteeing that is in
fact nonempty consisting of a unique element under extra contractive properties of the pair
(f, T). The following result holds.

Theorem 3.5. The following two properties hold.

(i) Consider the Picard T-iteration process Xy+1 = Txy, for all x € X and k € Zo,. If T
satisfies the (L, h) property while it is a k-contraction (i.e., a contractive mapping with
constant 0 < k < 1), then F(T) = {q} for some q € X, and, furthermore,

k(L + h)
1-h

d(Tx,q) < %d(x, Tx), d(T?x,q) < d(Tx, x), (3.7)
d(sz, Tx> < min(de(x, Tx) + k(h+1)d(x,q),L(k +h+1)d(x,Tx)

3.8
k(L + h) (58)

1-h

+h(h+1)d(x,q),<L+ )d(Tx,x) +hd(x,q)>.

(ii) Consider the iteration process xis1 = f(Txy), for all x € X and k € Zy,. If T satisfies
the (L, h) property while the pair (f, T) is a k-contraction (i.e., a contractive mapping with
constant 0 < k < 1), then F(f,T) = {q} for some q € x, and, furthermore,

A(f(T2),q) < TR d(e, fx), d(fF(1x),q) < P agpan, ), 69

d(f(sz),f(:rx)) < min(de(x,f(Tx)) + k(h+1)d(x,q),L(k + h + 1)d(x, f(Tx))

+h(h+1)d(x,q), <L + k(lL_+hh) >d(Tx, X) + hd(x,q)).

(3.10)
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Proof. (i) Equation (3.7) follows from the (L, h) property leading to
d(Tx,q) < Ld(x,Tx) + hd(x,q) < Ld(x,Tx) + hd(x, Tx) + hd(Tx, q)

L+h Ry
= d(Tx,q) < md(x,Tx),d(T x,q) (3.11)

L+h 5 L+h
< 1o hd<T x,Tx) < kmd(Tx,x),

since T is k-contractive, so that it possesses a unique fixed point g € X, and it satisfies the

(L, h) property with 0 < h < 1. Equation (3.8) follows directly from the following three
inequalities:

d(sz, Tx) < kd(Tx,x) <k(d(Tx,q) +d(x,q))

(3.12)
< k(Ld(x,Tx) +hd(x,q)) + kd(x,q) < kLd(x,Tx) + k(h+1)d(x,q)

For x 3 z = Tx, for all x € X, one gets
d(sz, Tx) < d<T2x, q) +d(q,Tx)

=d(Tz,q) +d(q,z) < Ld(z,Tz) + (h+1)d(z,q)
< Lkd(x,Tx) + (h+1)(Ld(x,Tx) + hd(x,q))

(3.13)

< L(k +h+1)d(x,Tx) + h(h + 1)d(x, q)

after using the (L, h) property, and

k(L+ h)

d(T%x,Tx) < (T, q) +d(Tx,q) < d(Tx, x) + d(Tx, q)

k(L+h)
= T1-

d(Tx, x) + Ld(Tx,x) + hd(x, q) (3.14)

< <L k(L+hh)>d(T x,x) + hd(x,q)

again with the use of the (L, h) property.
(ii) Equation (3.9) follows from the (L, h) property leading to

d(f(Tx),4) < Ld(x, f(T2) + hd(x,q) < Ld(x, f(T2)) + hd(x, f(T2)) + hd (£ (Tx) q)

= d(f(Tx),q) <

, f(Tx));

a(f(1°x).4) < TR a( (1), £(T2)) < kE TR a(f(T) ),
(3.15)
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since the pair (f, T') is k-contractive and it satisfies the (L, h) property with 0 < h < 1. Equation
(3.10) follows directly from the following three inequalities:

d(f(T2x), f(Tx)) < kd(f(Tx), x) < kd(q, £ (Tx)) +d(x,q)
< k(Ld(f(Tx),x) + hd(x,q)) + khd(x,q) (3.16)
<kLd(x, f(Tx)) + k(h+1)d(x,q),

since the pair (f, T) is k-contractive. Then,

l}gr;od(f(Tk+lx),f<Tkx)) = d(klgr;on<Tkx>,klgr;of<Tkx>> =0=4g=Tq= I}ijr;of(Tkx),
(3.17)

for all x € X and some g € X independent of xo € X. F(f,T) = {g}. Therefore, for any x € X,
one gets

d(f(Tx), f(Tx)) < d(f(T°x),q) + d(q, f(Tx))
<Ld(f(T*x), f(T2)) + (h + DA(f(Tx),4)
< Lkd(f(Tx),x) + (h+1)(Ld(f(Tx),x) + hd(x,q))

(3.18)

<L(k+h+1)d(f(Tx),x) + h(h+1)d(x,q)
after using the (L, h) property, and

d(f (1), £(Tx)) < d(f(T*x),q) +d(f(Tx),q)

< %d(f(]"x),x) +d(f(Tx)/q)

_ k(L+h
=" 1-nh

(3.19)

d(f(Tx),x) + Ld(f(Tx),x) + hd(x,q)

< <L + k(lL_+hh) )d( F(Tx),x) +hd(x,q)

again with the use of the (L, h) property. O
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Theorem 3.5(ii) allows directly extending Theorem 3.1 as follows by removing the
requirement of the set of fixed points to be nonempty with a unique element since this is
guaranteed by the Banach contractive mapping principle.

Theorem 3.6. Assume that: (x,d) is a complete metric space, f : X — X is a continuous mapping
on X,and T : X — X is a self~mapping on X such that the pair (f, T) is k-contractive and satisfies
the (L, h) property (provided that the set of fixed points is nonempty), that is,

d(f(T%x), f(Ty)) < kd(f(Tx),y), d(f(Tx),q) < Ld(f(Tx),x) + hd(x,q), VxyeX,
(3.20)

with g being any fixed point; that is, g € F(f,T) C X and some real constants 0 < k <1,0< h <1,
and L > 0, and, furthermore,

klim d(f(Txk),xx) =0, VxoeX. (3.21)

Then, the iteration procedure xis1 = f(Txx), for all k € Zy. is (f,T)-stable with q being its unique
fixed point, that is, x D F(f,T) = {q} #0.

A direct particular case of Theorem 3.5 applies directly to the case of f being the
identity map on X via Theorem 3.5(i).

Corollary 3.7. Assume that (X, d) is a complete metric space, and T : X — X is a k-contractive
self-mapping on X satisfying the (L, h) property, that is,

d<T2x, Tx) <kd(Tx,q); d(Tx,q)<Ld(Tx,x)+hd(x,q), YxeX, (3.22)

with q being any fixed point; that is, g € F(f,T) C x and some real constants 0 < k <1,0< h <1,
and L > 0, and, furthermore, limy _, o d(Txy, xx) = O, for all xo € X. Then, the Picard iteration
procedure xi1 = Txy, for all k € Zy,, is T-stable with q being its unique fixed point, that is, X D

F(T) = {q} #0.

Theorems 3.5 and 3.6 and Corollary 3.7 are directly extendable to the case that the pair
(f,T) is a large contraction. Also, Theorem 3.6 and Corollary 3.7 can be extended directly for
the use of distance functions or extended altering-distance functions as follows.

Theorem 3.8. Assume that

(1) (X, d) is a complete metric space, f : X — X is a continuous mapping on X, and T : X —
X is a self-mapping on X;

(2) ¢ € PCO(Ros, Ry, ) is an extended altering-distance function (Definition 2.1) satisfying
the conditions of Theorem 2.2(ii) with some monotone nondecreasing function ¢ €
CO(Ry,, Ro,) satisfying ¢(t) < @(t), forall t € Ry, and §(t) = ¢(t) = 0, if and only
ift=0;



14 Fixed Point Theory and Applications

(3) the quadruple (@, ¢, f,T) satisfies the following (L, h) property:

¢(d(f(Txx),q)) < o(Ld(f (Txx), xk) + hd (xx, q)) = p(Ld(f (Txx), xk) + hd(xk,q))/( |
3.23

forallx € X,and g € F(f,T) := {z € X : z = f(Tz)} with real constants 0 < h < 1 and
L>0;

(4) limy— oo p(d(f (Txx),q)) = O, for all xo € X.

Then, the iteration procedure xi1 = f(Txyk), for all k € Zo,, is (f, T)-stable with q being its unique
fixed point, that is, X > F(f,T) = {q} #0.

Corollary 3.9. Assume that Assumptions (1) and (4) of Theorem 3.8 hold, and, furthermore,

)¢ € CO(Ry,Ro:) is an altering-distance function satisfying the conditions of
Theorem 2.2(i), for all t € R, satisfying ¢(0) = 0, if and only if t = O;

(2) the triple (v, f,T) satisfies the following (L, h) property:
p(d(F(Txi),q)) < p(La(f (Tx0), %) + hel(xi, ), (3.24)

forallx € X,and q € F(f,T) := {z € X : z = f(Tz)} with real constants 0 < h < 1 and
L>0;

(3) limg— o p(d(f (Txx),q)) =0, for all xy € X.

Then, the iteration procedure xi.1 = f(Txx), for all k € Zy. is (f,T)-stable with q being its unique
fixed point, that is, X > F(f,T) = {q} #0.
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