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We introduce and study some new CQ-type iterative algorithms with variable coefficients for
asymptotically strict pseudocontractions in real Hilbert spaces. General results for asymptotically
strict pseudocontractions are established. The main result extends the previous results.

1. Introduction

Let H be a real Hilbert space, C a nonempty closed convex subset of H, T : C → C a self-
mapping of C and Fix(T) := {x ∈ C : Tx = x}.

Recall that a mapping T : C → C is called to be nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.1)

T is called to be asymptotically nonexpansive [1] if there exists a sequence {kn} with kn ≥ 1
and limn→∞kn = 1 such that

∥
∥Tnx − Tny

∥
∥ ≤ kn

∥
∥x − y

∥
∥, ∀x, y ∈ C, and all integers n ≥ 1. (1.2)

T is called to be an asymptotically κ-strict pseudocontraction, if there exist 0 ≤ κ < 1 and 0 ≤
γn → 0 (n → ∞) such that

∥
∥Tnx − Tny

∥
∥
2 ≤ (

1 + γn
)∥
∥x − y

∥
∥
2 + κ

∥
∥(I − Tn)x − (I − Tn)y

∥
∥
2 (1.3)

for all x, y ∈ C and all integers n ≥ 1.
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As κ = 0, asymptotically κ-strict pseudocontraction T is asymptotically nonexpansive.
In [2], Nakajo and Takahashi studied the iterative approximation of fixed points of

nonexpansive mappings and proved the following strong convergence theorem.

Theorem A. Let C be a nonempty closed convex subset of a Hilbert space H and let T be a
nonexpansive mapping of C into itself such that Fix(T)/= ∅. Suppose {xn} is given by

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Txn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, n ∈ N,

(1.4)

where PCn∩Qn is the metric projection from C onto Cn ∩Qn and αn is chosen so that 0 ≤ αn ≤ a < 1.
Then, {xn} converges strongly to PFix(T)x0, where PFix(T) is the metric projection from C onto Fix(T).

Such algorithm in (1.4) is referred to be the (CQ) algorithm in [3], due to the fact that
each iterate xn+1 is obtained by projecting x0 onto the intersection of the suitably constructed
closed convex sets Cn and Qn. It is known that the (CQ) algorithm in (1.4) is of independent
interest, and the (CQ) algorithm has been extended to various mappings by many authors
(cf., e.g., [3–11]).

Very recently, by extending the (CQ) algorithm, Takahashi et al. [9] studied a family
of nonexpansive mappings and gave some good strong convergence theorems. Kim and Xu
[5] extended the (CQ) algorithm to study asymptotically κ-strict pseudocontractions and
established the following interesting result with the help of some boundedness conditions.

Theorem B. Let C be a closed convex subset of a Hilbert space H and let T : C → C be an
asymptotically κ-strict pseudocontractions for some 0 ≤ κ < 1. Assume that the fixed point set Fix(T)
of T is nonempty and bounded. Let {xn}∞n=0 be the sequence generated by the following (CQ) algorithm:

x0 ∈ C, chosen arbitrarily,

yn = αnxn + (1 − αn)Tnxn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 ≤ ‖xn − z‖2 + [κ − αn(1 − αn)]‖xn − Txn‖2 + θn

}

,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0,

(1.5)

where

θn = Δ2
n(1 − αn)γn −→ 0 (n −→ ∞), Δn = sup{‖xn − z‖ : z ∈ Fix(T)} < ∞. (1.6)

Assume that control sequence {αn}∞n=0 is chosen so that lim supn→∞αn < 1−κ. Then {xn} converges
strongly to PFix(T)x0.
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It is our purpose in this paper to try to obtain some new fixed point theorems for
asymptotically strict pseudocontractions without the boundedness conditions as in Theorem
B. Motivated by Nakajo and Takahashi [2], Takahashi et al. [9], and Kim and Xu [5], we
introduce and study certain new CQ-type iterative algorithms with variable coefficients
for asymptotically strict pseudocontractions in real Hilbert spaces. Our results improve
essentially the corresponding results of [5].

2. Results and Proofs

Throughout this paper,

(i) xn ⇀ x means that {xn} converges weakly to x.

(ii) xn → x means that {xn} converges strongly to x.

(iii) ωw(xn) := {x : ∃ xnj ⇀ x}, that is, the weak ω-limit set of {xn}.
(iv) Br(x0) := {x ∈ H : ‖x − x0‖ ≤ r}.
(v) N is the set of nonnegative integers.

The following lemmas are basic (cf., e.g., [6] for Lemma 2.1, and [5] for Lemmas 2.2-
2.3).

Lemma 2.1. Let K be a closed convex subset of a real Hilbert space H. Given x ∈ H,z ∈ K. Then
z = PKx if and only if

〈x − z, y − z〉 ≤ 0, ∀y ∈ K, (2.1)

where PKx is the unique point in K with the property

‖x − PKx‖ ≤ ∥
∥x − y

∥
∥, ∀y ∈ K. (2.2)

Lemma 2.2. Let K be a closed convex subset of a real Hilbert space H, {xn} ⊂ H,u ∈ H, and
q = PKu. Suppose that {xn} satisfies

‖xn − u‖ ≤ ∥
∥u − q

∥
∥, ∀n ∈ N, (2.3)

and ωw(xn) ⊂ K. Then xn → q.

Lemma 2.3. Let C be a closed convex subset of a Hilbert space H and T : C → C an asymptotically
κ-strict pseudocontraction. Then

(I) for each n ≥ 1, Tn satisfies the Lipschitz condition:

∥
∥Tnx − Tny

∥
∥ ≤ Ln

∥
∥x − y

∥
∥, ∀x, y ∈ C, (2.4)

where

Ln =
κ +

√

1 + γn(1 − κ)
1 − κ

,
{

γn
}

is as in (1.3); (2.5)
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(II) if {xn} is a sequence in C such that xn ⇀ x̃ and

lim sup
m→∞

lim sup
n→∞

‖xn − Tmxn‖ = 0, (2.6)

then

(I − T)xn −→ 0 =⇒ (I − T)x̃ = 0. (2.7)

In particular,

xn ⇀ x̃, (I − T)xn −→ 0 =⇒ (I − T)x̃ = 0. (2.8)

(III)Fix(T) is closed and convex so that the projection PFix(T) is well defined.

Theorem 2.4. Let C be a closed convex subset of a Hilbert space H, T : C → C an asymptotically
κ-strict pseudocontraction for some 0 ≤ κ < 1, and Fix(T)/= ∅. Let {xn} be the sequence generated by
the following CQ-type algorithm with variable coefficients:

x0 ∈ C chosen arbitrarily,

yn =
(

1 − β̂n
)

xn + β̂nT
nxn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 ≤ ‖xn − z‖2 + β̂n

(

κ + β̂n − 1
)

‖xn − Tnxn‖2 + θn
}

,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, n ∈ N,

(2.9)

where

β̂n =
βn

1 + ‖xn − x0‖2
, βn ∈

[
1
2
, 1
]

, θn = 2
(

1 + r20

)

βnγn, (2.10)

the sequence {βn} is chosen so that βn → 1 (n → ∞), the positive real number r0 is chosen so that
Br0(x0) ∩ Fix(T)/= ∅, and {γn} is as in (1.3). Then {xn} converges strongly to PFix(T)x0.

Proof. We divide the proof into five steps.

Step 1. We prove that Cn ∩Qn is nonempty, convex and closed.
Clearly, both Qn and Cn are convex and closed, so is Cn ∩ Qn. Since T : C → C is an

asymptotically κ-strict pseudocontraction, we have by (1.3),

∥
∥Tnx − p

∥
∥
2 ≤ (

1 + γn
)∥
∥x − p

∥
∥
2 + κ

∥
∥(I − Tn)x − (I − Tn)p

∥
∥
2

≤ (

1 + γn
)∥
∥x − p

∥
∥
2 + κ‖x − Tnx‖2,

(2.11)

for all x ∈ C, p ∈ Fix(T), and all integers n ≥ 1.
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By (2.9) and (2.11), we deduce that for each p ∈ Br0(x0) ∩ Fix(T), n ∈ N,

∥
∥yn − p

∥
∥
2 =

∥
∥
∥

(

1 − β̂n
)(

xn − p
)

+ β̂n
(

Tnxn − p
)
∥
∥
∥

2

=
(

1 − β̂n
)∥
∥xn − p

∥
∥
2 + β̂n

∥
∥Tnxn − p

∥
∥
2 − β̂n

(

1 − β̂n
)

‖xn − Tnxn‖2

=
(

1 − β̂n
)∥
∥xn − p

∥
∥
2 + β̂n

[(

1 + γn
)∥
∥xn − p

∥
∥
2 + κ‖xn − Tnxn‖2

]

− β̂n
(

1 − β̂n
)

‖xn − Tnxn‖2

≤ ∥
∥xn − p

∥
∥
2 + β̂n

(

κ + β̂n − 1
)

‖xn − Tnxn‖2 + βnγn
2
(

‖xn − x0‖2 +
∥
∥x0 − p

∥
∥
2
)

1 + ‖xn − x0‖2

≤ ∥
∥xn − p

∥
∥
2 + β̂n

(

κ + β̂n − 1
)

‖xn − Tnxn‖2 + 2
(

1 + r20

)

βnγn

=
∥
∥xn − p

∥
∥
2 + β̂n

(

κ + β̂n − 1
)

‖xn − Tnxn‖2 + θn.

(2.12)

Therefore,

Br(x0) ∩ Fix(T) ⊂ Cn, ∀n ∈ N. (2.13)

Next, we prove by induction that

Br0(x0) ∩ Fix(T) ⊂ Qn, ∀n ∈ N. (2.14)

Obviously, Br0(x0) ∩ Fix(T) ⊂ C = Q0, that is, (2.14) holds for n = 0. Assume that Br0(x0) ∩
Fix(T) ⊂ Qn for some n ∈ N. Then, (2.13) implies that Br0(x0) ∩ Fix(T) ⊂ Cn ∩ Qn /= ∅ and
xn+1 = PCn∩Qnx0 is well defined.

By Lemma 2.1, we get 〈xn+1 − z, x0 − xn+1〉 ≥ 0, ∀ z ∈ Cn ∩ Qn. In particular, for each
z ∈ Br0(x0) ∩ Fix(T), we have 〈xn+1 − z, x0 − xn+1〉 ≥ 0.This together with the definition of
Qn+1, the inequality (2.14) holds for n + 1. So (2.14) is true.

Step 2. We prove that limn→∞‖xn+1 − xn‖ = 0.
By the definition of Qn and Lemma 2.1, we get xn = PQnx0.Hence,

‖xn − x0‖ ≤ ∥
∥p − x0

∥
∥, ∀p ∈ Br0(x0) ∩ Fix(T). (2.15)

Denoting M := ‖x0‖ + ‖p − x0‖, we have ‖xn‖ ≤ M, for all n ∈ N, and

‖xn − x0‖ ≤ ∥
∥q − x0

∥
∥, ∀n ∈ N, (2.16)



6 Fixed Point Theory and Applications

where q = PFix(T)x0 ⊂ Br0(x0) ∩ Fix(T). The definition of xn+1 shows that xn+1 ∈ Qn, that is,
〈xn+1 − xn, xn − x0〉 ≥ 0. This implies that

‖xn+1 − xn‖2 = ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉

≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2.
(2.17)

Thus {‖xn − x0‖} is increasing. Since {xn} is bounded, limn→∞‖xn − x0‖ exists and

lim
n→∞

‖xn+1 − xn‖ = 0. (2.18)

Step 3. We prove that limn→∞‖xn − Tnxn‖ = 0.
The definition of xn+1 shows that xn+1 ∈ Cn, that is,

∥
∥yn − xn+1

∥
∥
2 ≤ ‖xn − xn+1‖2 + β̂n

(

κ + β̂n − 1
)

‖xn − Tnxn‖2 + θn. (2.19)

By (2.19) and the definition of yn in (2.9), we deduce that

β̂2n‖xn − Tnxn‖2 =
∥
∥yn − xn

∥
∥
2

≤ ∥
∥yn − xn+1

∥
∥
2 + ‖xn+1 − xn‖2 + 2

∥
∥yn − xn+1

∥
∥ · ‖xn+1 − xn‖

≤ β̂n
(

κ + β̂n − 1
)

‖xn − Tnxn‖2 + θn + 2‖xn+1 − xn‖2 + 2
∥
∥yn − xn+1

∥
∥ · ‖xn+1 − xn‖.

(2.20)

Further, we have

(1 − κ)β̂n‖xn − Tnxn‖2 ≤ 2‖xn+1 − xn‖2 + 2‖xn+1 − xn‖ ·
∥
∥yn − xn+1

∥
∥ + θn. (2.21)

Thus, (2.19) and (2.21) imply that

(1 − κ)β̂n‖xn − Tnxn‖2 ≤ 4‖xn+1 − xn‖2 + 2‖xn+1 − xn‖ · ‖xn − Tnxn‖
√

β̂n
∣
∣
∣κ + β̂n − 1

∣
∣
∣

+ 2‖xn+1 − xn‖
√

θn + θn.

(2.22)

Noticing ‖xn‖ ≤ M,βn ∈ [1/2, 1], we get

β̂n =
βn

1 + ‖xn‖2
≥ 1

2(1 +M2)
> 0. (2.23)

From limn→∞‖xn+1 − xn‖ = 0, limn→∞θn = 0, and (2.22), it follows that

lim
n→∞

‖xn − Tnxn‖ = 0. (2.24)
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Step 4. We prove that

lim
n→∞

‖xn − Txn‖ = 0. (2.25)

By Lemma 2.3 and the definition of T , we obtain

‖xn − Txn‖ ≤ ‖xn − xn+1‖ +
∥
∥
∥xn+1 − Tn+1xn+1

∥
∥
∥ +

∥
∥
∥Tn+1xn+1 − Tn+1xn

∥
∥
∥ +

∥
∥
∥Tn+1xn − Txn

∥
∥
∥

≤ (1 + Ln+1)‖xn+1 − xn‖ +
∥
∥
∥xn+1 − Tn+1xn+1

∥
∥
∥ + L1‖xn − Tnxn‖,

(2.26)

where

Ln =
κ +

√

1 + γn(1 − κ)
1 − κ

,
{

γn
}

is as in (1.3). (2.27)

By (2.18), (2.24), and (2.26), we know that (2.25) holds.

Step 5. Finally, by Lemma 2.3 and (2.25), we have ωw(xn) ⊂ Fix(T). Furthermore, it follows
from (2.16) and Lemma 2.2 that the sequence {xn} converges strongly to q = PFix(T)x0.

Remark 2.5. Theorem 2.4 improves [5, Theorem 4.1] since the condition that θn → 0 is
satisfied and the boundedness of Fix(T) is dropped off.

Theorem 2.6. Let C be a closed convex subset of a Hilbert space H, T : C → C an asymptotically
κ-strict pseudocontraction for some 0 ≤ κ < 1, and Fix(T) be nonempty and bounded. Let {xn} the
sequence generated by the following CQ-type algorithm with variable coefficients:

x0 ∈ C chosen arbitrarily,

yn =
(

1 − β̂n
)

xn + β̂nT
nxn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 ≤ ‖xn − z‖2 + β̂n

(

κ + β̂n − 1
)

‖xn − Tnxn‖2 + θn
}

,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, n ∈ N,

(2.28)

where

β̂n =
βn

1 + ‖xn − x0‖2
, βn ∈

[
1
2
, 1
]

, θn =

{

sup
z∈Fix(T)

‖xn − z‖
}2

β̂nγn, (2.29)

the sequence {βn} is chosen so that βn → 1 (n → ∞), and {γn} is as in (1.3). Then {xn} converges
strongly to PFix(T)x0.
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Proof. It is easy to see that θn → 0 in Theorem 2.6. Following the reasoning in the proof
of Theorem 2.4 and using Fix(T) instead of Br0(x0) ∩ Fix(T), we deduce the conclusion of
Theorem 2.6.
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