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We characterize (i) matrices which are nonexpansive with respect to some matrix norms, and (ii)
matrices whose average iterates approach zero or are bounded. Then we apply these results to
iterative solutions of a system of linear equations.

Throughout this paper, R will denote the set of real numbers, C the set of complex numbers,
and M, the complex vector space of complex n x n matrices. A function || - || : M,, — Risa
matrix norm if for all A, B € M,, it satisfies the following five axioms:

1) |1All > 0;
(2) |A|l = 0if and only if A =0;

(4) A+ Bl < Al + IIBII;

)
)
(3) llcAll = |c|||Al| for all complex scalars c;
)
(5) IAB|| < | Al IB]|-

Let | - | be a norm on C". Define | - || on M,, by
Al = max|Ax]|.
Al = max| Ax] 1)
This norm on M, is a matrix norm, called the matrix norm induced by | - |. A matrix norm on
M, is called an induced matrix norm if it is induced by some norm on C". If || - ||; is a matrix

norm on M, there exists an induced matrix norm || - || on M,, such that ||A|]> < ||A]|; for all
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A € M, (cf. [1, page 297]). Indeed one can take || - ||2 to be the matrix norm induced by the
norm | - | on C" defined by

x| = IC)l;, ()

where C(x) is the matrix in M,, whose columns are all equal to x. For A € M,,, p(A) denotes
the spectral radius of A.

Let | - | be a norm in C". A matrix A € M, is a contraction relative to | - | if it is a
contraction as a transformation from C" into C"; that is, there exists 0 < A < 1 such that

|Ax - Ay| <Mx-y|, x,yeC™ (3)

Evidently this means that for the matrix norm || - || induced by | - |, ||A]| < 1. The following
theorem is well known (cf. [1, Sections 5.6.9-5.6.12]).

Theorem 1. For a matrix A € M, the following are equivalent:

(a) A is a contraction relative to a norm in C";

(b) ||All <1 for some induced matrix norm || - ||;

(c) |All < 1 for some matrix norm || - ||;

(d) limg o A* = 0;

(e) p(A) < 1.
That (b) follows from (c) is a consequence of the previous remark about an induced matrix
norm being less than a matrix norm. Since all norms on M,, are equivalent, the limit in (d)
can be relative to any norm on M,,, so that (d) is equivalent to all the entries of A* converge
to zero as k — oo, which in turn is equivalent to limg_, oo Akx = 0 for all x € C".

In this paper, we first characterize matrices in M, that are nonexpansive relative to some
norm | - | on C", that is,

|Ax - Ay] <|x -y

, x,yeC". (4)
Then we characterize those A € M,, such that

Ay = <I+A+A2+-~+Ak’1> )

==

converges to zero as k — oo, and those that {Ax : k =0,1,2,...} is bounded.
Finally we apply our theory to approximation of solution of Ax = b using iterative
methods (fixed point iteration methods).
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Theorem 2. For a matrix A € M, the following are equivalent:

(a) A is nonexpansive relative to some norm on C";
(b

)

) l1All £ 1 for some induced matrix norm || - ||;
(c) 1Al £ 1 for some matrix norm || - ||;
)

)

(d) {AF:k=0,1,2,...} is bounded;

(e) p(A) <1, and for any eigenvalue A of A with |\| = 1, the geometric multiplicity is equal to
the algebraic multiplicity.

Proof. As in the previous theorem, (a), (b), and (c) are equivalent. Assume that (b) holds. Let
the norm || - || be induced by a vector norm | - | of C"*. Then

|Akuj|§”Ak”u|§HAﬂﬂx|§kd, k=0,1,2,..., (6)

proving that A¥(x) is bounded in norm |- | for every x € C". Taking x = e;, we see that the set
of all columns of A¥, k =0,1,2,...,isbounded. This proves that AX, k =0,1,2,...,is bounded
in maximum column sum matrix norm ([1, page 294]), and hence in any norm in M,,. Note
that the last part of the proof also follows from the Uniform Boundedness Principle (see, e.g.,
[2, Corollary 21, page 66])

Now we prove that (d) implies (e). Suppose that A has an eigenvalue A with A > 1.
Let x be an eigenvector corresponding to . Then

| Akx|| = 1A lxl] — o (7)

as k — oo, where || - || is any vector norm of C". This contradicts (d). Hence |A| < 1. Now
suppose that A is an eigenvalue with |A| = 1 and the Jordan block corresponding to \ is not
diagonal. Then there exist nonzero vectors vy, v, such that Avy = vy, A(v2) = v1 + vy, Let
u = vy + vy. Then

ARy = YA+ K)o + Moy, (8)

and ||[A*(w)|| > k|1 - |lo1]l = ||o2]l. It follows that A*u,k = 0,1,2,..., is unbounded,
contradicting (d). Hence (d) implies (e).

Lastly we prove that (e) implies (c). Assume that (e) holds. A is similar to its Jordan
canonical form | whose nonzero off-diagonal entries can be made arbitrarily small by
similarity ([1, page 128]). Since the Jordan block for each eigenvalue with modulus 1 is
diagonal, we see that there is an invertible matrix S such that the /;-sum of each row of
SAS™!is less than or equal to 1, that is, [SAS™!||., < 1, where | - ||, is the maximum row sum
matrix norm ([1, page 295]). Define a matrix norm | - || by || M|| = ||SMS™!||,.. Then we have
Al <1. O

Let A be an eigenvalue of a matrix A € M,,. The index of A, denoted by index(\) is the
smallest value of k for which rank(A — )LI)k =rank(A - /\I)k+1 ([1, pages 148 and 131]). Thus
condition (e) above can be restated as p(A) < 1, and for any eigenvalue A of A with || =1,
index(1) = 1.
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Let A € M,,. Consider

Ak:%<I+A+~--+Ak‘1>. )

We call Ay the k-average of A. As with A¥, we have Axx — 0 for every x if and only if
A — 0in M, and that Aix is bounded for every x if and only if A is bounded in M,,. We
have the following theorem.

Theorem 3. Let A € M,,. Then

(a) Ak, k=1,2,..., converges to 0 if and only if ||A|| < 1 for some matrix norm || - || and that
1 is not an eigenvalue of A,

(b) Ak, k =1,2,...,is bounded if and only if p(A) < 1,index(A) < 2 for every eigenvalue A
with |A| = 1 and that index(1) = 1if 1 is an eigenvalue of A.

Proof. First we prove the sufficiency part of (a). Let x be a vector in C". Let
yk:%<I+A+---+Ak_1>(x). (10)

By Theorem 2 for any eigenvalues A of A either |A| <1 or |A| =1 and index(A) = 1.

If A is written in its Jordan canonical form A = SJS7!, then the k-average of A is
SJ'S7!, where J' is the k-average of J. J' is in turn composed of the k-average of each of its
Jordan blocks. For a Jordan block of | of the form

A1
A1
, (11)

|A| must be less than 1. Its k-average has constant diagonal and upper diagonals. Let D; be
the constat value of its jth upper diagonal (D being the diagonal) and let S; = kD;. Then
(C(m,n) =0 forn>m)

1oy (12)
S;=C(,j)+CG+1, A+ +C(k-17j)A, j=12,... ,n-1

Using the relation C(m +1,j) — C(m, j) = C(m, j — 1), we obtain
S; = AS; = Sj1 - AFIC(k, §). (13)

Thus, we have Sp — 1/(1 - 1) as k — oco. By induction, using (13) above and the fact that
A<iC(k,j) — 0as k — oo, we obtain Si — 1/(1- 1) as k — oo. Therefore D;=S;/k =
O(1/k) ask — co.
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If the Jordan block is diagonal of constant value A, then A #1, |A| < 1 and the k-average
of the block is diagonal of constant value (1 — A¥)/k(1 - ) = O(1/k).

We conclude that ||Ax|| = O(1/k) and hence ||y«|| < ||Axllllx]| = O(1/k) as k — oo.

Now we prove the necessity part of (a). If 1 is an eigenvalue of A and x is a
corresponding eigenvector, then Axx = x #0 for every k and of course Bix fails to converge
to 0. If A is an eigenvalue of A with [1| > 1 and x is a corresponding eigenvector, then

P | -1
= > — . 4
I Axx ' o | 1= e (14)
which approaches to oo as k — oo. If A is an eigenvalue of A with [A| = 1, A#1, and

index(1) > 2, then there exist nonzero vectors vy, v, such that A(vq) = Avy, A(v2) = vy + Avs.
Then by using the identity

_ k-1 k-1
T+20 4307 + -+ (k= 1A% = 11 _AA)Z - (k—l)l)t_)t (15)
we get
11 1\ A 1-2F
Ax(v2) = <m - (1 - E) m)m + mvz- (16)

It follows that limy _, ., Ak (v2) does not exist. This completes the proof of part (a).

Suppose that A satisfies the conditions in (b) and that A = SJS7! is the Jordan
canonical form of A. Let A be an eigenvalue of A and let v be a column vector of S
corresponding to A. If [A| < 1, then the restriction B of A to the subspace spanned by
v, Av, A%v,... is a contraction, and we have ||Axv| = ||Bxv| < ||o]l. If |]A] = 1, and A #1,
then by conditions in (b) either Av = Ao, or there exist v1,v; with v = v, such that
A(v1) = lvy, A(v;) = v1 + Loy. In the former case, we have ||Ak|| < ||v|| and in the latter case,
we see from (16) that Ax(v) = Ax(v2) is bounded. Finally if A = 1 then since index(1) = 1, we
have Av = v and hence Axv = v. In all cases, we proved that Ayv,k =0,1,2,..., is bounded.
Since column vectors of S form a basis for C", the sufficiency part of (b) follows.

Now we prove the necessity part of (b). If A has an eigenvalue A with [A| > 1 and
eigenvector v, then as shown above Ax(v) — oo as k — oo. If A has 1 as an eigenvalue and
index(1) > 2, then there exist nonzero vectors v, v, such that Av; = v; and Av, = vy + vs.
Then Ak (v;) = ((k—1)/2)+v, which is unbounded. If A is an eigenvalue of A with [A| =1, 1 #1
and index(\) > 3, then there exist nonzero vectors v, v; and v3 such that Av, = vy, A(v,) =
v1+ vy and A(v3) = v + \vs. By expanding Af(v3),j =0,1,2,...,k-1and using the identity

k-1 ) 1 1_)Lk—2 1
SV =4 M2< = +§<k—zm’<—2<<k—1>x—<k+1>>>, 17)
j=2 -
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we obtain
Ay (vs) = 1 l—Ak‘z+1(k_2))tk_2<k—1)t_k+l> o
R T \ka-y T2 k k !
(18)
+ —l_lk_l - <1— 1)—)Lk_1 vy + —1_)Lk v
k(1 -1)2 k)1-1 )72 ka-xn"
which approaches to oo as k — oo. This completes the proof. O

We now consider applications of preceding theorems to approximation of solution of
a linear system Ax = b, where A € M, and b a given vector in C". Let Q be a given invertible
matrix in M,. x is a solution of Ax = b if and only if x is a fixed point of the mapping T
defined by

Tx = <I - Q’1A>x +Q7'b. (19)

T is a contraction if and only if I — Q7' A is. In this case, by the well known Contraction
Mapping Theorem, given any initial vector xo, the sequence of iterates xx = Trxg, k =
0,1,2,..., converges to the unique solution of Ax = b. In practice, given x¢, each successive
Xk is obtained from x,_; by solving the equation

Qxx) = (Q - A)xg-1 +b. (20)

The classical methods of Richardson, Jacobi, and Gauss-Seidel (see, e.g., [3]) have Q = I, D,
and L respectively, where I is the identity matrix, D the diagonal matrix containing the
diagonal of A, and L the lower triangular matrix containing the lower triangular portion
of A. Thus by Theorem 1 we have the following known theorem.

Theorem 4. Let A,Q € M, with Q invertible. Let b,xy € C". If p(I - Q71 A) < 1, then A is
invertible and the sequence xi, k =1,2,.. ., defined recursively by

Qxk) = (Q - A)x-1 +b (21)

converges to the unique solution of Ax = b.

Theorem 4 fails if p(I - Q"' A) = 1, For a simple 2 x 2 example, let Q =I,b =0, A =2I
and xg any nonzero vector.

We need the following lemma in the proof of the next two theorems. For a matrix
A € M, we will denote R(A) and N (A) the range and the null space of A respectively.

Lemma 5. Let A be a singular matrix in M, such that the geometric multiplicity and the algebraic
multiplicity of the eigenvalue 0 are equal, that is, index(0) = 1. Then there is a unique projection
P4 whose range is the range of A and whose null space is the null space of A, or equivalently, C* =
R(A)@® N (A). Moreover, A restricted to R(A) is an invertible transformation from R(A) onto R(A).
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Proof. 1f A = SJS7! is a Jordan canonical form of A where the eigenvalues 0 appear at the end
portion of the diagonal of J, then the matrix

al b

Ps=S s (22)

0]

is the required projection. Obviously A maps R(A) into R(A). If z € R(A) and Az = 0, then
z € N(A)NR(A) = {0} and so z = 0. This proves that A is invertible on R(A). O

Remark 6. Under the assumptions of Lemma 5, we will call the component of a vector ¢ in
N (A) the projection of c on N(A) along R(A). Note that by definition of index, the condition
in the lemma is equivalent to N(A?) = N(A).

Theorem 7. Let A be a matrix in M,, and b a vector in C". Let Q be an invertible matrix in M,, and
let B=1-Q'A. Assume that p(B) < 1 and that index(\) = 1 for every eigenvalue \ of B with
modulus 1, that is, B is nonexpansive relative to a matrix norm. Starting with an initial vector x, in
C" define x;c recursively by

Q(xk) = (Q - A)x)-1 +b (23)

fork=1,2,....Let

yi = Xo + X1 +k"'+xk—1. (24)

If Ax = b is consistent, that is, has a solution, then yx, k = 1,2,..., converge to a solution vector z
with rate of convergence ||yx — z|| = O(1/k). If Ax = b is inconsistent, then limy||xk|| = limg||yk|| =
o0. More precisely, limgxy /k = ¢’ and limgyx/k = ¢'/2, where ¢ = Q7'b and c' is the projection of c
on N(A) = N(Q'A) along R(QA).

Proof. First we assume that A is invertible so that I - B = Q7' A is also invertible. Let T be the
mapping defined by Tx = Bx+c. Then T¥x = B¥x+c+Bc+---+BFlc. Let s = c+Bc+:--+BFlc.
Then s - Bs = c—Bfcand hence s = (I - B) '¢— (I - B) 'Bkc = (I - B) "¢ - B¥(I - B) 'c. Let
z={-B)'c=A"b. zis the unique solution of Ax = b and

Trx = B*x+z- Bz = B*(x — 2) + z. (25)
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Since the sequence x in the theorem is Tk x,, we have
1 k-1
yk:E<I+B+...+B )(xo—z)+Z=Bk(xO—Z)+Z. (26)

Since I — B is invertible, 1 is not an eigenvalue of B, and by Theorem 3 part (a) [|yx — z|| =
||Bk(xo—z|| — Oas k — oo. Moreover, from the proof of the same theorem, ||y, —z| = O(1/k).

Next we consider the case when A is not invertible. Since Q is invertible, we have
R(QA) = QY(R(A)) and N(QtA) = N(A). The index of the eigenvalue 0 of Q7 A is the
index of eigenvalue 1 of B = I - Q"' A. Thus by Lemma 5, C" = Q"(R(A)) ® N (A). For every
vector v € C", let v and v™ denote the component of v in the subspace Q' (R(A)) and
N(A), respectively.

Assume that Ax = b is consistent, that is, b € R(A). Then ¢ € R(Q'A). By Lemma 5,
the restriction of Q71 A on its range is invertible, so there exists a unique z’ in R(Q~!A) such
that Q"' Az’ = ¢, or equivalently, (I — B)z' = c. For any vector x, we have

Tkx = Bx +c+ Bc+---+ B¢

= BK<x<r) +x(”)> + (I +B+--+ Bk‘1>(I— B)Z'

(27)
= B <x(r)> +x™ 42— BF(2)

=B~ <x(r) - z’> +x 47

Since B maps R(Q'A) into R(Q'A) and I - B = Q! A restricted to R(Q! A) is invertible, we
can apply the preceding proof and conclude that the sequence yx as defined before converges
toz = x(()") + 2" and ||y - z|| = O(1/k). Now Az = A(x(()")) +A(Z') = A(Z') = Qc = b, showing
that z is a solution of Ax = b.

Assume now that b ¢ R(A), that is, Ax = b is inconsistent. Then ¢ ¢ R(Q'A) and ¢ =
c™ + ¢ with ¢ #0. As in the preceding case there exists a unique z’ € R(Q~' A) such that
(I - B)z' = ¢™. Note that for all y € N(A), B(y) = (I - Q'A)(y) = y. Thus for any vector x
and any positive integer j

xj:zj
=B/x+c+Bc+---+ B¢
= B/(x" 4 x™) + <I + B+t Bf‘1>(I— B)zZ +jc™
=B/ (x™) +x" + 2/ - BI(2) + jc™
() (2) +] 28)

=Bl <x(r) - z') +xM 4+ 2+ jc™,

<x+Tx+--~+Tk‘1x>

==

Y =

k-1
= By (x(’) - z’) +x™ 2+ TC("),
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where By = (I + B+---+B*1). Asin the preceding case, Bk(x") —z'),k =0,1,2,...1is bounded
and By (x"-2'),k=1,2,..., converges to 0. Thus limy _, o (xx / k) = c(n) and limg _, - (yx / k) =
c™ /2, and hence lim _, oo ||xk || = limk —, oo ||k || = c0. This completes the proof. O

Next we consider another kind of iteration in which the nonlinear case was considered
in Ishikawa [4]. Note that the type of mappings in this case is slightly weaker than
nonexpansivity (see condition (c) in the next lemma).

Lemma 8. Let B be an n x n matrix. The following are equivalent:

(a) for every 0 < pu < 1, there exists a matrix norm || - ||, such that ||uI + (1 - p)B||, <1,
(b) for every 0 < p < 1, there exists an induced matrix norm ||-||,, such that ||uI+(1-p)B||, < 1,

(c) p(B) £1and index(1) = 1if 1 is an eigenvalue of B.

Proof. As in the proof of Theorem 2, (a) and (b) are equivalent. For 0 < y < 1, denote ul +
(1 — u)B by B(p). Suppose now that (a) holds. Let A be an eigenvalue of B. Then u + (1 -
u)A is an eigenvalue of B(u). By Theorem 2 |p + (1 — p)A| < 1 for every 0 < p < 1 and
hence |A| < 1. If 1 is an eigenvalue of B, then it is also an eigenvalue of B(y). By Theorem 2,
the index of 1, as an eigenvalue of B(u), is 1. Since obviously B and B(u) have the same
eigenvectors corresponding to the eigenvalue 1, the index of 1, as an eigenvalue of B, is also
1. This proves (c).

Now assume (c) holds. Since |p + (1 — p)A| < 1 for [A] = 1,1 #1, every eigenvalue of
B(u), except possibly for 1, has modulus less than 1. Reasoning as above, if 1 is an eigenvalue
of B(u), then its index is 1. Therefore by Theorem 2, (a) holds. This completes the proof. [

Theorem 9. Let A € M, and b € C". Let Q be an invertible matrix in M,, and B = I — Q7' A.
Suppose p(B) < 1 and that index(1) = 1 if 1 is an eigenvalue of B. Let 0 < y < 1 be fixed. Starting
with an initial vector xo, define x, yx, k =0,1,2,..., recursively by

Yo = Xo,
Q(xx) = (Q - A)(yk-1) +b, (29)

Yi = pyi-1+ (1= p)xe.

If Ax = b is consistent, then y, k = 0,1,2,..., converges to a solution vector z of Ax = b with rate
of convergence given by

lye - 2l = o(¢%), (30)
where ¢ is any number satisfying

max{|p+ (1 - p)A| : A an eigenvalue of B, A#1} <¢ < 1. (31)
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If Ax = b is inconsistent, then limy _, - ||y || = oo; more precisely,
im 7% = (1- )™
Jim =% = (1-p)c™, (32)

where ¢ is the projection of c on N (A) along R(Q7'A).

Proof. Let ¢ = Q7'b,By = ul + (1 - p)B = I - (1 - pu)Q'A, and Tx = Byx + (1 — p)c. Then

i = T (xo).
First we assume that A is invertible. Then I — B; = (1 — u)Q ' A is invertible and 1 is
not an eigenvalue of By; thus p(B;) <1.Letz = (1-p)(I - By)'c = A™'b. We have

Yk = Tkxo

=B{<x0+(1_ﬂ)<C+B1C+"'+B{<_1C>

) (33)
= Brxo + (l—y)m<I+Bl oo+ Bf) (1= By)z

= Bf(xo -2z)+z.

By a well known theorem (see, e.g. [1]), ||yx — z|| = o(¢¥) for every ¢ > p(B).
Assume now that A is not invertible and b € R(A). Then c is in the range of Q' A.
Since B = I — Q7' A satisfies the condition in Lemma 8, Q7' A satisfies the condition in

Lemma 5. Thus the restriction of Q' A on its range is invertible and there exists z’' in R(Q™! A)
such that Q7'Az’ = ¢, or equivalently, (I — By)z' = (1 — p)c. For any vector x = x, we
have
v = TH(x)
— Bk _ k-1
=Bix+ (1 #)<C+B1c+-~+B1 c)
=Bf <x(r) + x(”)> + <I +By+-+ B{H)(I - By)Z (34)

= Bf <x(’)> +x™ 42— BF(2)

= Bf <x(’) - z’) +x® 47

Since B; maps R(Q ' A) into R(Q'A) and I - B = Q! A restricted to R(Q ' A) is invertible,
we can apply the preceding proof and conclude that the sequence yx, k =0, 1,2, ... converges
to z = x™ + 2z’ and ||yx - z|| = 0(¢¥). z solves Ax = b since Az = A(x™) + A(Z') = A(Z') =

Qc=b.
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Assume lastly that b¢ R(A), that is, Ax = b is inconsistent. Then ¢ ¢ R(Q'A) and
¢ =c +c™ with ¢™ #£0. As before there exists z’ € R(Q' A) such that (I -by)z' = (1-p)c™.
Note that Bi(p) = p for p € N(A). Then

i = T(x)
= Brx+ (1- < Bic+---+ B! )
= B} w)(c+Bic+---+B{ 'c
(35)
= B (x® +x®) + (I+ By +---+ BI) (1= B2 + k(1 - p)c®
= BF <x(’) - z’) +x™ 42+ k(1-p)c™.
Since B¥(x(" - 2'),k =0,1,2,..., converges to 0, we have
im Z &)
lim 25 = (1 -
Jim =% = (1-p)c™, (36)
and hence limy _, o [|yx|| = oo. This completes the proof. O

By taking Q = I and considering only nonexpansive matrices in Theorems 7 and 9, we
obtain the following corollary.

Corollary 10. Let A be an n x n matrix such that ||I — A|| <1 for some matrix norm || - ||. Let b be a
vector in C". Then:
(a) starting with an initial vector xq in C" define xy recursively as follows:

xk = (I - A)(xk-1) +b (37)

fork=1,2,.... Let

yk=XO+X1 +k-~+xk_1 (38)

fork =1,2,....If Ax = b is consistent, then yi, k = 1,2,..., converges to a solution vector z with
rate of convergence given by

Iy -zl =0( 3 ). (39)

If Ax = b is inconsistent, then limy _, o || xk|| = limg—, o || yk|| = oo
(b) let 0 < u < 1 be a fixed number. Starting with an initial vector xo, let

Yo = Xo,
xp =T -A)(yx1) +b, (40)

Yk = pyk-1 + (1= p) xk.
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If Ax = b is consistent, then y, k = 0,1,2,..., converges to a solution vector z of Ax = b with rate
of convergence given by

llye - 2]l = o(&*) (41)
where ¢ is any number satisfying
max{|pu+ (1—p)A| : X an eigenvalue of B, A#1} < ¢ < 1. (42)

If Ax = b is inconsistent, then limy _, oo ||y« || = oo.

Remark 11. If in the previous corollary, || - Al| < 1, and p = 0 in part (b), the sequence yx = xi
converges to a solution. This is the Richardson method, see for example, [3]. Even in this case,
our method in part (b) may yield a better approximation. For example if

A i
_<—0.9 1>’ )

b = 0, and xy = ey, then the nth iterate in the Richardson method is 0.9" away from the
solution 0, while the nth iterate using the method in the corollary part (b) with y = 1/2 is less
than (0.5)"2.

An n x n matrix A = (a;;) is called diagonally dominant if

|aii| > Z .|aij| (44)

n
j=Lj#i

foralli=1,...,n. If Aisdiagonally dominant with a;; # 0 for every i and if Q = D or L, where
D is the diagonal matrix containing the diagonal of A, and L the lower triangular matrix
containing the lower triangular entries of A, then it is easy to prove that || - Q7'A|l, <
1 where || - ||, denotes the maximum row sum matrix norm; see, for example, [1, 3]. The
following follows from Theorems 7 and 9.

Corollary 12. Let A be a diagonally dominant nxn matrix with a;; #0 foralli=1,...,n.Let Q = D
or L, where D is the diagonal matrix containing the diagonal of A, and L the lower triangular matrix
containing the lower triangular entries of A. Let b be a vector in C". Then:

(a) starting with an initial vector xq in C" define xy recursively as follows:

Qxk) = (Q - A)(xk-1) +b (45)

fork=1,2,....Let

yk=XO+X1+k-~+xk_1 (46)
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fork =1,2,....If Ax = b is consistent, then yi, k = 1,2,... converges to a solution vector z with
rate of convergence given by

v —z|| = O(%)- (47)

If Ax = b is inconsistent, then limy _, oo || xx || = limg - oo || yk || = oo.
(b) Let 0 < pu < 1 be a fixed number. Starting with an initial vector x, let
Yo = Xo,
Q(xk) = (Q - A)(yk-1) +b, (48)
Yk = uyk-1 + (1= p) Xk

If Ax = b is consistent, then yi, k = 0,1,2,..., converges to a solution vector z of Ax = b with rate
of convergence given by

lye -zl = o(¢), (49)
where ¢ is any number satisfying
max{|p+ (1 - p)A| : A an eigenvalue of B, A#1} < ¢ < 1. (50)

If Ax = b is inconsistent, then limy _, oo || yk|| = oo.
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