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Copyright q 2010 I. Altun and D. Miheţ. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

In the present paper we provide two different kinds of fixed point theorems on ordered
nonArchimedean fuzzy metric spaces. First, two fixed point theorems are proved for fuzzy order
ψ-contractive typemappings. Then a common fixed point theorem is given for noncontractive type
mappings. Kirk’s problem on an extension of Caristi’s theorem is also discussed.

1. Introduction and Preliminaries

After the definition of the concept of fuzzy metric space by some authors [1–3], the fixed
point theory on these spaces has been developing (see, e.g., [4–9]). Generally, this theory
on fuzzy metric space is done for contractive or contractive-type mappings (see [2, 10–13]
and references therein). In this paper we introduce the concept of fuzzy order ψ-contractive
mappings and give two fixed point theorems on ordered non-Archimedean fuzzy metric
spaces for fuzzy order ψ-contractive type mappings. Then, using an idea in [14], we will
provide a common fixed point theorem for weakly increasing single-valued mappings in
a complete fuzzy metric space endowed with a partial order induced by an appropriate
function. Some fixed point results on ordered probabilistic metric spaces can be found in [15].

For the sake of completeness, we briefly recall some notions from the theory of fuzzy
metric spaces used in this paper.

Definition 1.1 (see [16]). A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a continuous
t-norm if ([0, 1], ∗) is an Abelian topological monoid with the unit 1 such that a ∗ b ≤ c ∗ d
whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].
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A continuous t-norm ∗ is of Hadžić-type if there exists a strictly increasing sequence
{bn} ⊂ (0, 1) such that bn ∗ bn = bn for all n ∈ N.

Definition 1.2 (see [3]). A fuzzy metric space (in the sense of Kramosil and Michálek) is a
triple (X,M, ∗), where X is a nonempty set, ∗ is a continuous t-norm andM is a fuzzy set on
X2 × [0,∞), satisfying the following properties:

(KM-1) M(x, y, 0) = 0, for all x, y ∈ X,
(KM-2) M(x, y, t) = 1, for all t > 0 if and only if x = y,

(KM-3) M(x, y, t) =M(y, x, t), for all x, y ∈ X and t > 0,

(KM-4) M(x, y, ·) : [0,∞) → [0, 1] is left continuous, for all x, y ∈ X,
(KM-5) M(x, z, t + s) ≥M(x, y, t) ∗M(y, z, s), for all x, y, z ∈ X, for all t, s > 0.

If, in the above definition, the triangular inequality (KM-5) is replaced by

M(x, z,max{t, s}) ≥M(
x, y, t

) ∗M(
y, z, s

)
, ∀x, y, z ∈ X, ∀t, s > 0, (NA)

then the triple (X,M, ∗) is called a non-Archimedean fuzzy metric space. It is easy to check that
the triangular inequality (NA) implies (KM-5), that is, every non-Archimedean fuzzy metric
space is itself a fuzzy metric space.

Example 1.3. Let (X, d) be an ordinary metric space and let θ be a nondecreasing and
continuous function from (0,∞) into (0, 1) such that limt→∞θ(t) = 1. Some examples of these
functions are θ(t) = t/(t + 1), θ(t) = 1 − e−t and θ(t) = e−1/t. Let a ∗ b ≤ ab for all a, b ∈ [0, 1].
For each t ∈ (0,∞), define

M
(
x, y, t

)
= [θ(t)]d(x,y) (1.1)

for all x, y ∈ X. It is easy to see that (X,M, ∗) is a non-Archimedean fuzzy metric space.

Definition 1.4 (see [1, 16]). Let (X,M, ∗) be a fuzzy metric space. A sequence {xn} in X is
called an M-Cauchy sequence, if for each ε ∈ (0, 1) and t > 0 there exists n0 ∈ N such that
M(xn, xm, t) > 1 − ε for all m,n ≥ n0. A sequence {xn} in a fuzzy metric space (X,M, ∗) is
said to be convergent to x ∈ X if limn→∞M(xn, x, t) = 1 for all t > 0. A fuzzy metric space
(X,M, ∗) is called M-complete if everyM-Cauchy sequence is convergent.

Definition 1.5 (see [7]). Let (X,M, ∗) be a fuzzy metric space. A sequence {xn} in X is called
G-Cauchy if

lim
n→∞

M(xn, xn+1, t) = 1 (1.2)

for all t > 0. The space (X,M, ∗) is called G-complete if every G-Cauchy sequence is
convergent.

Lemma 1.6 (see [11]). Each M -complete non-Archimedean fuzzy metric space (X,M, T) with T of
Hadžić-type is G-complete.
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Theorem 2.10 in the next section is related to a partial order on a fuzzy metric space
under the Łukasiewicz t-norm. We will refer to [14].

Lemma 1.7 (see [14]). Let (X,M, ∗) be a non-Archimedean fuzzy metric space with a∗b ≥ max{a+
b − 1, 0} and φ : X × [0,∞) → R. Define the relation “
” on X as follows:

x 
 y ⇐⇒M
(
x, y, t

) ≥ 1 + φ(x, t) − φ(y, t), ∀t > 0. (1.3)

Then 
 is a (partial) order on X, named the partial order induced by φ.

2. Main Results

The first two theorems in this section are related to Theorem 2.1 in [17]. We begin by giving
the following definitions.

Definition 2.1. Let 
 be an order relation onX. A mapping f : X → X is called nondecreasing
w.r.t 
 if x 
 y implies fx 
 fy.

Definition 2.2. Let (X,
) be a partially ordered set, let (X,M, ∗) be a fuzzy metric space, and
let ψ be a function from [0, 1] to [0, 1]. A mapping f : X → X is called a fuzzy order ψ-
contractive mapping if the following implication holds:

x, y ∈ X, x 
 y =⇒ [
M

(
fx, fy, t

) ≥ ψ(M(
x, y, t

)) ∀t > 0
]
. (2.1)

Theorem 2.3. Let (X,
) be a partially ordered set and (X,M, ∗) be anM-complete non-Archimedean
fuzzy metric space with ∗ of Hadžić-type. Let ψ : [0, 1] → [0, 1] be a continuous, nondecreasing
function and let f : X → X be a fuzzy order ψ-contractive and nondecreasing mapping w.r.t 
.
Suppose that either

f is continuous, (2.2)

or

xn 
 x ∀n, whenever
{xn} ⊂ X is nondecreasing sequence with xn −→ x ∈ X

(2.3)

hold. If there exists x0 ∈ X such that

x0 
 fx0, lim
n→∞

ψn
(
M

(
x0, fx0, t

))
= 1 (2.4)

for each t > 0, then f has a fixed point.

Proof. Let xn = fxn−1 for n ∈ {1, 2, . . .}. Since x0 
 fx0 and f is nondecreasing w.r.t 
, we have

x0 
 x1 
 x2 
 · · · 
 xn 
 xn+1 
 · · · . (2.5)
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Then, it immediately follows by induction that

M(xn+1, xn+2, t) ≥ ψ(M(xn, xn+1, t)), (n ∈ N, t > 0), (2.6)

hence

M(xn, xn+1, t) ≥ ψn
(
M

(
x0, fx0, t

))
, (n ∈ N, t > 0). (2.7)

By taking the limit as n → ∞ we obtain

lim
n→∞

M(xn, xn+1, t) = 1 (2.8)

for all t > 0, that is, {xn} is G-Cauchy. Since X is G-complete (Lemma 1.6), then there exists
x ∈ X such that limn→∞xn = x.

Now, if f is continuous then it is clear that fx = x, while if the condition (2.3) hold
then, for all t > 0,

M
(
xn+1, fx, t

)
=M

(
fxn, fx, t

) ≥ ψ(M(xn, x, t)) (2.9)

and letting n → ∞ it follows

M
(
x, fx, t

) ≥ ψ(1) = 1, (2.10)

hence fx = x.

Theorem 2.4. Let (X,
) be a partially ordered set, let (X,M, ∗) be anM-complete non-Archimedean
fuzzy metric space, and let ψ : [0, 1] → [0, 1] be a continuous mapping such that ψ(t) > t for all
t ∈ (0, 1). Also, let f : X → X be a nondecreasing mapping w.r.t 
, with the property

M
(
fx, fy, t

) ≥ ψ(M(
x, y, t

)) ∀t > 0, whenever x 
 y. (2.11)

Suppose that either (2.2) or (2.3) holds. If there exists x0 ∈ X such that

x0 
 fx0, M
(
x0, fx0, t

)
> 0 (2.12)

for all t > 0, then f has a fixed point.

Proof. Let xn = fxn−1 for n ∈ {1, 2, . . .}. Then, as in the proof of the preceding theorem we can
prove that

M(xn+1, xn+2, t) ≥ ψ(M(xn, xn+1, t)) ≥M(xn, xn+1, t), (n ∈ N, t > 0). (2.13)
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Therefore, for every t > 0, {M(xn, xn+1, t)}n∈N
is a nondecreasing sequence of numbers

in (0, 1]. Let, for fixed t > 0, limn→∞M(xn, xn+1, t) = l. Then we have l ∈ (0, 1], since
M(x0, x1, t) > 0. Also, since

M(xn+1, xn+2, t) ≥ ψ(M(xn, xn+1, t)) (2.14)

and ψ is continuous, we have l ≥ ψ(l). This implies l = 1 and therefore, for all t > 0,

lim
n→∞

M(xn, xn+1, t) = 1. (2.15)

Now we show that {xn} is an M-Cauchy sequence. Supposing this is not true, then there are
ε ∈ (0, 1) and t > 0 such that for each k ∈ N there exist m(k), n(k) ∈ N with m(k) > n(k) ≥ k
and

M
(
xm(k), xn(k), t

) ≤ 1 − ε. (2.16)

Let, for each k, m(k) be the least integer exceeding n(k) satisfying the inequality (2.16), that
is,

M
(
xm(k)−1, xn(k), t

)
> 1 − ε. (2.17)

Then, for each k,

1 − ε ≥M(
xm(k), xn(k), t

)

≥M(
xm(k)−1, xn(k), t

) ∗M(
xm(k)−1, xm(k), t

)

≥ (1 − ε) ∗M(
xm(k)−1, xm(k), t

)
.

(2.18)

Letting k → ∞ and using (2.15), we have, for t > 0,

lim
k→∞

M
(
xm(k), xn(k), t

)
= 1 − ε. (2.19)

Then, since xn(k) 
 xm(k), we have

M
(
xm(k), xn(k), t

) ≥M(
xm(k), xm(k)+1, t

) ∗M(
xm(k)+1, xn(k)+1, t

) ∗M(
xn(k)+1, xn(k), t

)

≥M(
xm(k), xm(k)+1, t

) ∗ ψ(M(
xm(k), xn(k), t

)) ∗M(
xn(k)+1, xn(k), t

)
.

(2.20)

Letting k → ∞ and using (2.15) and (2.19), we obtain

1 − ε ≥ 1 ∗ ψ(1 − ε) ∗ 1 = ψ(1 − ε) > 1 − ε, (2.21)
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which is a contradiction. Thus {xn} is an M-Cauchy sequence. Since X is M-complete, then
there exists x ∈ X such that

lim
n→∞

xn = x. (2.22)

If f is continuous, then from xn = fxn−1 (n ∈ N) it follows that fx = x. Also, if (2.3) holds,
then (since xn 
 x)we have

M
(
xn+1, fx, t

)
=M

(
fxn, fx, t

) ≥ ψ(M(xn, x, t)), (n ∈ N, t > 0). (2.23)

Letting n → ∞, we obtain that

M
(
x, fx, t

)
= 1 ∀t > 0, (2.24)

hence fx = x.

Example 2.5. Let X = (0,∞). Consider the following relation on X:

x 
 y ⇐⇒ (
x = y or x, y ∈ [1, 4], x ≤ y). (2.25)

It is easy to see that 
 is a partial order on X. Let a ∗ b = ab and

M
(
x, y, t

)
=

min
{
x, y

}

max
{
x, y

} , ∀t > 0. (2.26)

Then (X,M, ∗) is an M-complete non-Archimedean fuzzy metric space (see [18]) satisfying
M(x, y, t) > 0 for all t > 0. Define a self map f of X as follows:

fx =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2x, 0 < x < 1

x + 5
3

, 1 ≤ x ≤ 4

2x − 5, x > 4.

(2.27)

Now, it is easy to see that f is continuous and nondecreasing w.r.t 
. Also, for x0 = 1 we have
1 = x0 
 fx0 = 2. Now we can see that f is fuzzy order ψ-contractive with ψ(t) =

√
t.

Indeed, let x, y ∈ X with x 
 y. Now if x = y, then

M
(
fx, fy, t

)
= 1 ≥ ψ(1) = ψ(M(

x, y, t
))
. (2.28)
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If x, y ∈ [1, 4] with x ≤ y, then

M
(
fx, fy, t

)
=

min
{
fx, fy

}

max
{
fx, fy

}

=
min

{
(x + 5)/3,

(
y + 5

)
/3

}

max
{
(x + 5)/3,

(
y + 5

)
/3

}

=
x + 5
y + 5

≥
√
x

y

= ψ
(
M

(
x, y, t

))
.

(2.29)

Therefore f is fuzzy order ψ-contractive with ψ(t) =
√
t. Hence all conditions of Theorem 2.4

are satisfied and so f has a fixed point on X.

In order to state our next theorem, we give the concept of weakly comparable
mappings on an ordered space.

Definition 2.6. Let (X,
) be an ordered space. Two mappings f, g : X → X are said to be
weakly comparable if fx 
 gfx and gx 
 fgx for all x ∈ X.

Note that two weakly comparable mappings need not to be nondecreasing.

Example 2.7. Let X = [0,∞) and ≤ be usual ordering. Let f, g : X → X defined by

fx =

⎧
⎨

⎩

x if 0 ≤ x ≤ 1,

0 if 1 < x <∞,
gx =

⎧
⎨

⎩

√
x if 0 ≤ x ≤ 1,

0 if 1 < x <∞.
(2.30)

Then it is obvious that fx ≤ gfx and gx ≤ fgx for all x ∈ X. Thus f and g are weakly
comparable mappings. Note that both f and g are not nondecreasing.

Example 2.8. Let X = [1,∞) × [1,∞) and 
 be coordinate-wise ordering, that is, (x, y) 

(z,w) ⇔ x ≤ z and y ≤ w. Let f, g : X → X be defined by f(x, y) = (2x, 3y)
and g(x, y) = (x2, y2), then f(x, y) = (2x, 3y) 
 gf(x, y) = g(2x, 3y) = (4x2, 9y2) and
g(x, y) = (x2, y2) 
 fg(x, y) = f(x2, y2) = (2x2, 3y2). Thus f and g are weakly comparable
mappings.

Example 2.9. Let X = R
2 and 
 be lexicographical ordering, that is, (x, y) 
 (z,w) ⇔ (x < z)

or (if x = z, then y ≤ w). Let f, g : X → X be defined by

f
(
x, y

)
=
(
max

{
x, y

}
,min

{
x, y

})
,

g
(
x, y

)
=
(
max

{
x, y

}
,
x + y
2

)
,

(2.31)
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then f(x, y) 
 gf(x, y) and g(x, y) 
 fg(x, y) for all (x, y) ∈ X. Thus f and g are weakly
comparable mappings. Note that, (1, 4) 
 (2, 3) but f(1, 4) = (4, 1)(3, 2) = f(2, 3), then f is not
nondecreasing. Similarly g is not nondecreasing.

Theorem 2.10. Let (X,M, ∗) be an M -complete non-Archimedean fuzzy metric space with a ∗ b ≥
max{a + b − 1, 0}, φ : X × [0,∞) → R be a bounded-from-above function, and let 
 be the partial
order induced by φ. If f, g : X → X are two continuous and weakly comparable mappings, then f
and g have a common fixed point in X.

Proof. Let X0 be an arbitrary point of X and let us define a sequence {xn} in X as follows:

x2n+1 = fx2n, x2n+2n = gx2n+1 for n ∈ {0, 1, . . .}. (2.32)

Note that, since f and g are weakly comparable, we have

x1 = fx0 
 gfx0 = gx1 = x2,
x2 = gx1 
 fgx1 = fx2 = x3.

(2.33)

By continuing this process we get

x1 
 x2 
 · · · 
 xn 
 xn+1 
 · · · , (2.34)

that is, the sequence {xn} is nondecreasing. By the definition of 
we have φ(x0, t) ≤ φ(x1, t) ≤
φ(x2, t) ≤ · · · for all t > 0, that is, for even t > 0, the sequence {φ(xn, t)} is a nondecreasing
sequence in R. Since φ is bounded from above, {φ(xn, t)} is convergent and hence it is Cauchy.
Then, for all ε > 0 there exists n0 ∈ N such that for all m > n > n0 and t > 0 we have
|φ(xm, t) − φ(xn, t)| = φ(xm, t) − φ(xn, t) < ε. Therefore, since xn 
 xm, we have

M(xn, xm, t) ≥ 1 + φ(xn, t) − φ(xm, t)
= 1 − [

φ(xm, t) − φ(xn, t)
]

> 1 − ε.
(2.35)

This shows that the sequence {xn} isM-Cauchy. SinceX isM-complete, it converges to a point
z ∈ X. As x2n+1 → z and x2n+2 → z, by the continuity of f and g we get fz = gz = z.

Corollary 2.11 ([Caristi fixed point theorem in non-Archimedean fuzzy metric spaces]). Let
(X,M, ∗) be an M -complete non-Archimedean fuzzy metric space with a ∗ b ≥ max{a+ b − 1, 0}, let
φ : X × [0,∞) → R be a bounded-from-above function and f : X → X be a continuous mapping,
such that

M
(
x, fx, t

) ≥ 1 + φ(x, t) − φ(fx, t) (2.36)

for all x ∈ X and t > 0. Then f has a fixed point in X.
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Proof. We take in the above theorem g = 1X and note that the weak comparability of f and g
reduces to (2.36).

The generalization suggested by Kirk of Caristi’s fixed point theorem [19] is well
known. A similar theorem in the setting of non-Archimedean fuzzy metric spaces is stated in
the final part of our paper.

In what follows ν : [0, 1] → [0, 1] is nondecreasing, subadditive mapping (i.e., ν(a +
b) ≤ ν(a) + ν(b) for all a, b ∈ [0, 1]), with ν(0) = 0.

Theorem 2.12. Let (X,M, ∗) be a non-Archimedean fuzzy metric space with a∗b ≥ max{a+b−1, 0}
and φ : X × [0,∞) → R. Define the relation “
” on X through

x 
 y ⇐⇒ φ
(
y, t

) − φ(x, t) ≥ ν(1 −M(
x, y, t

))
, ∀t > 0. (2.37)

Then “
” is a (partial) order on X.

Proof. Since ν(0) = 0, then for all x ∈ X and t > 0,

0 = φ(x, t) − φ(x, t) ≥ ν(1 −M(x, x, t)) = 0, (2.38)

that is, “
” is reflexive.
Let x, y ∈ X be such that x 
 y and y 
 x. Then for all t > 0,

φ
(
y, t

) − φ(x, t) ≥ ν(1 −M(
x, y, t

))
,

φ(x, t) − φ(y, t) ≥ ν(1 −M(
x, y, t

))
,

(2.39)

implying thatM(x, y, t) = 1 for all t > 0, that is, x = y. Thus “
” is antisymmetric.
Now for x, y, z ∈ X, let x 
 y and y 
 z. Then, for given t > 0,

φ
(
y, t

) − φ(x, t) ≥ ν(1 −M(
x, y, t

))
, (2.40)

φ(z, t) − φ(y, t) ≥ ν(1 −M(
z, y, t

))
. (2.41)

By using (2.40) and (2.41) we get

φ(z, t) − φ(x, t) ≥ ν(1 −M(
x, y, t

))
+ ν

(
1 −M(

y, z, t
))

≥ ν(1 −M(
x, y, t

)
+ 1 −M(

y, z, t
))
.

(2.42)

On the other hand, from the triangular inequality (NA), the inequality

M(x, z, t) ≥M(
x, y, t

)
+M

(
y, z, t

) − 1 (2.43)

holds. This implies

1 −M(
x, y, t

)
+ 1 −M(

y, z, t
) ≥ 1 −M(x, z, t). (2.44)
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As ν is nondecreasing, it follows that

ν
(
1 −M(

x, y, t
)
+ 1 −M(

y, z, t
)) ≥ ν(1 −M(x, z, t)) (2.45)

and therefore

φ(z, t) − φ(x, t) ≥ ν(1 −M(x, z, t)). (2.46)

This shows that x 
 z, that is, “
” is transitive.

From the above theorem we can immediately obtain the following generalization of
Corollary 2.11.

Corollary 2.13. Let (X,M, ∗) be an M -complete non-Archimedean fuzzy metric space with a ∗ b ≥
max{a + b − 1, 0}, let φ : X × [0,∞) → R be a bounded-from-above function and f : X → X be a
continuous mapping, such that

φ
(
fx, t

) − φ(x, t) ≥ ν(1 −M(
x, fx, t

))
(2.47)

for all x ∈ X and t > 0. If ν satisfies the property

∀ε > 0 ∃δ > 0 : ν(x) < δ =⇒ x < ε, (2.48)

then f has a fixed point in X.

The reader is referred to the nice paper [20] for some discussion of Kirk’s problem on
an extension of Caristi’s fixed point theorem.
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