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A delayed predator-prey system with stage structure is investigated. The existence and stability of
equilibria are obtained. An explicit algorithm for determining the direction of the Hopf bifurcation
and the stability of the bifurcating periodic solutions is derived by using the normal form and the
center manifold theory. Finally, a numerical example supporting the theoretical analysis is given.

1. Introduction

The age factors are important for the dynamics and evolution of many mammals. The rates of
survival, growth, and reproduction almost always depend heavily on age or developmental
stage, and it has been noticed that the life history of many species is composed of at
least two stages, immature and mature, with significantly different morphological and
behavioral characteristics. The study of stage-structured predator-prey systems has attracted
considerable attention in recent years (see [1–6] and the reference therein). In [4], Wang
considered the following predator-prey model with stage structure for predator, in which
the immature predators can neither hunt nor reproduce.

ẋ(t) = x(t)
[
r − ax(t) − by2(t)

1 +mx(t)

]
,

ẏ1(t) =
kbx(t)y2(t)
1 +mx(t)

− (D + v1)y1(t),

ẏ2(t) = Dy1(t) − v2y2(t),

(1.1)
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where x(t) denotes the density of prey at time t, y1(t) denotes the density of immature
predator at time t, y2(t) denotes the density of mature predator at time t, b is the search
rate, m is the search rate multiplied by the handling time, and r is the intrinsic growth rate.
It is assumed that the reproduction rate of the mature predator depends on the quality of
prey considered, the efficiency of conversion of prey into newborn immature predators being
denoted by k. D denotes the rate at which immature predators become mature predators.
v1 and v2 denote the mortality rates of immature and mature predators, respectively. All
coefficients are positive constants. In [4], he concluded that the system under some conditions
has a unique positive equilibrium, which is globally asymptotically stable. Georgescu and
Moroşanu [7] generalized the system (1.1) as

ẋ(t) = n(x(t)) − f(x(t))y2(t),
ẏ1(t) = kf(x(t))y2(t) − (D + v1)y1(t),

ẏ2(t) = Dy1(t) − v2y2(t),
(1.2)

satisfying the following hypotheses:
(H1) (a) f(x) is the predator functional response and satisfies that

f ∈ C1([0,∞), [0,∞)), f(0) = 0, f ′(x) > 0, lim
x→∞

f(x)
x

<∞. (1.3)

(b) n(x) is the growth function and satisfies that n ∈ C1([0,∞), R), n(x) = 0 if and only
if x ∈ {0, x0}, with x0 > 0 and n(x) > 0 for x ∈ (0, x0), and n(x) is strictly decreasing on
[xp,∞), 0 < xp < x0.

(c) The prey isocline is given by h(x) := n(x)/f(x) and is assumed to be concave
down, that is, h′′(x) < 0 for x � 0.

In [7], they employ the theory of competitive systems andMuldowney’s necessary and
sufficient condition for the orbital stability of a periodic orbit and obtain the global stability
of the positive equilibrium for the general system. It is necessary to forsake some aspects of
realism, and one of the features of the real world which is commonly compromised in order
to achieve generality is the time delay. In general, delay differential equations exhibit much
more complicated dynamics than ordinary differential equations since a time delay could
cause a stable equilibrium to become unstable and cause the population to fluctuate. Time
delay due to gestation is a common example, because generally the consumption of prey by a
predator throughout its past history governs the present birth rate of the predator. Therefore,
more realistic models of population interactions should take into account the effect of time
delays. So, we introduce the delay τ due to gestation of mature predator into system (1.2)
and consider the following system:

ẋ(t) = n(x(t)) − f(x(t))y2(t),
ẏ1(t) = kf(x(t − τ))y2(t − τ) − (D + v1)y1(t),

ẏ2(t) = Dy1(t) − v2y2(t),
(1.4)
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where all coefficients are positive constants and the detailed ecological meanings are the same
as in system (1.2). Some usual examples of f(x) and n(x) include f(x) = m×c(m > 0, 0 < c �
1), f(x) = m(1−e−cx) (m, c > 0), f(x) = αxe−βx(α > 0, β > 0), f(x) = bxp/(1+mxp)(p > 0) and
n(x) = x(r−ax)/(1+εx)(ε > 0), n(x) = rx(1−(x/(r/a))c) (0 < c � 1), or n(x) = x(re1−x/k)−d,
and so forth.

Our main purpose of this paper is to investigate the dynamic behaviors of system (1.4)
and the frame of this paper is organized as follows. In the next section, we will investigate the
stability of equilibria and the existence of local Hopf bifurcation. In Section 3, the direction
and stability of the bifurcating periodic solutions are determined by applying the center
manifold theorem and normal form theory. In Section 4, a numerical example supporting
the theoretical analysis is given.

2. Stability of the Equilibrium and Local Hopf Bifurcations

It is known that time delay does not change the location and number of positive equilibrium.
We have the following lemma.

Lemma 2.1. The system (1.4) has two nonnegative equilibria, E0(0, 0, 0), E1(x0, 0, 0), and a positive
equilibrium E∗(x∗, y∗

1, y
∗
2) if

(H2) v2(D + v1) < kDf(x0)holds, where x∗, y∗
1 and y

∗
2 satisfy

n(x) = f(x)y2,

kf(x(t))y2(t) = (D + v1)y1,

Dy1 = v2y2.

(2.1)

The linear part of (1.4) at E0 is

ẋ(t) = n′(0)x(t),

ẏ1(t) = −(D + v1)y1(t),

ẏ2(t) = Dy1(t) − v2y2(t),
(2.2)

and the corresponding characteristic equation is

(
λ − n′(0))[λ2 + (D + v1 + v2)λ + v2(D + v1)

]
= 0. (2.3)

From (H1), one knows that n′(0) > 0. Hence, (2.3) has a positive real root and two negative real roots.
One has the following lemma.

Lemma 2.2. For system (1.4), E0 is a saddle point.
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The linear part of (1.4) at E1 is

ẋ(t) = n′(x0)x(t) − f(x0)y2(t),
ẏ1(t) = kf(x0)y2(t − τ) − (D + v1)y1(t),

ẏ2(t) = Dy1(t) − v2y2(t),
(2.4)

and the corresponding characteristic equation is

(
λ − n′(x0)

)[
λ2 + (D + v1 + v2)λ + v2(D + v1) − kDf(x0)e−λτ

]
= 0. (2.5)

From (H1), one has that n′(x0) < 0. Hence, the stability of E1 is decided by the following equation:

λ2 + (D + v1 + v2)λ + v2(D + v1) − kDf(x0)e−λτ = 0. (2.6)

If (H3) v2(D + v1) > kDf(x0)holds, then λ = 0 is not the root of (2.6), and all the roots of (2.6)
have strictly negative real parts when τ = 0. Furthermore, one has the following conclusion.

Lemma 2.3. If
(H4) v2(D + v1) > max{D + v1 + v2/2, kDf(x0)} and
(H5) Δ .= (D + v1 + v2)

2 + 4k2D2f2(x0) − 4v2(D + v1)(D + v1 + v2) > 0hold, then
(2.6) has two pairs of purely imaginary roots noted by ±iω11 and ±iω12 when τ = τk1j , and the

other roots have negative real parts, where ω11 =
√
(2v2(D + v1) − (D + v1 + v2) +

√
Δ)/2, ω12 =√

(2v2(D + v1) − (D + v1 + v2) −
√
Δ)/2, τk1j = 1/ω1k{arccos [(−ω2

1k + (D + v1)v2)/kDf(x0)] +
(2j + 1)π}, j = 0, 1, 2, . . . , k = 1, 2.

Let λ(τ) = α(τ) + iω(τ) be the root of (2.6) satisfying α(τk1j) = 0, ω(τk1j) = ω1k. Thus, the
following results hold.

Lemma 2.4. α′(τk1j) > 0.

Proof. By (2.6), we have

λ′
(
τk1j

)
=

ω2
1k(D + v1 + v2) + iω1k

[
ω2

1k − v2(D + v1)
]

[
D + v1 + v2 − τk1j

(
ω2

1k − v2(D + v1)
)]

+ iω1k

[
2 + τk1j(D + v1 + v2)

] (2.7)

and α′(τk1j) = ω
2
1k[(D + v1)

2 + 2ω2
1k] > 0.

From the above discussion, we have the following.

Theorem 2.5. (i) E0 is unstable for any τ � 0; (ii) if (H2) holds, then E1 is unstable and E∗ exists;
(iii) if (H4) and (H5) hold, then E1 is asymptotically stable for τ ∈ [0, τ10) and unstable for τ > τ10,
where τ10 = min{τ110, τ210}.
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The linear part of (1.4) at E∗ is

ẋ(t) =
[
n′(x∗) − f ′(x∗)y∗

2
]
x(t) − f(x∗)y2(t),

ẏ1(t) = kf ′(x∗)y∗
2x(t − τ) − (D + v1)y1(t) + kf(x∗)y2(t − τ),
ẏ2(t) = Dy1(t) − v2y2(t),

(2.8)

and the corresponding characteristic equation is

λ3 +
[
f ′(x∗)y∗

2 − n′(x∗) +D + v1 + v2
]
λ2 +

[
v2(D + v1) + (D + v1 + v2)

(
f ′(x∗)y∗

2 − n′(x∗)
)]

× λ + v2(D + v1)
[
f ′(x∗)y∗

2 − n′(x∗)
]
+
[
n′(x∗) − λ]kDf(x∗)e−λτ = 0.

(2.9)

Next, we will investigate the distribution of roots of (2.9). When τ = 0, (2.9) can be reduced
to

λ3 +
[
f ′(x∗)y∗

2 − n′(x∗) +D + v1 + v2
]
λ2 + (D + v1 + v2)

(
f ′(x∗)y∗

2 − n′(x∗)
)
λ

+ v2(D + v1)f ′(x∗)y∗
2 = 0.

(2.10)

By Routh-Hurwitz criteria, if
(H6) [f ′(x∗)y∗

2−n′(x∗)+D+v1+v2](D+v1+v2)[f ′(x∗)y∗
2−n′(x∗)] > v2(D+v1)f ′(x∗)y∗

2
holds, then all roots of (2.10) have strictly negative real parts and λ = 0 is not the root of (2.9).
If the reverse of (2.10) is satisfied, then two characteristic roots have positive real parts. For
convenience, we denote (2.9) as follows

λ3 + a2λ2 + a1λ + a0 + (b1λ + b0)e−λτ = 0, (2.11)

where a2 = f ′(x∗)y∗
2 −n′(x∗)+D+v1+v2, a1 = [f ′(x∗)y∗

2 −n′(x∗)](D+v1+v2)+v2(D+v1), a0 =
v2(D + v1)[f ′(x∗)y∗

2 − n′(x∗)], b1 = −v2(D + v1), b0 = v2(D + v1)n′(x∗). From a0 + b0 > 0, we
have that λ = 0 is not the root of (2.11). Obviously, λ = iω (ω > 0) is a root of (2.11) if and
only if

iω3 + a2ω2 − ia1ω − a0 − (b1ωi + b0)(cosωτ − i sinωτ) = 0. (2.12)

Separating the real part and imaginary part, we can obtain

a2ω
2 − a0 = b0 cosωτ + b1ω sinωτ,

a1ω −ω3 = b0 sinωτ − b1ω cosωτ,
(2.13)

which yields

ω6 + pω4 + qω2 + s = 0, (2.14)
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where p = a22 − 2a1, q = a21 − 2a0a2 − b21, s = a20 − b20. Set z = ω2. Then (2.14) takes the following
form:

G(z) def= z3 + pz2 + qz + s = 0. (2.15)

Lemma 2.6 (see [8]). (a) If s < 0, then (2.15) has at least one positive root.
(b) If s � 0 and Λ = p2 − 3q � 0, then (2.15) has no positive roots.
(c) If s � 0 and Λ = p2 − 3q > 0, then (2.15) has positive roots if and only if z∗1 = (1/3)(−p +√

Λ) and G(z∗1) � 0.

The above Lemma can be seen in [8]. Suppose that (2.15) has positive roots. Without
loss of generality, we assume that it has three positive roots z1, z2, z3. Then (2.14) has three
positive roots ω1 =

√
z1, ω2 =

√
z2, ω3 =

√
z3. By (2.13), we have

cosωτ =
b1ω

4
k
+ (a2b0 − a1b1)ω2

k
− a0b0

b20 + b
2
1ω

2
k

. (2.16)

Thus, if

τkj =
1
ωk

{
arccos

(
b1ω

4
k
+ (a2b0 − a1b1)ω2

k
− a0b0

b20 + b
2
1ω

2
k

)
+ 2jπ

}
, (2.17)

where k = 1, 2, 3, j = 0, 1, 2, . . . , then ±iωk are a pair of purely imaginary roots of (2.11) with
τ = τkj . Suppose that

τ0 = τ
k0
0 = min

{
τk0

}
, ω0 = ωk0 , k = 1, 2, 3. (2.18)

Thus, by Lemma2.2 and Corollary 2.4 in [9], we can easily get the following results.

Lemma 2.7. (a) If s � 0 and Λ = p2 − 3q � 0, then for any τ � 0, (2.9) and (2.10) have the same
number of roots with positive real parts.

(b) If either s < 0 or s � 0,Λ = p2 − 3q > 0, z∗1 > 0 and G(z∗1) � 0 is satisfied, then (2.9) and
(2.10) have the same number of roots with positive real parts when τ ∈ [0, τ0).

Let λ(τ) = α(τ) + iω(τ) be the root of (2.9) satisfying α′(τkj ) = 0, ω(τkj ) = ωk. Thus, the
following transversality condition holds.

Lemma 2.8. If zk = ω2
k andG(zk)/= 0, then α′(τkj )/= 0. Furthermore, Sign{α′(τkj )} = Sign{G′(zk)}.

Proof. By direct computation to (2.11), we obtain

(
dλ

dτ

)−1
=

(
3λ2 + 2a2λ + a1

)
eλτ + b1

λ(b1λ + b0)
+
τ

λ
. (2.19)
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By (2.13), we have

[λ(b1λ + b0)]|τ=τkj = −b1ω2
k + ib0ωk, (2.20)

and
[(

3λ2 + 2a2λ + a1
)
eλτ
]
|τ=τkj =

[(
a1 − 3ω2

k

)
cosωkτ

k
j − 2a2ωk sinωkτ

k
j

]

+ i
[
2a2ωk cosωkτ

k
j +
(
a1 − 3ω2

k

)
sinωkτ

k
j

]
.

(2.21)

From (2.19) to (2.21), we have

α′
(
τkj

)−1
=
zk
Ω
G′(zk), (2.22)

where Ω = b21ω
4
k
+ b20ω

2
k
. Thus Sign{α′(τkj )} = Sign{α′(τkj )}

−1
= Sign{G′(zk)}/= 0.

By the above analyses, we can obtain the following theorem.

Theorem 2.9. If (H2) and (H6) are satisfied, then the following results hold.

(a) If s � 0 and Λ = p2 − 3q � 0, then for any τ � 0, all roots of (2.11) have negative real
parts. Furthermore, positive equilibrium E∗ of (1.4) is absolutely stable for τ � 0;

(b) If either s < 0 or z∗1 > 0, G(z∗1) � 0, r � 0 and Λ = p2 − 3q > 0 hold, then G(z) has at least
one positive root zk, and when τ ∈ [0, τ0), all roots of (2.11) have negative real parts. So
the positive equilibrium E∗ of (1.4) is asymptotically stable for τ ∈ [0, τ0).

(c) If the conditions in (b) and G′(zk)/= 0, then Hopf bifurcation for (1.4) occurs at positive
equilibrium E∗ when τ = τkj , which means that small amplified periodic solutions will
bifurcate from E∗.

3. Properties of the Hopf Bifurcation

In Section 2, we obtain the conditions which guarantee that system (1.4) undergoes the Hopf
bifurcation at the positive equilibrium E∗ when τ = τkj . In this section, we will investigate
the direction of the Hopf bifurcation when τ = τ0 and the stability of the bifurcating periodic
solutions from the equilibrium E∗ by using the normal form and the center manifold theory
developed by Hassard et al. [10].

Throughout this section, we assume that (b) and (c) of Theorem 2.9 are satisfied.
Under the transformation u1(t) = x(τt) − x∗, u2(t) = y1(τt) − y∗

1, u3(t) = y2(τt) − y∗
2, τ = τ0 + μ,

the system (1.2) is transformed into an FDE in C = C([−1, 0], R3) as

u̇(t) = Lμ(ut) + f
(
μ, ut
)
, (3.1)

where u(t) = (u1(t), u2(t), u3(t))
T ∈ R3 and

Lμ
(
ϕ
)
=
(
τ0 + μ

)[
B1ϕ(0) + B2ϕ(−1)

]
, (3.2)
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where B1 and B2 are defined as

B1 =

⎛
⎜⎜⎝
n′(x∗) − f ′(x∗)y∗

2 0 −f(x∗)

0 −(D + v1) 0

0 D −v2

⎞
⎟⎟⎠, B2 =

⎛
⎜⎜⎝

0 0 0

kf ′(x∗)y∗
2 0 kf(x∗)

0 0 0

⎞
⎟⎟⎠, (3.3)

f
(
μ, ϕ
)
=
(
τ0 + μ

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2!
{[
n′′(x∗) − f ′′(x∗)y∗

2

]
ϕ2
1(0) − 2f ′(x∗)ϕ1(0)ϕ3(0)

}

+
1
3!
{[
n′′′(x∗) − f ′′′(x∗)y∗

2

]
ϕ3
1(0) − 3f ′′(x∗)ϕ2

1(0)ϕ3(0)
}
+O(4)

k

2!
{[
n′′(x∗) − f ′′(x∗)y∗

2

]
ϕ2
1(−1) − 2f ′(x∗)ϕ1(−1)ϕ3(−1)

}

+
k

3!
{[
n′′′(x∗) − f ′′′(x∗)y∗

2

]
ϕ3
1(−1) − 3f ′′(x∗)ϕ2

1(−1)ϕ3(−1)
}
+O(4)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.4)

By the Riesz representation theorem, there exists a matrix whose components are bounded
variation functions η(θ, ϕ) in θ ∈ [−1, 0] such that

Lμϕ =
∫0

−1
dη
(
θ, μ
)
ϕ(θ), (3.5)

where ϕ ∈ C. In fact, we can choose

η
(
θ, μ
)
= τB1δ(θ) − τB2δ(θ + 1), (3.6)

where

δ(θ) =

⎧⎨
⎩
1, θ = 0,

0, θ /= 0.
(3.7)

For ϕ ∈ C1([−1, 0], R3), define

A
(
μ
)
ϕ =

⎧⎪⎪⎨
⎪⎪⎩
ϕ̇(θ), θ ∈ [−1, 0),
∫0

−1
dη
(
s, μ
)
ϕ(s), θ = 0,

(3.8)

R
(
μ
)
ϕ =

⎧⎨
⎩
0, θ ∈ [−1, 0),
f
(
ϕ, μ
)
, θ = 0.

(3.9)
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Leting u = (u1, u2, u3)
T , then system (3.1) can be rewritten as

u̇t = A
(
ϕ
)
ut + R

(
ϕ
)
ut. (3.10)

For ψ ∈ C1([0, 1], (R3)∗), define

A∗α(s) =

⎧⎪⎪⎨
⎪⎪⎩
−α̇(s), s ∈ (0, 1],
∫0

−1
dηT (t, 0)α(−t), s = 0

(3.11)

and a bilinear form

〈
ψ, ϕ
〉
= ψ(0)ϕ(0) −

∫0

−1

∫θ
0
ψ(ξ − θ)dη(θ)ρ(ξ)dξ, (3.12)

where η(θ) = η(θ, 0). Then A∗ and A are adjoint operators. In addition, from Section 2 we
know that ±iω0τ0 are eigenvalues of A(0). Thus they are also eigenvalues of A∗. By direct
computation, we conclude that

q(θ) =
(
1, β, γ

)T
eiω0τ0θ (3.13)

is the eigenvector of A(0) corresponding to iω0τ0, and

q∗(s) = B
(
1, β∗, γ∗

)
eiω0τ0s (3.14)

is the eigenvector A∗ corresponding to −iω0τ0.Moreover,

〈
q∗(s), q(θ)

〉
= 1,

〈
q∗(s), q(θ)

〉
= 0, (3.15)

where

β =
(iω0τ0 + v2)γ

D
, γ =

n′(x∗) − f ′(x∗)y∗
2 − iω0τ0

f(x∗)
,

β∗ =
f ′(x∗)y∗

2 − n′(x∗) − iω0τ0

kf ′(x∗)y∗
2e

iω0τ0
, γ∗ =

(D + v1 − iω0τ0)β∗

D
, B =

1
Γ
,

(3.16)

where Γ = 1 + ββ∗ + γγ∗ + kτ0β∗e−iω0τ0[f ′(x∗)y∗
2 + γf(x

∗)].
Using the same notations as in Hassard et al. [10], let ut be the solution of (3.1) when

τ = τ0. Defining z(t) = 〈q∗, ut〉, ut = (xt, yt), then

ż(t) =
〈
q∗, u̇t

〉
= iω0z(t) + q

∗(0)f̂(z, z), (3.17)
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where

f̂ = f
(
τ0,W(z, z) + 2Re

{
zq
})
, W(z, z) = ut − 2Re

{
zq
}
,

W(z, z) =W20
z2

2
+W11zz +W02

z2

2
+ · · · .

(3.18)

Notice thatW is real if ut is real. We consider only real solutions. Rewrite (3.19) as

u̇t = iω0τ0z(t) + g(z, z), (3.19)

where

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
· · · . (3.20)

Substituting (3.10) and (3.17) into Ẇ = u̇t − żq − żq, we have

Ẇ =

⎧⎪⎨
⎪⎩
AW − 2Re

{
q∗(0)f̂q(θ)

}
, θ ∈ [−τ, 0)

AW − 2Re
{
q∗(0)f̂q(θ)

}
+ f̂ , θ = 0,

def= AW +H(z, z, θ), (3.21)

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+ · · · . (3.22)

Expanding the above series and comparing the coefficients, we obtain

(A − 2iω0τ0I)W20(θ) = −H20(θ), AW11 = −H11(θ). (3.23)

For ut = u(t + θ) =W(z, z, θ) + zq(θ) + zq(θ),we have

(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ · · · = q∗(0)f̂(z, z). (3.24)
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Comparing the coefficients, we obtain

g20 = 2τ0B
{
1
2
[
n′′(x∗) − f ′′(x∗)y∗

2
](

1 + kβ∗e−2iω0τ0
)
− f ′(x∗)γ − kβ∗γf ′(x∗)e−2iω0τ0

}
,

g11 = τ0B
(
1 + kβ∗

)[
n′′(x∗) − f ′′(x∗)y∗

2 − f ′(x∗)
(
γ + γ

)]
,

g02 = 2τ0B
{
1
2
[
n′′(x∗) − f ′′(x∗)y∗

2
](

1 + kβ∗e2iω0τ0
)
− f ′(x∗)γ − kβ∗γf ′(x∗)e2iω0τ0

}
,

g21 = 2τ0B
{
1
2
[
n′′′(x∗) − f ′′′(x∗)y∗

2
][
1 + kβ∗e−iω0τ0

]

+
1
2

[
W

(1)
20 (0) + 2W (1)

11 (0)
][
n′′(x∗) − f ′′(x∗)y∗

2
] − 1

2
f ′′(x∗)

(
γ + 2γ

)(
1 + kβ∗e−iω0τ0

)

− f ′(x∗)
[
W

(3)
11 (0) +

1
2
W

(3)
20 (0) +

1
2
γW

(1)
20 (0) + γW

(1)
11 (1)

]

+
k

2
β∗
[
n′′(x∗) − f ′′(x∗)y∗

2
][
W

(1)
20 (−1)eiω0τ0 + 2W (1)

11 (−1)e−iω0τ0
]
− kβ∗f ′(x∗)

×
[
W

(3)
11 (−1)e−iω0τ0 +

1
2
W

(3)
20 (−1)eiω0τ0 +

1
2
γW

(1)
20 (−1)eiω0τ0 + γW (1)

11 (−1)e−iω0τ0

]}
.

(3.25)

We still need to computeW20(θ) andW11(θ). For θ ∈ [−1, 0), we have

H(z, z, θ) = −2Re
{
q∗(0)f̂q(θ)

}
= −q∗f̂q(θ) − q∗(0)f̂q(θ) = −gq(θ) − gq(θ). (3.26)

Comparing the coefficients with (3.22) gives that

H20(θ) = −g20q(θ) − g02q(θ), H11(θ) = −g11q(θ) − g11q(θ). (3.27)

It follows from the definition ofW that

Ẇ20(θ) = 2iω0τ0W20(θ) −H20(θ) = 2iω0τ0W20(θ) + g20q(θ) + g20q(θ). (3.28)

Solving forW20(θ), we obtain

W20(θ) =
ig20
ω0τ0

q(0)eiω0τ0θ +
ig20

3ω0τ0
q(0)e−iω0τ0θ + E1e

2iω0τ0θ, (3.29)

and similarly

W11(θ) =
−ig11
ω0τ0

q(0)eiω0τ0θ +
ig11

ω0τ0
q(0)e−iω0τ0θ + E2, (3.30)
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where E1 and E2 are both 3-dimensional vectors and can be determined by setting θ = 0 in
H. Hence combining the definition of A, we can get

∫0

−1
dη(θ)W20(θ) = AW20(0) = 2iω0τ0W20(0) −H20(0),

∫0

−1
dη(θ)W11(θ) = −H11(0).

(3.31)

Noticing that (iω0τ0I −
∫0
−1 e

iω0τ0θdη(θ))q(0) = 0, (−iω0τ0I −
∫0
−1 e

−iω0τ0θdη(θ))q(0) = 0,we have

(
2iω0τ0I −

∫0

−1
e2iω0τ0θdη(θ)

)
E1 = f̂z2 . (3.32)

Similarly, we have

(∫0

−1
dη(θ)

)
E2 = −f̂zz. (3.33)

Hence, we get

⎛
⎜⎜⎜⎝

2iω0 − n′(x∗) + f ′(x∗)y∗
2 0 f(x∗)

−kf ′(x∗)y∗
2e

−2iω0τ0 2iω0 +D + v1 −kf(x∗)e−2iω0τ0

0 −D 2iω0 + v2

⎞
⎟⎟⎟⎠E1

=
[
1
2
(
n′′(x∗) − f ′′(x∗)y∗

2
) − γf ′(x∗)

]
⎛
⎜⎜⎝

1

ke−2iω0τ0

0

⎞
⎟⎟⎠,

(3.34)

⎛
⎜⎜⎝
n′(x∗) − f ′(x∗)y∗

2 0 −f(x∗)

kf ′(x∗)y∗
2 D + v1 kf(x∗)

0 D −v2

⎞
⎟⎟⎠E2 =

[(
γ + γ

)
f ′(x∗) − n′′(x∗) + f ′′(x∗)y∗

2
]
⎛
⎝1
k
0

⎞
⎠.

(3.35)

Then g21 can be expressed by the parameters. Based on the above analysis, we can see that
each gij can be determined by the parameters. Thus we can compute the following quantities:

C1(0) =
i

2ω0τ0

(
g20g11 − 2

∣∣g11∣∣2 − 1
3
∣∣g02∣∣2

)
+
g21
2
, β2 = 2Re{C1(0)},

T2 = − Im{C1(0)} + μ2 Imλ′(τ0)
ω0

, μ2 = −Re{C1(0)}
Reλ′(τ0)

.

(3.36)

Hence, we have following theorem.
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Figure 1: When τ = 5, the positive equilibrium E∗ of system (4.1) is asymptotically stable.
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Figure 2:When τ = 10, the positive equilibrium E∗ of system (4.1) is unstable, and small amplified periodic
solutions exist.

Theorem 3.1. μ2 determines the directions of the Hopf bifurcation: if μ2 > 0(< 0), the Hopf
bifurcation is supercritical (subcritical); β2 determines the stability of the bifurcation periodic
solutions: the bifurcation periodic solutions are orbitally stable (unstable) if β2 < 0(> 0); T2 determines
the period of the bifurcating periodic solutions: the period increases (decreases) if T2 > 0(< 0).

4. Numerical Examples

In this section, we give a numerical example:

ẋ(t) = x(t)
[
2 − x(t) − 0.3y2(t)

]
,

ẏ1(t) = 0.24x(t − τ)y2(t − τ) − 0.95y1(t),

ẏ2(t) = 0.8y1(t) − 0.1y2(t).

(4.1)

Then we can conclude that the system (4.1) has a unique positive equilibrium
E∗(0.4948, 0.6272, 5.0174). When τ = 5, the dynamics behaviors of system (4.1) areshown in
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Figure 1. From Section 2, we can obtain ω0 = 0.4867, τ00 = 7.9367, τ0j = 7.9367 + 2jπ/ω0(j =
1, 2, 3, . . .). From the formulas in Section 3, when τ0 = 10, it follows that G′(ω2

0) = 0.9401 > 0,
Ω = 0.0027, ReC(0) = −34.9505 < 0, μ2 = 0.4220 > 0, and β2 = −69.9010 < 0.
Therefore, the Hopf bifurcation is supercritical, and the bifurcating periodic solution is
orbitally asymptotically stable. The plots are shown in Figure 2.
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