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We first introduce the new concept of a distance called u-distance, which generalizes w-distance,
Tataru’s distance, and τ-distance. Then we prove a new minimization theorem and a new fixed
point theorem by using a u-distance on a complete metric space. Our results extend and unify
many known results due to Caristi, Ćirić, Ekeland, Kada-Suzuki-Takahashi, Kannan, Ume, and
others.

1. Introduction

The Banach contraction principle [1], Ekeland’s ε-variational principle [2], and Caristi’s fixed
point theorem [3] are very useful tools in nonlinear analysis, control theory, economic theory,
and global analysis. These theorems are extended by several authors in different directions.

Takahashi [4] proved the following minimization theorem. LetX be a complete metric
space and let f : X → (−∞,∞] be a proper lower semicontinuous function, bounded from
below. Suppose that, for each u ∈ X with f(u) > infx∈Xf(x), there exists v ∈ X such that
v /=u and f(v) + d(u, v) ≤ f(u). Then there exists x0 ∈ X such that f(x0) = infx∈Xf(x). Some
authors [5–7] have generalized and extended this minimization theorem in complete metric
spaces.

In 1996, Kada et al. [5] introduced the concept of w-distance on a metric space as
follows. Let X be a metric space with metric d. Then a function p : X × X → [0,∞) is called
a w-distance on X if the followings are satisfied.

(1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X.

(2) For any x ∈ X, p(x, ·) : X → [0,∞) is lower semicontinuous.

(3) For any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply
d(x, y) ≤ ε.
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They gave some examples of w-distance and improved Caristi’s fixed point theorem [3],
Ekeland’s variational principle [2], and Takahashi’s nonconvex minimization theorem [4].
The fixed point theorems with respect to a w-distance were proved in [8–12].

Throughout this paper we denote by N the set of all positive integers, by R the set of
all real numbers, and by R+ the set of all nonnegative real numbers.

Recently, Suzuki [6] introduced the concept of τ-distance on a metric space, which
generalizes Tataru’s distance [13] as follows. Let X be a metric space with metric d.

Then a function p fromX×X into R+ is called τ-distance onX if there exists a function
η from X × R+ into R+ and the followings are satisfied:

(τ1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;

(τ2) η(x, 0) = 0 and η(x, t) ≥ t for all x ∈ X and t ∈ R+, and η is concave and continuous
in its second variable;

(τ3) limnxn = x and limn sup{η(zn, p(zn, xm)) : m ≥ n} = 0 imply p(w,x) ≤
limninfn p(w,xn) for all w ∈ X;

(τ4) limn sup{p(xn, ym) : m ≥ n} = 0 and limnη(xn, tn) = 0 imply limnη(yn, tn) = 0;

(τ5) limnη(zn, p(zn, xn)) = 0 and limnη(zn, p(zn, yn)) = 0 imply limnd(xn, yn) = 0.

In this paper, we first introduce the new concept of a distance called u-distance, which
generalizesw-distance, Tataru’s distance, and τ-distance. Then we prove a newminimization
theorem and a new fixed point theorem by using u-distance on a complete metric space.
Our results extend and unify many known results due to Caristi [3], Ćirić [14], Ekeland [2],
Takahashi [4], Kada et al. [5], Kannan [15], Suzuki [6], and Ume [7, 12] and others.

2. Preliminaries

Definition 2.1. Let X be metric space with metric d. Then a function p from X × X into R+ is
called u-distance on X if there exists a function θ from X ×X × R+ × R+ into R+ such that

(u1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;

(u2) θ(x, y, 0, 0) = 0 and θ(x, y, s, t) ≥ min{s, t} for all x, y ∈ X and s, t ∈ R+, and for
any x ∈ X and for every ε > 0, there exists δ > 0 such that |s − s0| < δ, |t − t0| < δ,
s, s0, t, t0 ∈ R+ and y ∈ X imply

∣
∣θ
(

x, y, s, t
) − θ

(

x, y, s0, t0
)∣
∣ < ε; (2.1)

(u3)

lim
n→∞

xn = x,

lim
n→∞

sup
{

θ
(

wn, zn, p(wn, xm), p(zn, xm)
)

: m ≥ n
}

= 0
(2.2)

imply

p
(

y, x
) ≤ lim

n→∞
inf p

(

y, xn

)

(2.3)

for all y ∈ X;
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(u4)

lim
n→∞

sup
{

p(xn,wm) : m ≥ n
}

= 0,

lim
n→∞

sup
{

p
(

yn, zm
)

: m ≥ n
}

= 0,

lim
n→∞

θ(xn,wn, sn, tn) = 0,

lim
n→∞

θ
(

yn, zn, sn, tn
)

= 0

(2.4)

imply

lim
n→∞

θ(wn, zn, sn, tn) = 0 (2.5)

or

lim
n→∞

sup
{

p(wm, xn) : m ≥ n
}

= 0,

lim
n→∞

sup
{

p
(

zm, yn

)

: m ≥ n
}

= 0,

lim
n→∞

θ(xn,wn, sn, tn) = 0,

lim
n→∞

θ
(

yn, zn, sn, tn
)

= 0

(2.6)

imply

lim
n→∞

θ(wn, zn, sn, tn) = 0; (2.7)

(u5)

lim
n→∞

θ
(

wn, zn, p(wn, xn), p(zn, xn)
)

= 0,

lim
n→∞

θ
(

wn, zn, p
(

wn, yn

)

, p
(

zn, yn

))

= 0
(2.8)

imply

lim
n→∞

d
(

xn, yn

)

= 0 (2.9)

or

lim
n→∞

θ
(

an, bn, p(xn, an), p(xn, bn)
)

= 0,

lim
n→∞

θ
(

an, bn, p
(

yn, an

)

, p
(

yn, bn
))

= 0
(2.10)

imply

lim
n→∞

d
(

xn, yn

)

= 0. (2.11)
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Remark 2.2. Suppose that θ : X ×X × R+ × R+ → R+ is a mapping satisfying (u2)∼(u5). Then
there exists a mapping η from X × X × R+ × R+ into R+ such that η is nondecreasing in its
third and fourth variable, respectively, satisfying (u2)η ∼(u5)η, where (u2)η ∼(u5)η stand
for substituting η for θ in (u2)∼(u5), respectively.

Proof. Suppose that θ : X × X × R+ × R+ → R+ is a mapping satisfying (u2)∼(u5). Define a
function η : X ×X × R+ × R+ → R+ by

η
(

x, y, s, t
)

= s + t + sup
{

θ
(

x, y, α, β
)

: 0 ≤ α ≤ s, 0 ≤ β ≤ t
}

for all x, y ∈ X and s, t ∈ R+.
(2.12)

By (2.12), we have η(x, y, 0, 0) = 0 and η(x, y, s, t) ≥ min{s, t} for all x, y ∈ X and s, t ∈ R+.
Also it follows from (2.12) that η is nondecreasing in its third and fourth variable, respectively.

We shall prove the following:

for any x ∈ X and for every ε > 0, there exists δ > 0 such that
∣
∣s − s′

∣
∣ < δ,

∣
∣t − t′

∣
∣ < δ, s, s′, t, t′ ∈ R+ and y ∈ X imply

∣
∣η
(

x, y, s, t
) − η

(

x, y, s′, t′
)∣
∣ < ε.

(2.13)

Suppose that (2.13) does not hold. Then

there exists x′ ∈ X, ε′ > 0, sequences {sn},
{

s′n
}

, {tn}, and
{

t′n
}

of R+, and sequence
{

yn

}

of X such that
∣
∣sn − s′n

∣
∣ <

1
n
,

∣
∣tn − t′n

∣
∣ <

1
n
, and

∣
∣η
(

x′, yn, sn, tn
) − η

(

x′, yn, s
′
n, t

′
n

)∣
∣

≥ ε′ for all n ∈ N.

(2.14)

By virtue of (2.12) and (2.14), we have

0 < ε′ ≤ ∣
∣η
(

x′, yn, sn, tn
) − η

(

x′, yn, s
′
n, t

′
n

)∣
∣

=
∣
∣
{

(sn + tn) + sup
[

θ
(

x′, yn, α, β
) | 0 ≤ α ≤ sn, 0 ≤ β ≤ tn

]}

−{(s′n + t′n
)

+ sup
[

θ
(

x′, yn, α, β
) | 0 ≤ α ≤ s′n, 0 ≤ β ≤ t′n

]}∣
∣

≤ ∣
∣sn − s′n

∣
∣ +

∣
∣tn − t′n

∣
∣

+
∣
∣sup

[

θ
(

x′, yn, α, β
) | 0 ≤ α ≤ sn, 0 ≤ β ≤ tn

]

− sup
[

θ
(

x′, yn, α, β
) | 0 ≤ α ≤ s′n, 0 ≤ β ≤ t′n

]∣
∣

<
2
n
+ sup

[

θ
(

x′, yn, α, β
) | 0 ≤ α ≤ sn +

1
n
, 0 ≤ β ≤ tn +

1
n

]

− sup
[

θ
(

x′, yn, α, β
) | 0 ≤ α ≤ sn − 1

n
, 0 ≤ β ≤ tn − 1

n

]

.

(2.15)
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Combining (u2) and (2.14), we have the following:

for some x′ ∈ X and for every ε > 0, there exists δ > 0, such that
∣
∣s − s′

∣
∣ < δ,

∣
∣t − t′

∣
∣ < δ, s, s′, t, t′ ∈ R+ and y ∈ X imply

∣
∣θ
(

x′, y, s, t
) − θ

(

x′, y, s′, t′
)∣
∣ <

ε

4
.

(2.16)

Due to (2.16), we get that

for this δ > 0, there exists M ∈ N such that n ≥ M implies
2
n
< δ. (2.17)

From (2.16) and (2.17), we obtain the following.

for every ε > 0, there exists M ∈ N such that n ≥ M implies

sn − δ

2
< sn − 1

n
< sn < sn +

1
n
< sn +

δ

2
,

tn − δ

2
< tn − 1

n
< tn < tn +

1
n
< tn +

δ

2
.

(2.18)

For each n ∈ N, let

l1,n = sup
[

θ
(

x′, yn, α, β
) | 0 ≤ α ≤ sn − 1

n
, 0 ≤ β ≤ tn − 1

n

]

.
(2.19)

For each n ∈ N, let

l2,n = sup
[

θ
(

x′, yn, α, β
) | 0 ≤ α ≤ sn +

1
n
, 0 ≤ β ≤ tn +

1
n

]

.
(2.20)

In terms of (2.19) and (2.20), we deduce that

l1,n ≤ l2,n ∀n ∈ N. (2.21)

In view of (2.21), we get that

lim
n→∞

inf l1,n ≤ lim
n→∞

inf l2,n. (2.22)

On account of (2.20), we know the following:

for each n ∈ N and for every ε > 0, there exists

αn ∈
[

0, sn +
1
n

]

and βn ∈
[

0, tn +
1
n

]

such that

l2,n − ε < θ
(

x′, yn, αn, βn
)

.

(2.23)
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Using (2.16), (2.18), (2.19), and (2.23), we have the following:

for every ε > 0, there exists M ∈ N such that

l2,n − ε < l1,n +
ε

2
, for all n ∈ N with M ≤ n.

(2.24)

By (2.24), we have

lim
n→∞

inf l2,n ≤ lim
n→∞

inf l1,n. (2.25)

By virtue of (2.15), (2.19), (2.20), (2.22), and (2.25), we have 0 < ε′ ≤ 0which is a contradiction.
Hence (u2)η holds. From (2.12) and (u2)∼(u5), it follows that (u3)η∼(u5)η are satisfied.

Remark 2.3. From Remark 2.2, we may assume that θ is nondecreasing in its third and fourth
variables, respectively, for a function θ : X ×X × R+ × R+ → R+ satisfying (u2)∼(u5).

We give some examples of u-distance.

Example 2.4. Let X = [0,∞) be the set of real numbers with the usual metric and let p :
X×X → R+ be defined by p(x, y) = (1/4)x2. Then p is a u-distance onX but not a τ-distance
on X.

Proof. Define θ : X ×X ×R+ ×R+ → R+ by θ(x, y, s, t) = s for all x, y ∈ X and s, t ∈ R+. Then p
and θ satisfy (u1)∼(u5). But for an arbitrary function η : X × R+ → R+ and for all sequences
{zn}, {xn}, and {yn} of X such that

0 = lim
n→∞

η
(

zn, p(zn, xn)
)

= lim
n→∞

η

(

zn,
1
4
(zn)2

)

,

0 = lim
n→∞

η
(

zn, p
(

zn, yn

))

= lim
n→∞

η

(

zn,
1
4
(zn)2

)

,

(2.26)

since the limit of the sequence {η(zn, p(zn, xn))}∞n=1 and the limit of the sequence
{η(zn, p(zn, yn)}∞n=1 do not depend on {xn} and {yn}, the limit of the sequence {d(xn, yn))}∞n=1
may not be 0. This does not satisfy (τ5). Hence p is not a τ-distance on X. Therefore p is a
u-distance on X but not a τ-distance on X.

Example 2.5. Let p be a τ-distance on a metric space (X, d). Then p is also a u-distance on X.

Proof. Since p is a τ-distance, there exists a function η : X × R+ → R+ satisfying (τ1)∼(τ5).
Define θ : X ×X × R+ × R+ → R+ by

θ
(

x, y, s, t
)

=

[

2 + η
(

x, p
(

x, y
))

1 + η
(

x, p
(

x, y
))

]

· s ∀x, y ∈ X, s, t ∈ R+. (2.27)

Then it is easy to see that p and θ satisfy (u2)∼(u5). Thus p is a u-distance on X.
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Example 2.6. LetX be a normed space with norm ‖·‖. Then a function p : X×X → R+ defined
by p(x, y) = ‖x‖ for every x, y ∈ X is a u-distance on X but not a τ-distance.

Proof. Let θ : X × X × R+ × R+ → R+ be as in the proof of Example 2.4. Then it is clear that p
satisfies (u1) and θ satisfies (u2)∼(u5) on X but p does not satisfy (τ5). Thus p is a u-distance
on X but not a τ-distance.

Example 2.7. LetX be a normed space with norm ‖·‖. Then a function p : X×X → R+ defined
by p(x, y) = ‖y‖ for every x, y ∈ X is a u-distance on X.

Proof. Define θ : X × X × R+ × R+ → R+ by θ(x, y, s, t) = s + t for all x, y ∈ X and s, t ∈ R+.
Then p satisfies (u1) and θ satisfies (u2)∼(u5). Thus p is a u-distance on X.

Example 2.8. Let p be a u-distance on a metric space (X, d) and let c be a positive real number.
Then a function q from X ×X into R+ defined by q(x, y) = c · p(x, y) for every x, y ∈ X is also
a u-distance on X.

Proof. Since p is a u-distance on X, there exists a function η : X ×X ×R+ ×R+ → R+ satisfying
(u2)η ∼(u5)η and p satisfies (u1). Define θ : X×X×R+×R+ → R+ by θ(x, y, s, t) = c·η(x, y, s, t)
for all x, y ∈ X and s, t ∈ R+. Then it is clear that q satisfies (u1) and θ satisfies (u2)∼(u5).
Thus q is a u-distance on X.

The following examples can be easily obtained from Remark 2.3.

Example 2.9. Let X be a metric space with metric d and let p be a u-distance on X such that
p is a lower semicontinuous in its first variable. Then a function q : X × X → R+ defined by
q(x, y) = max{p(x, y), p(y, x)} for all x, y ∈ X is a u-distance on X.

Example 2.10. Let X be a metric space with metric d. Let p be a u-distance on X and let α be a
function from X into R+. Then a function q : X ×X → R+ defined by

q
(

x, y
)

= max
{

α(x), p
(

x, y
)}

, for every x, y ∈ X (2.28)

is a u-distance on X.

Remark 2.11. It follows fromExample 2.4 to Example 2.10 that u-distance is a proper extension
of τ-distance.

Definition 2.12. Let X be a metric space with a metric d and let p be a u-distance on X. Then
a sequence {xn} of X is called p-Cauchy if there exists a function θ : X × X × R+ × R+ → R+

satisfying (u2)∼(u5) and a sequence {zn} of X such that

lim
n→∞

sup
{

θ
(

zn, zn, p(zn, xm), p(zn, xm)
)

: m ≥ n
}

= 0, (2.29)

or

lim
n→∞

sup
{

θ
(

zn, zn, p(xm, zn), p(xm, zn)
)

: m ≥ n
}

= 0. (2.30)

The following lemmas play an important role in proving our theorems.
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Lemma 2.13. Let X be a metric space with a metric d and let p be a u-distance on X. If {xn} is a
p-Cauchy sequence, then {xn} is a Cauchy sequence.

Proof. By assumption, there exists a function θ fromX×X×R+×R+ intoR+ satisfying (u2)∼(u5)
and a sequence {zn} of X such that

lim
n→∞

sup
{

θ
(

zn, zn, p(zn, xm), p(zn, xm)
)

: m ≥ n
}

= 0, (2.31)

or

lim
n→∞

sup
{

θ
(

zn, zn, p(xm, zn), p(xm, zn)
)

: m ≥ n
}

= 0. (2.32)

Then from (u5), we have limn→∞ sup{d(xi, xj) : j > i ≥ n} = 0. This means that {xn} is a
Cauchy sequence.

Lemma 2.14. Let X be a metric space with a metric d and let p be a u-distance on X.

(1) If sequences {xn} and {yn} ofX satisfy limn→∞p(z, xn) = 0 and limn→∞ p(z, yn) = 0 for
some z ∈ X, then limn→∞ d(xn, yn) = 0.

(2) If p(z, x) = 0 and p(z, y) = 0, then x = y.

(3) Suppose that sequences {xn} and {yn} of X satisfy limn→∞ p(xn, z) = 0 and
limn→∞ p(yn, z) = 0 for some z ∈ X, then limn→∞ d(xn, yn) = 0.

(4) If p(x, z) = 0 and p(y, z) = 0, then x = y.

Proof. (1) Let θ be a function from X × X × R+ × R+ into R+ satisfying (u2)∼(u5). From
Remark 2.3 and hypotheses,

lim
n→∞

θ
(

z, z, p(z, xn), p(z, xn)
)

= 0,

lim
n→∞

θ
(

z, z, p
(

z, yn

)

, p
(

z, yn

))

= 0.
(2.33)

By (u5), limn→∞d(xn, yn) = 0.
(2) In (1), putting xn = x and yn = y for all n ∈ N, (2) holds.
By method similar to (1) and (2), results of (3) and (4) follow.

Lemma 2.15. Let X be a metric space with a metric d and let p be a u-distance on X. Suppose that a
sequence {xn} of X satisfies

lim
n→∞

sup
{

p(xn, xm) : m > n
}

= 0 (2.34)

or

lim
n→∞

sup
{

p(xm, xn) : m > n
}

= 0. (2.35)

Then {xn} is a p-Cauchy sequence and {xn} is a Cauchy sequence.
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Proof. Since p is a u-distance on X, there exists a function θ : X ×X ×R+ ×R+ → R+ satisfying
(u2)∼(u5). Suppose limn→∞ sup{p(xn, xm) : m > n} = 0. Let αn = sup{p(xi, xj) : j > i ≥ n}.
Then we have limn→∞αn = 0. Let {xf(n)} be an arbitrary subsequence of {xn}. By assumption
and (u2), there exists a subsequence {xf(g(n))} of {xf(n)} such that

lim
n→∞

θ
(

xf(g(n)), xf(g(n+1)), αf(g(n+1)), αf(g(n+1))
)

= 0,

lim
n→∞

sup

{

sup
m≥n

p
(

xf(g(n)), xf(g(m+1))
)

}

≤ lim
n→∞

αf(g(n)) = 0.
(2.36)

From (u4), we obtain

lim
n→∞

θ
(

xf(g(n)), xf(g(n)), αf(g(n)), αf(g(n))
)

= lim
n→∞

θ
(

xf(g(n+1)), xf(g(n+1)), αf(g(n+1)), αf(g(n+1))
)

= 0.
(2.37)

Since {xf(n)} is an arbitrary sequence of {xn}, {xf(g(n))} is also an arbitrary sequence of {xn}.
Hence

lim
n→∞

θ(xn, xn, αn, αn) = 0. (2.38)

Therefore we get

lim
n→∞

sup
m≥n

θ
(

xn−1, xn−1, p(xn−1, xm), p(xn−1, xm)
)

≤ lim
n→∞

θ(xn−1, xn−1, αn−1, αn−1) = 0.
(2.39)

This implies that {xn} is a p-Cauchy sequence. By Lemma 2.13, {xn} is a Cauchy sequence.
Similarly, if limn→∞ sup{p(xm, xn) : m > n} = 0, we can prove that {xn} is also a Cauchy
sequence.

3. Minimization Theorems and Fixed Point Theorems

The following theorem is a generalization of Takahashi’s minimization theorem [4].

Theorem 3.1. Let X be a metric space with metric d, let f : X → (−∞,∞] be a proper function
which is bounded from below, and let L : X × X × X × X → R+ be a function such that,
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one has the following.

(i) L(x, y, y, x) ≤ L(x, z, z, x) + L(z, y, y, z) for all x, y, z ∈ X.

(ii) For any sequence {vn}∞n=1 in X satisfying

lim
n→∞

sup{L(vn, vm, vm, vn) : m > n} = 0, (3.1)

there exists x0 ∈ X such that limn→∞vn = x0,

f(x0) ≤ lim
n→∞

sup f(vn),

L(vn, x0, x0, vn) ≤ lim
m→∞

infL(vn, vm, vm, vn).
(3.2)

(iii) L(x, y, y, x) = L(x, z, z, x) = 0 imply y = z.

(iv) For every x ∈ X with infv∈Xf(v) < f(x), there exists y ∈ X − {x} such that

h
(

x, y
) ≤ f(x) − f

(

y
)

, (3.3)

where a function h : X ×X → R+ is defined by

h(v,w) = L(v,w,w, v) (3.4)

for all v,w ∈ X. Then, there exists x0 ∈ X such that

f(x0) = inf
v∈X

f(v). (3.5)

Proof. Suppose infv∈Xf(v) < f(x) for all x ∈ X. For each x ∈ X, let

S(x) =
{

v ∈ X | h(x, v) ≤ f(x) − f(v)
}

. (3.6)

Then, by condition (iv) and (3.6), S(x) is nonempty for each x ∈ X. From condition (i) and
(3.6), we obtain

S(v) ⊆ S(x), for each v ∈ S(x). (3.7)

For each x ∈ X, let

c(x) = inf
{

f(v) | v ∈ S(x)
}

. (3.8)
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Choose x ∈ X with f(x) < ∞. Then, from (3.7) and (3.8), there exists a sequence
{xn}∞n=1 in X such that

x1 = x, xn+1 ∈ S(xn), S(xn) ⊆ S(x),

f(xn+1) < c(xn) +
1
n

(3.9)

for all n ∈ N.
From (3.6), (3.8) and (3.9), we have

h(xn, xn+1) ≤ f(xn) − f(xn+1), (3.10)

f(xn+1) − 1
n
< c(xn) ≤ f(xn+1). (3.11)

By (3.10), {f(xn)}∞n=1 is a nonincreasing sequence of real numbers and so it converges.
Therefore, from (3.11) there is some β ∈ R such that

β = lim
n→∞

c(xn) = lim
n→∞

f(xn). (3.12)

From condition (i) and (3.10), we get

h(xn, xm) ≤ f(xn) − f(xm) (3.13)

for all m > n. From (3.12) and (3.13), we have

lim
n→∞

sup{L(xn, xm, xm, xn) : m > n} = 0. (3.14)

Thus, by condition (ii), (3.12), and (3.13), there exists x0 ∈ X such that

lim
n→∞

xn = x0, (3.15)

f(x0) ≤ lim
n→∞

f(xn) = β, (3.16)

h(xn, x0) ≤ lim
m→∞

inf h(xn, xm). (3.17)
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From (3.13), (3.16), and (3.17), we have

f(x0) ≤ β = lim
m→∞

sup f(xm)

≤ lim
m→∞

sup
{

f(xn) − h(xn, xm)
}

= f(xn) + lim
m→∞

sup{−h(xn, xm)}

= f(xn) − lim
m→∞

inf h(xn, xm)

≤ f(xn) − h(xn, x0).

(3.18)

From (3.6), (3.8), and (3.18), it follows that

x0 ∈ S(xn) and hence c(xn) ≤ f(x0), ∀n ∈ N. (3.19)

Taking the limit in inequality (3.19) when n tends to infinity, we have

lim
n→∞

c(xn) ≤ f(x0). (3.20)

From (3.12), (3.16), and (3.20), we have

β = f(x0). (3.21)

On the other hand, by condition (iv) and (3.6), we have the following property:

there exists v1 ∈ X − {x0}, satisfying v1 ∈ S(x0). (3.22)

From (3.7), (3.8), (3.19), and (3.22), we have

v1 ∈ S(xn), ∀n ∈ N,

c(xn) ≤ f(v1).
(3.23)

From (3.6), (3.12), (3.21), (3.22), (3.23), it follows that

β = f(v1). (3.24)

From (3.21), (3.22), and (3.24), we have

L(x0, v1, v1, x0) = 0. (3.25)

By method similar to (3.22)∼(3.25),

there exists v2 ∈ X − {v1}, such that L(v1, v2, v2, v1) = 0. (3.26)
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From (3.25), (3.26), and condition (i), we obtain

L(x0, v2, v2, x0) = 0. (3.27)

From (3.25), (3.27), and condition (iii), we obtain

v1 = v2. (3.28)

This is a contradiction from (3.26).

Corollary 3.2. LetX be a complete metric space with metric d, and let f : X → (−∞,∞] be a proper
lower semicontinuous function which is bounded from below. Assume that there exists a u-distance p
on X such that for each u ∈ X with f(u) > inf{f(x) | x ∈ X}, there exists v ∈ X with v /=u and
f(v) + p(u, v) ≤ f(u). Then there exists x0 ∈ X such that f(x0) = inf{f(x) | x ∈ X}.

Proof. Let L : X ×X ×X ×X → R+ be a mapping such that

L
(

x, y, v,w
)

= max
{

p(x, v), p
(

w,y
)}

(3.29)

for all x, y, v,w,∈ X. It follows easily from Definition 2.12, Lemmas 2.13, 2.14, and 2.15, and
(u3) that conditions of Corollary 3.2 satisfy all conditions of Theorem 3.1. Thus, we obtain
result of Corollary 3.2.

Remark 3.3. Corollary 3.2 is a generalization of Kadaet al. [5, Theorem 1] and Suzuki [6,
Theorem 5].

From Lemmas 2.13, 2.14, and 2.15, we have the following fixed point theorem.

Theorem 3.4. Let X be a complete metric space with metric d, let p be a u-distance on X, and let T
be a selfmapping of X. Suppose that there exists r ∈ [0, 1) such that

p
(

Tx, Ty
) ≤ r ·max

{

p
(

x, y
)

, p(x, Tx), p
(

y, Ty
)

, p
(

x, Ty
)

, p
(

y, Tx
)

,

p
(

y, x
)

, p(Tx, x), p
(

Ty, y
)

, p
(

Ty, x
)

, p
(

Tx, y
)} (3.30)

for all x, y ∈ X and

inf
{

p
(

x, y
)

+ p(x, Tx) : x ∈ X
}

> 0 (3.31)

for every y ∈ X with y /= Ty. Then there exists x0 ∈ X such that Tx0 = x0 and p(x0, x0) = 0.
Moreover, if v = Tv, then x0 = v, p(v, v) = 0.
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Proof. By method similar to [12, Lemma 2.4], for every x ∈ X,

α(x) := sup
{

p
(

Tix, Tjx
)

| i, j ∈ N ∪ {0}
}

< ∞. (3.32)

Define q : X ×X → R+ by

q
(

x, y
)

= max
{

α(x), p
(

x, y
)}

(3.33)

for every x, y ∈ X. By Example 2.10, q is a u-distance on X. Then we get

q
(

Tx, T2x
)

= max
{

α(Tx), p
(

Tx, T2x
)}

= α(Tx) ≤ r · α(x) = r · q(x, Tx),

q
(

T2x, Tx
)

= max
{

α
(

T2x
)

, p
(

T2x, Tx
)}

≤ α(Tx) ≤ r · α(x) = r · q(x, Tx),
q(Tx, Tx) = max

{

α(Tx), p(Tx, Tx)
}

= α(Tx) ≤ r · α(x) = r · q(x, x)

(3.34)

for all x ∈ X. Thus we have

q(Tnx, Tmx) ≤
m−1∑

k=n

q
(

Tkx, Tk+1x
)

≤
m−1∑

k=n

rk · q(x, Tx) ≤ rn

1 − r
q(x, Tx)

(3.35)

for all m > n. Now we have

lim
n→∞

sup
{

q(Tnx, Tmx) : m > n
} ≤ lim

n→∞
rn

1 − r
q(x, Tx) = 0. (3.36)

Thus

lim
n→∞

sup
{

q(Tnx, Tmx) : m > n
}

= 0. (3.37)

By Lemma 2.15, {Tnx} is a q-Cauchy and hence {Tnx} is a Cauchy from Lemma 2.13. Since X
is complete and {Tnx} is a q-Cauchy, there exists x0 ∈ X such that

lim
n→∞

Tnx = x0,

q(Tnx, x0) ≤ lim
m→∞

inf q(Tnx, Tmx) ≤ rn

1 − r
q(x, Tx).

(3.38)
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Suppose x0 /= Tx0. Then, by hypothesis, we have

0 < inf
{

p(x, x0) + p(x, Tx) : x ∈ X
}

≤ inf
{

q(x, x0) + q(x, Tx) : x ∈ X
}

≤ inf
{

q(Tnx, x0) + q
(

Tnx, Tn+1x
)

: n ∈ N

}

≤ inf
{

2rn

1 − r
q(x, Tx) : n ∈ N

}

= 0.

(3.39)

This is a contradiction. Therefore we have x0 = Tx0. If v = Tv, we have p(v, v) = p(Tv, Tv) ≤
rp(v, v) and hence p(v, v) = 0. To prove unique fixed point of T , let x0 = Tx0 and v = Tv.
Then, by hypothesis, we have

p(x0, v) = p(Tx0, Tv) ≤ r ·max
{

p(x0, v), p(v, x0), p(x0, x0), p(v, v)
}

,

p(v, x0) = p(Tv, Tx0) ≤ r ·max
{

p(x0, v), p(v, x0), p(x0, x0), p(v, v)
}

,

p(x0, x0) = p(Tx0, Tx0) ≤ r ·max
{

p(x0, v), p(v, x0), p(x0, x0), p(v, v)
}

,

p(v, v) = p(Tv, Tv) ≤ r ·max
{

p(x0, v), p(v, x0), p(x0, x0), p(v, v)
}

.

(3.40)

Thus

p(x0, v) = p(v, x0) = p(x0, x0) = p(v, v) = 0. (3.41)

By Lemma 2.14, we have x0 = v.

From Theorem 3.4, we have the following corollary which generalizes the results of
Ćirić [14], Kannan [15], and Ume [12].

Corollary 3.5. Let X be a complete metric space with metric d, let p be a τ-distance on X, and let T
be a selfmapping of X. Suppose that there exists r ∈ [0, 1) such that

p
(

Tx, Ty
) ≤ r ·max

{

p
(

x, y
)

, p(x, Tx), p
(

y, Ty
)

, p
(

x, Ty
)

, p
(

y, Tx
)

,

p
(

y, x
)

, p(Tx, x), p
(

Ty, y
)

, p
(

Ty, x
)

, p
(

Tx, y
)} (3.42)

for all x, y ∈ X and

inf
{

p
(

x, y
)

+ p(x, Tx) : x ∈ X
}

> 0 (3.43)

for every y ∈ X with y /= Ty. Then there exists x0 ∈ X such that Tx0 = x0 and p(x0, x0) = 0.
Moreover, if v = Tv, then v = x0 and p(v, v) = 0.
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Proof. Since a τ-distance is a u-distance, Corollary 3.5 follows from Theorem 3.4.

The following corollary is a generalization of Suzuki’s fixed point theorem [6].

Corollary 3.6. Let X, T, and p be as in Corollary 3.5. Suppose that there exists r ∈ [0, 1) such that

p
(

Tx, T2x
)

≤ r ·max
{

p(x, x), p(x, Tx), p(Tx, x)
}

(3.44)

for all x, y ∈ X. Assume that if

lim
n→∞

sup
{

p(xn, xm) : m > n
}

= 0,

lim
n→∞

p(xn, Txn) = 0,

lim
n→∞

p(xn, z) = 0,

(3.45)

then Tz = z. Then there exists x0 ∈ X such that Tx0 = x0 and p(x0, x0) = 0. Moreover, if Tv = v,
then v = x0 and p(v, v) = 0.

Proof. Let q and T be as in Theorem 3.4. Then from Theorem 3.4 and hypotheses of
Corollary 3.6, we have the following properties.

(1) {Tnx} is a Cauchy sequence.

(2) There exists x0 ∈ X such that limn→∞Tnx = x0.

(3) One has

lim
n→∞

p(Tnx, x0) ≤ lim
n→∞

q(Tnx, x0)

≤ lim
n→∞

rn

1 − r
max

{

q(x, Tx), q(x, x)
}

.

(3.46)

(4) There exists

lim
n→∞

p
(

Tnx, Tn+1x
)

= lim
n→∞

p
(

Tn+1x, Tnx
)

= 0. (3.47)

(5) One has

lim
n→∞

sup
{

p(Tnx, Tmx) : m > n
}

= 0. (3.48)

By (1)∼(5) and hypotheses, we have Tx0 = x0. The remainders are same as Theorem 3.4.

The following theorem is a generalization of Caristi’s fixed point theorem [3].
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Theorem 3.7. Let X be a metric space with metric d, let f : X → (−∞,∞] be a proper function
which is bounded from below, and let L : X × X × X × X → R+ be a function satisfying (i), (ii), and
(iii) of Theorem 3.1. Let T be a selfmapping of X such that

f(Tx) + h(x, Tx) ≤ f(x), ∀x ∈ X, (3.49)

where a function h : X ×X → R+ is defined by

h(v,w) = L(v,w,w, v) (3.50)

for all v,w ∈ X. Then, there exists x0 ∈ X such that

Tx0 = x0, L(x0, Tx0, Tx0, x0) = 0. (3.51)

Proof. Suppose x /= Tx for all x ∈ X. Then, by Theorem 3.1, there exists x0 ∈ X such that

f(x0) = inf
v∈X

f(v). (3.52)

Since

f(Tx0) + h(x0, Tx0) ≤ f(x0), (3.53)

we have

f(Tx0) = f(x0) = inf
v∈X

f(v),

L(x0, Tx0, Tx0, x0) = 0.
(3.54)

By hypothesis, we obtain

f
(

T2x0

)

+ h
(

Tx0, T
2x0

)

≤ f(Tx0). (3.55)

Hence

f
(

T2x0

)

= f(Tx0),

L
(

Tx0, T
2x0, T

2x0, Tx0

)

= 0.
(3.56)

By conditions (i) and (iii) of Theorem 3.1, it follows that

Tx0 = T2x0. (3.57)

This is a contradiction.
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Corollary 3.8. Let X be a complete metric space with metric d and let f : X → (−∞,∞] be a proper
lower semicontinuous function which is bounded from below. Let p be a u-distance onX. Suppose that
T is a selfmapping of X such that

f(Tx) + p(x, Tx) ≤ f(x) (3.58)

for all x ∈ X. Then there exists x0 ∈ X such that

Tx0 = x0, p(x0, x0) = 0. (3.59)

Proof. Define L : X ×X ×X ×X → R+ by

L
(

v,w, x, y
)

= max
{

p(v, x), p
(

y,w
)}

(3.60)

for all v,w, x, y ∈ X. Then, by Definition 2.12 and Lemmas 2.13, 2.14, and 2.15, we can easily
show that conditions of Corollary 3.8 satisfy all conditions of Theorem 3.7. Thus, Corollary 3.8
follows from Theorem 3.7.

Remark 3.9. Since a w-distance and a τ-distance are a u-distance, Corollary 3.8 is a
generalization of Kada-Suzuki-Takahashi [5, Theorem 2] and Suzuki [6, Theorem 3].

The following theorem is a generalization of Ekeland’s ε-variational principle [2].

Theorem 3.10. Let X be a complete metric space with metric d, let f : X → (−∞,∞] be a proper
lower semicontinuous function which is bounded from below, and let L : X × X × X × X → R+ be a
function satisfying (i), (ii), and (iii) of Theorem 3.1. Then the following (1) and (2) hold.

(1) For each x ∈ X with f(x) < ∞, there exists v ∈ X such that f(v) ≤ f(x) and

f(m) > f(v) − h(v,m) (3.61)

for all m ∈ X withm/=v, where a function h : X ×X → R+ is defined by

h(v,w) = L(v,w,w, v) (3.62)

for all v,w ∈ X.

(2) For each ε > 0 and x ∈ X with h(x, x) = 0, and

f(x) < inf
a∈X

f(a) + ε, (3.63)

there exists v ∈ X such that f(v) ≤ f(x),

h(x, v) ≤ 1,

f(m) > f(v) − ε · h(v,m)
(3.64)

for all m ∈ X withm/=v.



Fixed Point Theory and Applications 19

Proof. (1) Let x ∈ X be such that f(x) < ∞, and let

Z =
{

s ∈ X | f(s) ≤ f(x)
}

. (3.65)

Then, by hypotheses, Z is nonempty and closed. Thus Z is a complete metric space. Hence
we may prove that there exists an element v ∈ Z such that f(m) > f(v) − h(v,m) for all
m ∈ X withm/=v. Suppose not. Then, for every v ∈ Z, there existsm ∈ Z such thatm/=v and
f(m) + h(v,m) ≤ f(v). By Theorem 3.1, there exists x0 ∈ Z such that

f(x0) = inf
a∈Z

f(a). (3.66)

Again for x0 ∈ Z, there exists x1 ∈ Z such that x1 /=x0 and

f(x1) + h(x0, x1) ≤ f(x0). (3.67)

Hence we have f(x1) = f(x0) and L(x0, x1, x1, x0) = 0. Similarly, there exists x2 ∈ Z such that
x2 /=x1 and

f(x2) + h(x1, x2) ≤ f(x1). (3.68)

Thus we have f(x2) = f(x1) and L(x1, x2, x2, x1) = 0. From conditions (i) and (iii) of
Theorem 3.1, we obtain

x1 = x2. (3.69)

This is a contradiction. The proof of (1) is complete.
(2) Let

Y =
{

a ∈ X | f(a) ≤ f(x) − ε · h(x, a)}. (3.70)

Then Y is nonempty and closed. Hence Y is complete. As in the proof of (1), we have that
there exists v ∈ Y such that

f(m) > f(v) − ε · h(v,m) (3.71)

for every m ∈ X withm/=v. On the other hand, since v ∈ Y , we have

f(v) ≤ f(x) − ε · h(x, v) ≤ f(x),

h(x, v) ≤ 1
ε

{

f(x) − f(v)
} ≤ 1

ε

{

f(x) − inf
a∈X

f(a)
}

≤ 1
ε
· ε = 1.

(3.72)

This completes the proof of (2).
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Corollary 3.11. Let X, f, and p be as in Corollary 3.8. Then the following (1) and (2) hold.

(1) For each x ∈ X with f(x) < ∞, there exists v ∈ X such that f(v) ≤ f(x) and

f(m) > f(v) − p(v,m) (3.73)

for all m ∈ X withm/=v.

(2) For each ε > 0 and x ∈ X with p(x, x) = 0, and

f(x) < inf
a∈X

f(a) + ε, (3.74)

there exists v ∈ X such that f(v) ≤ f(x),

p(x, v) ≤ 1, f(m) > f(v) − ε · p(v,m) (3.75)

for all m ∈ X withm/=v.

Proof. By method similar to Corollary 3.8, Corollary 3.11 follows from Theorem 3.10.

Remark 3.12. Corollary 3.11 is a generalization of Suzuki [6, Theorem 4].
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[14] Lj. B. Ćirić, “A generalization of Banach’s contraction principle,” Proceedings of the American
Mathematical Society, vol. 45, pp. 267–273, 1974.

[15] R. Kannan, “Some results on fixed points. II,” The AmericanMathematical Monthly, vol. 76, pp. 405–408,
1969.


