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We introduce an iterative method for finding a common element of the set of solutions of
equilibrium problems and the set of fixed points of a nonspreading mapping in a Hilbert space.
Then, we prove a strong convergence theorem which is connected with the work of S. Takahashi
and W. Takahashi (2007) and Iemoto and Takahashi (2009).

1. Introduction

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respectively, and let C
be a closed convex subset of H. Let F : C x C — R be bifunction, where R is the set of real
numbers. The equilibrium problem for F : C x C — Ris to find x € C such that

F(x,y) >0 VyeC. (1.1)

The set of solution of (1.1) is denoted by EP(F). Given a mapping A : C — H, let
F(x,y) = (Ax,y — x) for all x,y € C. Then, z € EP(F) if and only if (Az,y — z) > 0 for all
y € C, that is, z is a solution of the variational inequality. Numerous problems in physics,
optimization, and economics reduce to find a solution of (1.1); see, for example, [1-9] and
the references therein.

A mapping T of C into itself is said to be nonexpansive if ||Tx — Ty|| < ||x — y|| for all
x,y € C, and a mapping F is said to be firmly nonexpansive if |Fx - Fy||* < (x —y, Fx - Fy)
for all x, y € C. Let E be a smooth, strictly convex and reflexive Banach space, and let | be the
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duality mapping of E and C a nonempty closed convex subset of E. A mapping S : C — Ciis
said to be nonspreading if

¢(Sx,Sy) + p(Sy, Sx) < p(Sx,y) + $(Sy, x) (1.2)

forall x,y € C, where ¢(x,v) = lx|>-2(x, ]y)+||y||2 forall x, y € E; see, for instance, Kohsaka
and Takahashi [10]. In the case when E is a Hilbert space, we know that ¢(x,v) = ||x - y||2
for all x, y € E. Then a nonspreading mapping S : C — C in a Hilbert space H is defined as
follows:

2||Sx = Sy|* < [|Sx = y||” + || - Sy|* (1.3)

for all x,y € C. Let F(Q) be the set of fixed points of Q, and F(Q) nonempty; a mapping
Q : C — Cis said to be quasi-nonexpansive if ||Qx — y|| < ||x — y|| for all x € C and y € F(Q).

Remark 1.1. In a Hilbert space, we know that every firmly nonexpansive mapping is
nonspreading and that if the set of fixed points of a nonspreading mapping is nonempty,
the nonspreading mapping is quasi-nonexpansive; see [10, 11].

In 1953, Mann [12] introduced the iteration as follows: a sequence {x,} defined by

Xps1 = AnXy + (1 — ay)Txy, (1.4)

where the initial guess element xy € C is arbitrary and {a,} is a real sequence in
[0,1]. Mann iteration has been extensively investigated for nonexpansive mappings. In an
infinite-dimensional Hilbert space, Mann iteration can conclude only weak convergence (see
[12, 13]). Fourteen years later, Halpern [14] introduced the following iterative scheme for
approximating a fixed point of T

Xps1 = apx + (1 — )Ty, (1.5)

for all n € N, where x; = x € C and {a,} is a sequence of [0, 1]. Strong convergence of this
type iterative sequence has been widely studied: Wittmann [15] discussed such a sequence
in a Hilbert space.

On the other hand, Kohsaka and Takahashi [10] proved an existence theorem of fixed
point for nonspreading mappings in a Banach space. Recently, Lemoto and Takahashi [16]
studied the approximation theorem of common fixed points for a nonexpansive mapping T
of C into itself and a nonspreading mapping S of C into itself in a Hilbert space. In particular,
this result reduces to approximation fixed points of a nonspreading mapping S of C into itself
in a Hilbert space by using iterative scheme

Xps1 = ApXy + (1 — a,)Sxy,. (1.6)

Some methods have been proposed to solve the equilibrium problem and fixed point
problem of nonexpansive mapping: see, for instance, [1, 2, 6, 7, 17-20] and the references
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therein. In 1997, Combettes and Hirstoaga [3] introduced an iterative scheme of finding
the best approximation to the initial data when EP(F) is nonempty and proved a strong
convergence theorem. Recently, S. Takahashi and W. Takahashi [8] introduced an iterative
scheme by the viscosity approximation method for finding a common element of the set of
solution of equilibrium problems and the set of fixed points of a nonexpansive mapping
in a Hilbert space. Let S : C — H be a nonexpansive mapping. In 2008, Plubtieng and
Punpaeng [7] introduced a new iterative sequence for finding a common element of the set of
solution of equilibrium problems and the set of fixed points of a nonexpansive mapping in a
Hilbert space which is the optimality condition for the minimization problem. Very recently,
S. Takahashi and W. Takahashi [9] introduced an iterative method for finding a common
element of the set of solutions of a generalized equilibrium problem and the set of fixed points
of a nonexpansive mapping in a Hilbert space and then obtain that the sequence converges
strongly to a common element of two sets.

In this paper, motivated by S. Takahashi and W. Takahashi [8] and Lemoto and
Takahashi [16], we introduce an iterative sequence and prove a strong convergence theorem
for finding solution of equilibrium problems and the set of fixed points of a nonspreading
mapping in Hilbert spaces.

2. Preliminaries

Let H be a real Hilbert space. When {x,} is a sequence in H, x, — x implies that x,, converges
weakly to x and x, — x means the strong convergence. Let C be a nonempty closed convex
subset of H. For every point x € H, there exists a unique nearest point in C; denote by Pcx,
such that

lx - Pex|| < ||x-y| VYyeC. (2.1)

Pc is called the metric projection of H onto C. We know that Pc is nonexpansive. Further, for
x€ Hand z € C,

z=Pex = (x-z,z-y)>0 VyeC (2.2)
Moreover, Pcx is characterized by the following properties: Pcx € C and

(x = Pcx,y - Pcy) <0,
(2.3)
[l = y||* 2 e = Pex|® + ||y = Pex||?

for all x € H, y € C. We also know that H satisfies Opial’s condition [21], that is, for any
sequence {x,} C H with x,, — x, the inequality

tim infl|, x| < liminf||x, - y|| (2.4)

holds for every y € H with x #y; see [21, 22] for more details.
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The following lemmas will be useful for proving the convergence result of this paper.

Lemma 2.1 (see [23]). Let (E,(:,-)) be an inner product space. Then for all x,y,z € Eand a, B,y €
[0, 1] with a + p+y =1, one has

llax + By +yz[|” = allxI + Blly|l” + yll=I* - apllx - y|I* - ayllx - =I* - pylly - =" (25)
Lemma 2.2 (see [10]). Let H be a Hilbert space, C a nonempty closed convex subset of H. Let S be
a nonspreading mapping of C into itself. Then the following are equivalent.

(1) There exists x € C such that {S"x} is bounded;
(2) F(S) is nonempty.

Lemma 2.3 (see [10]). Let H be a Hilbert space, C a nonempty closed convex subset of H. Let S be
a nonspreading mapping of C into itself. Then F(S) is closed and convex.

Lemma 2.4. Let H be a real Hilbert space. Then forall x,y € H,

(@) llc +ylI* < llxl® + 2(y, x + y);
2) llx+ yl? > [lx]* + 2(y, x).

Lemma 2.5 (see [24]). Let {a,}, {b,} C [0, ), and let {c,} C [0, 1) be sequences of real numbers
such that

Ani1 < (I —cp)an + by, foralln e N,

Soicn=o00and > b, < co.
Then, lim,, _, ,a, = 0.

Lemma 2.6 (see [16]). Let H be a Hilbert space, C a closed convex subset of H,and S : C — C
a nonspreading mapping with F(S) # 0. Then S is demiclosed, that is, x, — u and x, — Sx, — 0
imply u € F(S).

Lemma 2.7 (see [16]). Let H be a Hilbert space, C a nonempty closed convex subset of a real Hilbert
space H, and let S be a nonspreading mapping of C into itself, and let A =1~ S. Then

2 1 2
l4x - Ayl < (-, Ax - Ay) + 3 (14xIE + | 4y). 26
Lemma 2.8 (see [25]). Assume {a,} is a sequence of nonnegative real numbers such that
aps1 < (]- - “n)an + 611/ n>0, (27)

where {a,} is a sequence in (0,1) and {6,} is a sequence in R such that

(1) 302 an = oo
(2) lim sup,, | (6n/an) <0o0r 377, |6,] < 00.

Then lim,, _, ,a,, = 0.
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For solving the equilibrium problems for a bifunction F : C x C — R, let us assume
that F satisfies the following conditions:
(A1) F(x,x) =0 for all x € C;
(A2) F is monotone, thatis, F(x,y) + F(y,x) <0 for all x,y € C;
(A3) for each x,y,z € C, limyoF(tz + (1 - t)x,y) < F(x,y);

(A4) for each x € C, y — F(x, y) is convex and lower semicontinuous.

The following lemma appears implicitly in [26].
Lemma 2.9 (see [26]). Let C be a nonempty closed convex subset of H, and let F be a bifunction of
C x C into R satisfying (A1)—(A4). Let r > 0 and x € H. Then, there exists z € C such that

F(Z,y)+%<y—z,z—x)20 Yy eC. (2.8)

The following lemma was also given in [4].

Lemma 2.10 (see [4]). Assume that F : C x C — R satisfies (A1)-(A4). For r > 0 and x € H,
define a mapping T, : H — C as follows:

Tr(x)={zeC:F(z,y)+%<y—z,z—x)ZO,V}/EC} (2.9)

forall z € H. Then, the following hold:
(1) T, is single-valued;
(2) T, is firmly nonexpansive, that is, for any x,y € H, | T,x - T,y||* < (T,x - T,y, x — y);
() F(Ty) = EP(F);
(4) EP(F) is closed and convex.
Lemma 2.11 (see [27]). Let (I',) be a sequence of real numbers that does not decrease at infinity, in

the sense that there exists a subsequence (I';) j»o of (I'n) which satisfies I'y, < T’ for all j > 0. Also
consider the sequence of integers (T(n)),,, defined by

T(n) = max{k <n| Tk < Tk} (2.10)

Then (7(n)),s,, is a nondecreasing sequence verifying lim,_,7(n) = oo, and the following
properties are satisfied for all n > ng:

1-|'1'(n) < 1_|'1'(11)+1/ I, < 1_|'1'(11)+1- (211)

3. Main Result

In this section, we prove a strong convergence theorem for finding a common element of the
set of fixed points of a nonspreading mapping and the set of solutions of the equilibrium
problems.
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Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a
bifunctions from C x C — R satisfying (A1)—(A4), and let S be a nonspreading mapping of C into
itself such that F(S)NEP(F) # 0. Let u € C, and let {x,} and {u,} be sequences generated by x; € C
and

F(u"’y) +l<y_unlun_xn> >0, V]/EC,
n (3.1)

X1 = Prxn + (1= Bn)S[anu + (1 - an)uy,],

forall n € N, where {a,}, {fn} € [0,1] and {r,} € (0, o0) satisfy

lim, ,ea, =0, >0 a,=00,0<a<p,<b<1,

St lan —an-1| < o0, 3571 |Bn — Pr-1] < oo,

lim inf, ooy > 0, and 3771 |tns1 — Ta] < o0.
Then {x,} converges strongly to z € F(S) N EP(F), where z = Pr(s)nEP(F) U-

Proof. Let p € F(S) N EP(F). From u, = T;,x,, we have

llen =PIl = 1Tr,20 = Tl < [l =l (3.2)

forall n € N. Put y, = ayu + (1 — ay)u,,. We divide the proof into several steps.

Step 1. We claim that the sequences {x,}, {u.}, {v.}, and {Sy,} are bounded. First, we note
that
ISy = pll < lly= - pl
= ”“ﬂu + (1 —an)uy, —P”
(3.3)
S anllu=-pll+ 1= an)|un-pll

< anflu—pll+ @ - an)|x - pll,

and so

[lxne1 = pll = [|Bnxn + (1= Bu) Sy —p||
<Pl —pll + (1= Bu) [Sya —pll
< Pullxn = pll + (1= Bu) lyn - Pl
= Pullxn = pll + (1 = fu) [|anre + (1 = an)un - p|| (3.4)
< Pullen = pl + (1= Pu) (an|lu=pll + (1 = aw)||un = pl|)
< Pullxen = pl + (1= Bu) (an|lu=pll + (1 = an)||xa = pl|)
= (1= an(1=pu) l|xn = pll + (1= Bu) Ju~pl|-
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Putting M = max{||x, — p||, |lu - p||}, we note that ||x, — p|| < M for all n € N. In fact, it is
obvious that [|x; — p|| £ M. Assume that ||xi — p|| < M for all k € N. Thus, we have

[locks1 =l < (1= ax (1= Bie)) ||k = pl| + e (1= Bi) |u —p|
< (I-ax(1-pi)) M+ ar (1= p) M (3.5)
- M.

By induction, we obtain that ||x, — p|| < M for all n € N. So, {x,} is bound. Hence, {u,}, {y.},
and {Sy,} are also bounded.

Step 2. Put t, = Py + (1 — ) Syn. We claim that ||x,.1 — t,]| — 0asn — oo. We note that

lxns1 = xull = || (Buxn + (1 = Bu) Syn) = (Bu-12n1 + (1 = Pu1) Syn-) |
= ||Bnxn = Puxn-1 + Prxn-1 = Pn1Xn-1 + (1 = Bu) Syn — (1 = Pn) Syn
+(1= Pn) Syn-1 = (1 = Pu-1) Sy |
< Bullxn = xpal| + |ﬁn = Pn | [l2cn—1 || + (1 - ﬁn) ||Syn = SYn ||
+ (1= Bn) = (1= Bu) [[| Sy |
< Bullxn = xpall + | B = Baa|llxn=all + (1= Bu) || vn = Yt || + |Br=1 = Bu| || Sy ||
= Bullxn = xn-1ll + | Bn = P [ll2cna |l + (1 = Bn)
X ot + (1= ap)ty — apqu— (1= ap1)una |l + | B = B ||| Syn ||
< Bullxn = Xnall + [ Br = P [[l6n-1 ]| + (1= Bn)
x [llanu = anul| + (1= an)tty = (1 = ap1)tbna |1 + | B = Bra || Syn ||
= Pullxn = xn-all + [ Bn = Bu-a [ Ixn-all + (1 = fu) ot — - [[J
+ (1= = an)tty — (1 = an) iy + (1 = an) iy — (1 = @pe1)tna||
+ |Bn = Bra ||| Syna |
< Bullxn = Xnall + [ Br = Pt [l6n-1 1| + (1= Bu)lan — s |||
+ (1= ) (1 = an)lln — || + (1= Bu)|(1 = an) = (1 = 1) ||t |
+ |Bn = Bra ||| Syna |
= Pullxn = xn-all + [ Bn = Bu-a [ 1xn-all + (1 = P et — - [[Ju
+ (1= B) (X = an) st =ttt || + (1= P latn — a2t |
+ |Bn = Bua ||| Syna |
= BullXn = X1l + | B = Bra | Ki + (1= Bu)atn — a1 |Ky
+ (1= Pu) (1 = atw)[un = unall + (1= Pu)lan — ana [Ky + | B = P | K1,

(3.6)
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where Ky = sup{||xa|| + ||Synll + [[u]| + ||ttn-1]| : n € N}. On the other hand, from u,, = T}, x, and

Ups1 = Ty, Xnt1, We have

F(un,y) + %(y — Up, Uy — Xn) >0, (3.7)
n

1
F(una,y) + r—1<y — Ups1, Unsl — Xpa1) > 0 (3.8)
for all y € C. Putting y = u,41 in (3.7) and y = u, in (3.8), we have

1
F(up, une1) + r_<un+1 —Un,Un — xn> >0,
n

. (3.9)
F(un+1/ un) + —<un — Un+l, Un+1 — xn+1> > 0.
Tn+1
So, from (A2), we note that
<un+1 —u, Un = Xn  Un+l =~ Xn+l > >0, (3.10)
n Tn+l
and hence
r
<un+1 —Up, Up — Up+1 + Upsl — X — » nl (uns1 — xn+1)> > 0. (3.11)
n+

Without loss of generality, let us assume that there exists a real number d such thatr, > d >0
for all n € N. Thus, we have

T,
”un+1 - un”2 < <un+1 —Un, Xn+1 — Xp + <1 -t )(un+1 - xn+1)>

Tn+1
(3.12)
T
< Nttt — unn{nxm el (1 e = 2l ],
Tn+1
and hence
1
”un+1 - un” S ”xn+1 - xn” + r_llrn+1 - rn|||un+1 - xn+1”
" (3.13)

1
< ”xn+1 - xn” + H|rn+1 - rn|L/
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where L = sup{||lu, — x,| : n € N}. So, from (3.6), we note that
xXn1 = Xnll < Pullxn = xnall + 2|ﬁn = Pn |K1 + 2(1 - ﬁn)|£ln —a,-1|Kq
1

# (U= ) (1= a0) (I = 50+ 1 = oL )

= (ﬂ" + (]‘ _ﬂ")(l - an))”xn - xn—l” + 2|ﬂ11 - ﬂn—llKl + 2(1 _ﬂn)lan - an_1|K1

1

+ (1 - ﬂn)(l - “n)glrn — Tu1|L

= (]‘ - (]‘ - ﬂ")a")”xn - xn—l” + 2|ﬁn - ﬂn—l |K1 + 2(1 - ﬂn)|an - an_1|K1

+(1-pn)(1- an)gm — Tuotl.

(3.14)
By Lemma 2.5, we have
lim flxpa = xa]| = 0 (3.15)
for p € F(S) UEP(F). We note from u, = T,,x, that
ln = PII* = 1T 60 = T I < (T 0 = T, X = ) = (4 = P, Xn = p)
. . . (3.16)
= o (lln =+ llew = pII” = o = ),
and hence
e =p1I* < [0 = pII* =l = uall”. (317)

Therefore, from the convexity of || - ||2, we have

2ne1 = pI1* = [|Bun + (1= ) Sym - p|*
< Bullxn = pl* + (1= Bu) ISy - pII®
< Bullen = plI* + (1= Ba) Iy — pI”
= Balln = plI* + (1= Bu) laste + (1 = a)un = p|°
< Bullxn =l + an (1= Bu) [l = plI* + (1= B) (1 = ) [Jen ~ p||®
< Bullen =pI* + an (1= ) lu=plI* + (1= ) (0 = @) ([l2n = pII* = 1w = 00l

= (1= (1= Bw)an)|lxn = plI* + @ (1 = B) [l = plI” + (1= Bu) (1 = @) |xn — wal?,
(3.18)
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and hence
(1= B) (1 = )l =l < (1= Bu) || = p||* = (1 = Bu) || - |
+ [lxn = pl|* = [|xmer = ||

= an(1=pu)|lu = pII” = @ (1= pu) |0 ~ p|*

(3.19)
+ ([l = pl| = llxner = pI) (|2 = pI| + [0 = p[)
<an(1=pn)u=pl* - an (1= o) |2~ PI°
+ [1xn = xpal|([|2n = p || + |1 = p|[)-
So, we have ||x, — u,|| — 0. Indeed, since y, = a,u + (1 — a,)u,, it follows that
lim ”xn - ]/n” = lim [[x, = (anu + (1 — ap)un)||
= nlg%o”(an + (1= ap))x, — (anu+ (1 - ay)uy)||
< nli_{rgo[annxn —ull+ (1 = au)||xn — unll] (3.20)
= lim a |y — | + lim (1 = an)[|20n — 14|
=0.
Then, we note that
1261 = tull = [| (Buxn + (1= Pu) Syn) = (Buyn + (1 = Pu) Sym) ||
= 1B (xtn = yn) + (1= Pn) (Syn — Sy) | (3.21)
= Pullxn = Y-
Since,0 < a < f, <b<1land |x,—ya| — 0, it follows that
r}ijr;o||xn+1 —ty]| = 0. (3.22)

Step 3. Put A=1-S. From Ap =0, it follows by Lemma 2.7 that

lltw = pII* = | (Buypn + (1 = Bu) Syw) = pI*
=|(yn—p) = (1= Bu) (¥n - Sya)|I®
= |(yn—p) = (1= Bu) Ava®

= | n =) =201 = Bu) (yn = P, Ay = Ap) + (1 = Bu)* | Avu®
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1
<Nl =PI =200 - ) { v = 4P = 5 (vl + 1 24017) }

+ (1= )" | Aval”
= [law (1 = p) + (1= ) (= p) | = 2(1 = pu) | Ava]|”

+ (1= ) [Ayall” + (1= Bo)* [ Aval®
< aul| (u =) 1"+ (1 = @) || (e = )| = B (1= ) [| Ayl
< aul| (=) " + (1= a)[| (xa = p) I” = Pu (1 = B) [| A

< ayllu=p|* + % = plI* = Bu (1 = Ba) | Ay
(3.23)

Since 0 < a < B, <b <1, wehave f,(1 - ,) > a(l - b) := K,. Therefore, by (3.23), we obtain

K[|y = Syall” = Ko | Ayal|*
< ayllu—pl|* +[|x0 = plI* = |1t = p|I”
<a, M + |l = p|* - ||t - ||
= a, M2+ |2, = p||” = || (s = x001) + (it = p) |I°
= a, M2+ ||26 = p||* = lItw = Xt II* = 2(tn = Xne1, X1 = p) = || 201 = p|”

< M2 + ot = I = [t = pI> = 2(t0 = X1, 5001~ )-
(3.24)

Step 4. Putting z = Pr(s)nep(r)#t, we claim that the sequence {x,} converges strongly to z =
Pr(synep(ryu. Indeed, we discuss two possible cases.

Case 1. Assume that there exists ny such that the sequence {||x, — pl|} is a nonincreasing
sequence for all n > ng. Then we have ||x,1 — p|| < ||xn — pll (for n > ny), and hence
limy, —, oo ||xn — p|| exists. Therefore

Jim [|2c, = pl| = lim [|xn1 - p]- (3.25)
By (3.22), (3.24), and (3.25), we get
[[yn = Syn|l — 0. (3.26)
Let {y,, } be a subsequence of {y,} such that

limsup(u - z,y, — z) = im (u - z, Y, — z). (3.27)

n— oo n—oo
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Since {y,} is bounded, there exists a subsequence {y,,} of {y,} which converges weakly to
w. Without loss of generality, we can assume that y,, — w. Since C is closed and convex,
we note that C is weakly closed. So, we have w € C. Since ||Sy, — yx|| — 0, it follows by
Lemma 2.6 that w € F(S). From (3.27) and the property of metric projection, we have

limsup(u - z,y, — z) = im (u -z, y,, - z)
nooe * (3.28)
={(u-z,w-z)<0.

Finally, we prove that x, — z. In fact, since y, -z = a, (1 -z) + (1 - a,) (4, — z), it follows that

e = 2l = [| (Buxn + (1= ) Syn) - 2°
< Bullxn = 27 + (1= ) [|Sym - z||*
< Bullxn = 2P+ (1= ) ||y - 2|
(3.29)
< Bullen = 217 + (1= B) [(1 = @n)?ll2s = 21> + 2 (1t = 2,y - 2)]
< Ballxn = 21 + (1= Pa) (1 = an)llxn = 21 + 205 (1 = B) (4t = 2,y — 2)

= (1= an (1= ) l1xn — 2|1* + 220, (1 = ) (10 = 2,y — 2).

By (3.28) and 3,7, a, = oo, we immediately deduce by Lemma 2.8 that x,, — z.

Case 2. Assume that for all n € N, there exits m > n such that ||x;,, — p|| < [[xm+1 — pll- Put
am = ||xm — pll for all m € N. Thus, it follows that there exists a subsequence (ay, );>; of
(an),>1 such that a,, < ay,,, forallk € N. Let ¢ : N; — N be a mapping defined by

p(n) =max{k <n:ag < akal, (3.30)

where N; = {n € N: n > n;}. By Lemma 2.11, we note that ¢(n) is a nondecreasing sequence
such that ¢(n) — oo asn — oo and that the following properties are satisfied by all numbers
n>mnp:

QAo (n) < Ap(n)+1, a, < Ap(n)+1- (3'31)
From (3.24), we have

K [[Yom = SYpm ||* < M2 + || = |1 = || xpwme1 - Pl
= 2(tp(n) = Xp(ny+1, Xp(ny+1 = P) (3.32)

<ty (m) M = 2(t () = Xop(n)+1, Xg(ms1 = P)-
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This implies that
%o = SYpm || — 0. (333)

Take a subsequence {yy(n),} of {yyn)} such that

limsup(u = 2, Ypen) ~ 2) = lim (4 = 2, Yy, - 2)- (3.34)

n—oo

From the boundedness of {y,x),}, we can assume that v,,), — v. Since C is closed and
convex, it follows that C is weakly closed. So, we have v € C. Since ||Syym) — Yom)ll — 0, it
follows by Lemma 2.6 that v € F(S). From (3.34) and the property of metric projection, we
have

limsup(u — z, Ypm) — 2) = nlgrc}o@l = Z, Yy, — Z)

n—oo

={(u-2z,v-2z) (3.35)

<0.
By the same argument as (3.29) in Case 1, we conclude immediately that, foralln > 1,

0 < [|%p0me1 = 2l = |0 — 2II”

< Bt %90 = ZI” + (1= Bpi) 1Yo = 2II” = 1290 — 2|
< Bt %00 = 2I” + (1= Bpi) 1Ypm) = 2II” = 1% = zII”
< Botm 10 = 2II* + (1 = o)

x [(1 - “sa(n)>2””<p(n) - lez + 20p(m) (U = Z, Yyp(n) — Z)] = [|xg0m) - lez
< Bo 1%pem = 211% + (1= By ) (1 = g |49 = z|I”

+ 2an) (1= Boim)) (4 = 2, Ytn) = 2) = |0 = 2II”
< Bom %00 = 2II* + (1= Botr) (1 = i) |0 = =II*

+ 2an) (1= Boim)) (4 = 2, Yptn) = 2) = |0 = 2II”
= g (1 = o)) [2<” =2, Ypm) — 2) — |[Xpm) — 2”2]
< 20 = 2, Yoty = 2) = ||xpm) — |,

(3.36)

which implies that

||xl,,<n) - Z”2 < 2<u = Z, Yp(n) — Z>. (3.37)
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By (3.35), we have
Jim [l — 2] = 0, (3.38)

and hence
1im [0t~ 2l] = lim [y - 2] = 0. (3.39)
Since ||x, — z|| = an < aypm) = ||xXpm) — zl| for all n > ny, we have
,}iir;o||xn -z|| =0. (3.40)
This completes the proof. O

As direct consequences of Theorem 3.1, we obtain corollaries.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a
bifunctions from C x C — R satisfying (A1)—(A4), and let S be a firmly nonexpansive mapping
of C into itself such that F(S) N EP(F) #@. Let u € C, and let {x,} and {u,} be sequences generated
by x1 € C and

F(un,y) + l<y—un,un -x,)>0, VyeC,
™ (3.41)

X1 = Pnxn + (1= ) S[anu + (1 — ap)un],

forall n € N, where {a,}, {fn} € [0,1] and {r,} € (0, o0) satisfy

limy, ooty =0, Xpjan=00,0<a<p,<b<1,

St lan —an-1| < o0, 3571 |Bn — Pr-1] < oo,

lim inf, ooy > 0, and 3,571 |tne1 — Ta| < oo.

Then {x,} converges strongly to z € F(S) N EP(F), where z = Pr(s)nep(r)U.
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