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We show the equivalence of the convergence of Picard and Krasnoselskij, Mann, and Ishikawa
iterations for the quasi-contraction mappings in convex metric spaces.

1. Introduction

Let (E, d) be a complete metric space and I = [0, 1]. Denote E2 = E×E, I2 = I×I. A continuous
mapping W : E2 × I2 → E is said to be a convex structure on E [1] if for all u, z1, z2 ∈
E, λ1, λ2 ∈ I with λ1 + λ2 = 1 such that

d(u,W(z1, z2;λ1, λ2)) ≤ λ1d(u, z1) + λ2d(u, z2); (1.1)

W(z1, z2; 1, 0) = z1, W(z1, z2; 0, 1) = z2. (1.2)

If (E, d) satisfies the conditions of convex structure, then (E, d) is called convex metric space
that is denoted as (E, d,W).

In the following part, wewill consider a few iteration sequences in convexmetric space
(E, d,W). Suppose that T is a self-map of E.

Picard iteration is as follows:

∀p0 ∈ E, pn+1 = Tpn = Tn+1p0, n ≥ 0. (1.3)
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Krasnoselskij iteration is as follows:

∀v0 ∈ E, vn+1 = W(vn, Tvn; 1 − λ, λ), n ≥ 0, (1.4)

where λ ∈ [0, 1].
Mann iteration is as follows:

∀u0 ∈ E, un+1 = W(un, Tun; 1 − an, an), n ≥ 0, (1.5)

where an ∈ [0, 1].
Ishikawa iteration is as follows:

∀x0 ∈ E,

xn+1 = W
(
xn, Tyn; 1 − an, an

)
, n ≥ 0,

yn = W(xn, Txn; 1 − bn, bn), n ≥ 0,

(1.6)

where an, bn ∈ [0, 1] for all n ≥ 0.
A mapping T : E → E is called contractive if there exists L ∈ (0, 1) such that

d
(
Tx, Ty

) ≤ Ld
(
x, y

)
, (1.7)

for all x, y ∈ E.
The map T is called Kannan mapping [2] if there exists b ∈ (0, 1/2) such that

d
(
Tx, Ty

) ≤ b
[
d(x, Tx) + d

(
y, Ty

)]
, (1.8)

for all x, y ∈ E.
A similar definition of mapping is due to the work Chatterjea [3] (that is called

Chatterjea mapping), if there exists c ∈ (0, 1/2) such that

d
(
Tx, Ty

) ≤ c
[
d
(
x, Ty

)
+ d

(
y, Tx

)]
, (1.9)

for all x, y ∈ E.
Combining above three definitions, Zamfirescu [4] showed the following result.

Theorem 1.1. Let (E, d) be a complete metric space and T : E → E a mapping for which there exist
the real numbers a, b, and c satisfying a ∈ (0, 1), b, c ∈ (0, 1/2) such that, for any pair x, y ∈ E,
at least one of the following conditions holds:

(z1) d(Tx, Ty) ≤ ad(x, y);

(z2) d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)];

(z3) d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)].

Then T has a unique fixed point, and the Picard iteration converges to fixed point. This class mapping
is called Zamfirescu mapping.
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In 1974, Ćirić [5] introduced one of the most general contraction mappings and
obtained that the unique fixed point can be approximated by Picard iteration. This mapping
is called quasi-contractive if there exists δ ∈ (0, 1) such that

d
(
Tx, Ty

) ≤ δ ·max
{
d
(
x, y

)
, d(x, Tx), d

(
y, Ty

)
, d

(
x, Ty

)
, d

(
y, Tx

)}
, (1.10)

for any x, y ∈ E.
Clearly, every quasi-contraction mapping is the most general of above mappings.
Later on, in 1992, Xu [6] proved that Ishikawa iteration can also be used to

approximate the fixed points of quasi-contraction mappings in real Banach spaces.

Theorem 1.2. Let C be any nonempty closed convex subset of a Banach space X and T : C → C a
quasi-contraction mapping. Suppose that αn > 0 for all n and

∑
αn = ∞. Then the Ishikawa iteration

sequence {xn} defined by (1)–(3) converges strongly to the unique fixed point x∗ of T .

In this paper, we will show the equivalence of the convergence of Picard and
Krasnoselskij, Mann, and Ishikawa iterations for the quasi-contraction mappings in convex
metric spaces.

Lemma 1.3. Let {ρn}∞n=0 be a nonnegative sequence which satisfies the following inequality

ρn+1 ≤ (1 − θn)ρn + σn, n ≥ 0, (1.11)

where θn ∈ (0, 1),
∑∞

n=0 θn = ∞, and σn/θn → 0 as n → ∞. Then ρn → 0 as n → ∞, (see [7]).

2. Results for Quasi-Contraction Mappings

Theorem 2.1. Let (E, d,W) be a convex metric space, T : E → E a quasi-contraction mapping
with F(T)/= ∅. Suppose that {pn}∞n=0, {vn}∞n=0 are defined by the iterative processes (1.3) and (1.4),
respectively. Then, the following two assertions are equivalent:

(i) Picard iteration (1.3) converges strongly to the unique fixed point q ∈ F(T);

(ii) Krasnoselskij iteration (1.4) converges strongly to the unique fixed point q ∈ F(T).

Proof. First, we show (i) ⇒ (ii), that is, d(pn, q) → 0 as n → ∞ ⇒ d(vn, q) → as n → ∞.
From (1.3), (1.4), and (1.1), we can get

d
(
vn+1, pn+1

)
= d

(
W(vn, Tvn; 1 − λ, λ), Tpn

)

≤ (1 − λ)d
(
vn, Tpn

)
+ λd

(
Tvn, Tpn

)

≤ (1 − λ)d
(
vn, pn

)
+ (1 − λ)d

(
pn, Tpn

)
+ λd

(
Tvn, Tpn

)

≤ (1 − λ)d
(
vn, pn

)
+
1 − λ

1 − δ
d
(
pn, q

)
+ λd

(
Tvn, Tpn

)
.

(2.1)
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Next, we consider d(Tvn, Tpn). Using (1.10) with x = pn, y = vn, to obtain

d
(
Tvn, Tpn

) ≤ δ ·max
{
d
(
vn, pn

)
, d(vn, Tvn), d

(
pn, Tpn

)
, d

(
vn, Tpn

)
, d

(
pn, Tvn

)}
. (2.2)

Set

An = {vi}ni=0 ∪
{
pi
}n
i=0 ∪

{
Tpi

}n
i=0 ∪ {Tvi}ni=0, γn = diam{An}. (2.3)

Then {An} is bounded. Without loss of generality, we let γn > 0 for each n. Indeed, we will
show this conclusion from the some following cases.

Case 1. Let γn = d(Tpi, Tvj) for some 0 ≤ i, j ≤ n. Then, from (1.10) and the above γn, we have

γn = d
(
Tpi, Tvj

)

≤ δ ·max
{
d
(
pi, vj

)
, d

(
vj , Tvj

)
, d

(
pi, Tpi

)
, d

(
vj , Tpi

)
, d

(
pi, Tvj

)}

≤ δγn < γn,

(2.4)

and it leads to a contradiction. Thus, γn /=d(Tpi, Tvj). Similarity to γn = d(Tpi, Tpj) or γn =
d(Tvi, Tvj) is also impossible.

Case 2. Let γn = d(pi, vj) for some 0 ≤ i, j ≤ n.

(i) If j = 0, then γn = d(pi, v0).

(ii) If j ≥ 1, i = 0, then, from (1.4) and (1.1)

γn = d
(
p0, vj

)

= d
(
p0,W

(
vj−1, Tvj−1; 1 − λ, λ

))

≤ (1 − λ)d
(
p0, vj−1

)
+ λd

(
p0, Tvj−1

)

≤ (1 − λ)d
(
p0, vj−1

)
+ λγn,

(2.5)

that is, γn = d(p0, vj−1). By induction on j, we can obtain γn = d(p0, v0).

(iii) If j ≥ 1, i ≥ 1, from (1.4) and (1.1)

γn = d
(
pi, vj

)

= d
(
pi,W

(
vj−1, Tvj−1; 1 − λ, λ

))

≤ (1 − λ)d
(
pi, vj−1

)
+ λd

(
pi, Tvj−1

)

≤ (1 − λ)d
(
pi, vj−1

)
+ λγn,

(2.6)

it implies that γn = d(pi, vj−1). By induction on j, we can get γn = d(pi, v0).
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Case 3. Let γn = d(vi, vj) for some 0 ≤ i, j ≤ n. Without loss of generality, we set 0 ≤ i < j ≤ n.
Then, from (1.4), (1.1)

γn = d
(
vi, vj

)

≤ d
(
vi,W

(
vj−1, Tvj−1; 1 − λ, λ

))

≤ (1 − λ)d
(
vi, vj−1

)
+ λd

(
vi, Tvj−1

)

≤ (1 − λ)d
(
vi, vj−1

)
+ λγn,

(2.7)

it implies that γn = d(vi, vj−1), and by induction on j, we may get γn = d(vi, vi) = 0, which is a
contradiction.

Case 4. Let γn = d(vi, Tpj) for some 0 ≤ i, j ≤ n.

(i) If i = 0, then γn = d(v0, Tpj).

(ii) If i ≥ 1, from (1.4), (1.1), then

γn = d
(
vi, Tpj

)

≤ d
(
W(vi−1, Tvi−1; 1 − λ, λ), Tpj

)

≤ (1 − λ)d
(
vi−1, Tpj

)
+ λd

(
Tvi−1, Tpj

)

≤ (1 − λ)d
(
vi−1, Tpj

)

+ λδ ·max
{
d
(
vi−1, pj

)
, d(vi−1, Tvi−1), d

(
pj , Tpj

)
, d

(
vi−1, Tpj

)
, d

(
pj , Tvi−1

)}

≤ (1 − λ)d
(
vi−1, Tpj

)
+ λδγn

≤ (1 − λ)d
(
vi−1, Tpj

)
+ λγn,

(2.8)

it implies that γn = d(vi−1, Tpj) and by induction on i, then γn = d(v0, Tpj).

Case 5. Let γn = d(pi, Tvj) for some 0 ≤ i, j ≤ n.

(i) If i = 0, then γn = d(p0, Tvj).

(ii) If i ≥ 1, then, from (1.3) and (1.10)

γn = d
(
pi, Tvj

)

≤ d
(
Tpi−1, Tvj

)

≤ λδ ·max
{
d
(
pi−1, vj

)
, d

(
pi−1, Tpi−1

)
, d

(
vj , Tvj

)
, d

(
pi−1, Tvj

)
, d

(
vj , Tpi−1

)}

≤ λδγn,

(2.9)

this is a contradiction.
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Case 6. let γn = d(vi, Tvj) for some 0 ≤ i, j ≤ n.

(i) If i = 0, then γn = d(v0, Tvj).

(ii) If i ≥ 1, then, from (1.4) and (1.10)

γn = d
(
vi, Tvj

)

≤ d
(
W(vi−1, Tvi−1; 1 − λ, λ), Tvj

)

≤ (1 − λ)d
(
vi−1, Tvj

)
+ λd

(
Tvi−1, Tvj

)

≤ (1 − λ)d
(
vi−1, Tvj

)

+ λδ ·max
{
d
(
vi−1, vj

)
, d(vi−1, Tvi−1), d

(
vj , Tvj

)
, d

(
vi−1, Tvj

)
, d

(
vj , Tvi−1

)}

≤ (1 − λ)d
(
vi−1, Tvj

)
+ λδγn,

(2.10)

it implies that γn = d(v0, Tvj).

Case 7. Let γn = d(pi, pj) for some 0 ≤ i, j ≤ n.

(i) If i = 0, j > 0, then γn = d(p0, pj).

(ii) If i, j ≥ 1, then, from (1.3), (1.10)

γn = d
(
pi, pj

)

≤ d
(
Tpi−1, Tpj−1

)

≤ δ ·max
{
d
(
pi−1, pj−1

)
, d

(
pi−1, Tpi−1

)
, d

(
pj−1, Tpj−1

)
, d

(
pi−1, Tpj−1

)
, d

(
pj−1, Tpi−1

)}

≤ δγn,

(2.11)

it is a contradiction.

Case 8. let γn = d(pi, Tpj) for some 0 ≤ i, j ≤ n.

(i) If i = 0, then γn = d(p0, Tpj).

(ii) If i ≥ 1, then, from (1.3) and (1.10)

γn = d
(
pi, Tpj

)

≤ d
(
Tpi−1, Tpj

)

≤ δ ·max
{
d
(
pi−1, pj

)
, d

(
pi−1, Tpi−1

)
, d

(
pj , Tpj

)
, d

(
pi−1, Tpj

)
, d

(
pj , Tpi−1

)}

≤ δγn,

(2.12)

which is a contradiction.
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Set

ηn = max
{
max

{
d
(
pi, v0

)
: 0 < i ≤ n

}
,max

{
d
(
v0, Tpi

)
: 0 < i ≤ n

}
,

max{d(v0, Tvi) : 0 < i ≤ n},max
{
d
(
p0, pi

)
: 0 < i ≤ n

}
,

max
{
d
(
p0, Tvi

)
: 0 < i ≤ n

}
,max

{
d
(
p0, Tpi

)
: 0 < i ≤ n

}
,M

}
,

(2.13)

where M = max{d(p0, v0), d(v0, Tp0), d(v0, Tv0), d(p0, Tv0), d(p0, Tp0)}.

In view of the above cases, then γn = ηn, and we obtain that {γn} is bounded.
Indeed, suppose that γn = d(pi, v0) for some 0 < i ≤ n. Then,

γn = d
(
pi, v0

)

≤ d
(
pi, Tv0

)
+ d(Tv0, v0)

= d
(
Tpi−1, Tv0

)
+ d(Tv0, v0)

≤ d
(
Tpi−1, Tv0

)
+ d(Tv0, v0)

≤ δ ·max
{
d
(
pi−1, v0

)
, d(v0, Tv0), d

(
pi−1, Tpi−1

)
, d

(
v0, Tpi−1

)
, d

(
pi−1, Tv0

)}

+ d(Tv0, v0)

≤ δγn + d(Tv0, v0),

(2.14)

which implies that γn ≤ (1/(1 − δ))d(Tv0, v0). Similarly, if γn = d(v0, Tpi) or γn = d(v0, Tvi),
we also obtain γn ≤ (1/(1 − δ))d(Tv0, v0).

On the other hand, suppose that γn = d(p0, pi) for some 0 < i ≤ n. Then,

γn = d
(
p0, pi

)

≤ d
(
p0, Tp0

)
+ d

(
Tp0, Tpi−1

)

≤ d
(
p0, Tp0

)

+ δ ·max
{
d
(
p0, pi−1

)
, d

(
p0, Tp0

)
, d

(
pi−1, Tpi−1

)
, d

(
p0, Tpi−1

)
, d

(
pi−1, Tp0

)}

≤ d
(
p0, Tp0

)
+ δγn,

(2.15)

which implies that γn ≤ (1/(1 − δ))d(Tp0, p0). Similarly, if γn = d(p0, Tvi) or γn = d(p0, Tpi),
we also obtain γn ≤ (1/(1 − δ))d(Tp0, p0). Therefore, from the above results, we obtain that
γn ≤ (1/(1 − δ))M, that is, {An} is bounded.

For each n ∈ N, define

Bn = {vi}i≥n ∪
{
pi
}
i≥n ∪

{
Tpi

}
i≥n ∪ {Tvi}i≥n, Rn = diam(Bn). (2.16)
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Then, using the same proof above, it can be shown that

Rn = diam(Bn) = max
{
sup

{
d
(
pi, vn

)
: i ≥ n

}
, sup

{
d
(
vn, Tpi

)
: i ≥ n

}
,

sup
{
d
(
pn, Tvi

)
: i ≥ n

}
, sup{d(vn, Tvi) : i ≥ n},

sup
{
d
(
pn, pi

)
: i > n

}
, sup

{
d
(
pn, Tpi

)
: i ≥ n

}}
.

(2.17)

If Rn = sup{d(pi, vn) : i ≥ n}, and using (1.1) and (1.4), then

Rn = sup
i≥n

d
(
pi, vn

)

= sup
i≥n

d
(
pi,W(vn−1, Tvn−1; 1 − λ, λ)

)

≤ sup
i≥n

{
(1 − λ)d

(
pi, vn−1

)
+ λd

(
pi, Tvn−1

)}

≤ sup
i≥n

{
(1 − λ)Rn−1 + λd

(
Tpi−1, Tvn−1

)}

≤ sup
i≥n

{(1 − λ)Rn−1 + λδ

·max
{
d
(
pi−1, vn−1

)
, d(vn−1, Tvn−1), d

(
pi−1, Tpi−1

)
, d

(
vn−1, Tpi−1

)
, d

(
pi−1, Tvn−1

)}}

≤ (1 − λ)Rn−1 + λδRn−1

= (1 − λ(1 − δ))Rn−1

≤ · · ·
≤ (1 − λ(1 − δ))nR0

−→ 0
(2.18)

as n → ∞. Since d(Tvn, Tpn) ≤ Rn, hence d(Tvn, Tpn) → 0 as n → ∞. Similarly, if Rn =
sup{d(vn, Tpi) : i ≥ n} or Rn = sup{d(vn, Tvi) : i ≥ n}, Rn = sup{d(pn, Tvi) : i ≥ n}, Rn =
sup{d(vn, Tvi) : i ≥ n}, Rn = sup{d(pn, pi) : i > n}, Rn = sup{d(pn, Tpi) : i ≥ n}, we may
obtain the similar results. Therefore, from (2.1), we get

d
(
vn+1, pn+1

) ≤ (1 − λ)d
(
vn, pn

)
+ σn, (2.19)

where σn = ((1 − λ)/(1 − δ))d(pn, q) + λd(Tvn, Tpn).
In (2.19), set ρn = d(vn, pn). Then (2.19) is as follows:

ρn+1 ≤ (1 − λ)ρn + σn. (2.20)

By Lemma 1.3, we have d(vn, pn) → 0 as n → ∞. From the inequality 0 ≤ d(vn, q) ≤
d(vn, pn) + d(pn, q), we have limn→∞d(vn, q) = 0.

Conversely, we will prove that (ii) ⇒ (i). If λ = 1, then vn+1 = W(vn, Tvn; 0, 1) = Tvn

is Picard iteration.
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Theorem 2.2. Let (E, d,W), T, F(T) be as in Theorem 2.1. Suppose that {un}∞n=0, {xn}∞n=0 are defined
by the iterative processes (1.5) and (1.6), respectively, and {an}∞n=0, {bn}∞n=0 are real sequences in [0, 1]
such that

∑∞
n=0 an = ∞. Then, the following two assertions are equivalent:

(i) Mann iteration (1.5) converges strongly to the unique fixed point q ∈ F(T);

(ii) Ishikawa iteration (1.6) converges strongly to the unique fixed point q ∈ F(T).

Proof. If the Ishikawa iteration (1.6) converges strongly to q, then setting bn = 0, for all n ≥ 0,
in (1.6), we can get the convergence of Mann iteration (1.5). Conversely, we will show that
(i) ⇒ (ii). Letting limn→∞d(un, q) = 0, we want to prove limn→∞d(xn, q) = 0.

From (1.5) and (1.6),

d(xn+1, un+1)

= d
(
W

(
xn, Tyn; 1 − an, an

)
,W(un, Tun; 1 − an, an)

)

≤ (1 − an)d(xn,W(un, Tun; 1 − an, an)) + and
(
Tyn,W(un, Tun; 1 − an, an)

)

≤ (1 − an)2d(xn, un) + an(1 − an)d(xn, Tun)

+ (1 − an)and
(
Tyn, un

)
+ a2

nd
(
Tyn, Tun

)

≤ (1 − an)2d(xn, un) + an(1 − an)d(xn, un) + an(1 − an)d(un, Tun)

+ (1 − an)and
(
Tyn, Tun

)
+ (1 − an)and(Tun, un) + a2

nd
(
Tyn, Tun

)

= (1 − an)d(xn, un) + 2an(1 − an)d(un, Tun) + and
(
Tyn, Tun

)

≤ (1 − an)d(xn, un) + 2an(1 − an)d
(
un, q

)

+ 2an(1 − an)d
(
Tun, Tq

)
+ and

(
Tyn, Tun

)

≤ (1 − an)d(xn, un) + 2an
1 − an

1 − δ
d
(
un, q

)
+ and

(
Tyn, Tun

)
.

(2.21)

Using (1.10)with x = yn, y = un, to obtain

d
(
Tyn, Tun

) ≤ δ ·max
{
d
(
yn, un

)
, d(un, Tun), d

(
yn, Tyn

)
, d

(
yn, Tun

)
, d

(
un, Tyn

)}
, (2.22)

set

Ann = {ui}ni=0 ∪
{
yi

}n
i=0 ∪ {xi}ni=0 ∪ {Tui}ni=0 ∪

{
Tyi

}n
i=0 ∪ {Txi}ni=0,

γnn = diam(Ann).
(2.23)

Applying the similar proof methods of Theorem 2.1, we obtain that {Ann} is also
bounded. The other proof is the same as that of Theorem 2.1 and is here omitted.
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