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We introduce a new iterative method for finding a common element of the set of solutions of a
generalized equilibrium problem with a relaxed monotone mapping and the set of common fixed
points of a countable family of nonexpansive mappings in a Hilbert space and then prove that
the sequence converges strongly to a common element of the two sets. Using this result, we prove
several new strong convergence theorems in fixed point problems, variational inequalities, and
equilibrium problems.

1. Introduction

Throughout this paper, let R denote the set of all real numbers, let N denote the set of all
positive integer numbers, letH be a real Hilbert space, and letC be a nonempty closed convex
subset of H. Let S : C → C be a mapping. We call S nonexpansive if

∥
∥Sx − Sy

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.1)

The set of fixed points of S is denoted by Fix(S). We know that the set Fix(S) is closed and
convex. Let Φ : C × C → R be a bifunction. The equilibrium problem for Φ is to find z ∈ C
such that

Φ
(

z, y
) ≥ 0, ∀y ∈ C. (1.2)
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The set of all solutions of the equilibrium problem is denoted by EP(Φ), that is,

EP(Φ) =
{

z ∈ C : Φ
(

z, y
) ≥ 0, ∀y ∈ C

}

. (1.3)

Some iterative methods have been proposed to find an element of EP(Φ) ∩ Fix(S); see [1, 2].
A mapping A : C → H is called inverse-strongly monotone if there exists λ > 0 such

that

〈

x − y,Ax −Ay
〉 ≥ λ

∥
∥Ax −Ay

∥
∥
2
, ∀x, y ∈ C. (1.4)

Such a mapping A is also called λ-inverse-strongly monotone. It is known that each nonex-
pansive mapping is 1/2-inverse-strongly monotone and each κ-strictly pseudocontraction is
(1 − κ)/2-inverse-strongly monotone; see [3, 4]. If there exists u ∈ C such that

〈v − u,Au〉 ≥ 0, ∀v ∈ C, (1.5)

then u is called a solution of the variational inequality. The set of all solutions of the
variational inequality is denoted by VI(C,A). It is known that VI(C,A) is closed and convex.
Recently Takahashi and Toyoda [5] introduced an iterative method for finding an element of
Fix(S)∩VI(C,A); see also [6]. On the other hand, Plubtieng and Punpaeng [7] introduced an
iterative method for finding an element of Fix(S) ∩ EP(Φ) ∩ VI(C,A); see also [8].

Consider a general equilibrium problem:

Find z ∈ C such that Φ
(

z, y
)

+
〈

Az, y − z
〉 ≥ 0, ∀y ∈ C. (1.6)

The set of all solutions of the equilibrium problem is denoted by EP, that is,

EP =
{

z ∈ C : Φ
(

z, y
)

+
〈

Az, y − z
〉 ≥ 0, ∀y ∈ C

}

. (1.7)

In the case of A ≡ 0, EP coincides with EP(Φ). In the case Φ ≡ 0, EP coincides with VI(C,A).
Recently, S. Takahashi andW. Takahashi [9] introduced an iterativemethod to find an element
of EP ∩ Fix(S). More precisely, they introduced the following iterative scheme: u ∈ C, x1 ∈ C,
and

Φ
(

zn, y
)

+
〈

Axn, y − zn
〉

+ λn
〈

y − zn, zn − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = βnxn +
(

1 − βn
)

S[αnu + (1 − αn)zn], n ∈ N,
(1.8)

where {αn} ⊂ [0, 1], {βn} ⊂ [0, 1], and {λn} ⊂ [0, 2λ] are three control sequences. They proved
that {xn} converges strongly to z = PFix(S)∩EPu.

A mapping T : C → H is said to be relaxed η-α monotone if there exist a mapping
η : C × C → H and a function α : H → R positively homogeneous of degree p, that is,
α(tz) = tpα(z) for all t > 0 and z ∈ H such that

〈

Tx − Ty, η
(

x, y
)〉 ≥ α

(

x − y
)

, ∀x, y ∈ C, (1.9)
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where p > 1 is a constant; see [10]. In the case of η(x, y) = x − y for all x, y ∈ C, T is said
to be relaxed α-monotone. In the case of η(x, y) = x − y for all x, y ∈ C and α(z) = k‖z‖p,
where p > 1 and k > 0, T is said to be p-monotone; see [11–13]. In fact, in this case, if p = 2,
then T is a k-strongly monotone mapping. Moreover, every monotone mapping is relaxed
η-αmonotone with η(x, y) = x − y for all x, y ∈ C and α ≡ 0.

In this paper, we consider a new general equilibrium problemwith a relaxedmonotone
mapping:

Find z ∈ C such that Φ
(

z, y
)

+
〈

Tz, η
(

y, z
)〉

+
〈

Az, y − z
〉 ≥ 0, ∀y ∈ C. (1.10)

The set of all solutions of the equilibrium problem is denoted by GEP(Φ, T), that is,

GEP(Φ, T) =
{

z ∈ C : Φ
(

z, y
)

+
〈

Tz, η
(

y, z
)〉

+
〈

Az, y − z
〉 ≥ 0, ∀y ∈ C

}

. (1.11)

In the case of A ≡ 0, (1.10) is deduced to

Find z ∈ C such that Φ
(

z, y
)

+
〈

Tz, η
(

y, z
)〉 ≥ 0, ∀y ∈ C. (1.12)

The set of all solutions of (1.12) is denoted by EP(Φ, T), that is,

EP(Φ, T) =
{

z ∈ C : Φ
(

z, y
)

+
〈

Tz, η
(

y, z
)〉 ≥ 0, ∀y ∈ C

}

. (1.13)

In the case of T ≡ 0, GEP(Φ, T) coincides with EP. In the case of T ≡ 0 and A ≡ 0, GEP(Φ, T)
coincides with EP(Φ).

In this paper, we introduce a new iterative scheme for finding a common element of
the set of solutions of a general equilibrium problem with a relaxed monotone mapping and
the set of common fixed points of a countable family of nonexpansive mappings and then
obtain a strong convergence theorem. More precisely, we introduce the following iterative
scheme:

x1 ∈ C chosen arbitrarily,

Φ
(

un, y
)

+
〈

Tun, η
(

y, un

)〉

+
〈

Axn, y − un

〉

+
1
λn

〈

y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn +
n∑

i=1

(αi−1 − αi)βnSixn + (1 − αn)
(

1 − βn
)

un,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Dn =
n⋂

j=1

Cj,

xn+1 = PDnx1, n ≥ 1,

(1.14)

where T : C → H is a relaxed η-α monotone mapping, A : C → H is a λ-inverse-strongly
monotone mapping, and {Sn}∞n=1 : C → C is a countable family of nonexpansive mappings
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such that F =
⋂∞

n=1 Fix(Sn) ∩GEP(Φ, T)/= ∅, α0 = 1, and {αn}∞n=1, {βn}∞n=1, and {λn}∞n=1 are three
control sequences. We prove that {xn} defined by (1.14) converges strongly to x∗ = PFx1.
Using the main result in this paper, we also prove several new strong convergence theorems
for finding the elements of Fix(S)∩EP, Fix(S)∩EP(Φ), Fix(S)∩EP(Φ, T), and Fix(S)∩VI(C,A),
respectively, where S : C → C is a nonexpansive mapping.

2. Preliminaries

Let A : C → H be a λ-inverse-strongly monotone mapping and let I denote the identity
mapping of H. For all x, y ∈ C and k > 0, one has [6]

∥
∥(I − kA)x − (I − kA)y

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + k(k − 2λ)

∥
∥Ax −Ay

∥
∥
2
. (2.1)

Hence, if k ∈ (0, 2λ], then I − kA is a nonexpansive mapping of C into H.
For each point x ∈ H, there exists a unique nearest point of C, denoted by PCx, such

that ‖x−PCx‖ ≤ ‖x−y‖ for all y ∈ C. Such a PC is called the metric projection fromH onto C.
The well-known Browder’s characterization of PC ensures that PC is a firmly nonexpansive
mapping fromH onto C, that is,

∥
∥PCx − PCy

∥
∥
2 ≤ 〈

PCx − PCy, x − y
〉

, x, y ∈ H. (2.2)

Further, we know that for any x ∈ H and z ∈ C, z = PCx if and only if

〈

x − z, z − y
〉 ≥ 0, ∀y ∈ C. (2.3)

Let S be a nonexpansive mapping of C into itself such that Fix(S)/= ∅. Then we have

x̂ ∈ Fix(S) ⇐⇒ ‖Sx − x‖2 ≤ 2〈x − Sx, x − x̂〉, ∀x ∈ C, (2.4)

which is obtained directly from the following:

‖x − x̂‖2 ≥ ‖Sx − Sx̂‖2 = ‖Sx − x̂‖2 = ‖Sx − x + (x − x̂)‖2

= ‖Sx − x‖2 + ‖x − x̂‖2 + 2〈Sx − x, x − x̂〉.
(2.5)

This inequality is a very useful characterization of Fix(S). Observe what is more that it
immediately yields that Fix(S) is a convex closed set.

Let Φ be a bifunction of C × C into R satisfying the following conditions:

(A1) Φ(x, x) = 0 for all x ∈ C;

(A2) Φ is monotone, that is, Φ(x, y) + Φ(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, limt↓0Φ(tz + (1 − t)x, y) ≤ Φ(x, y);

(A4) for each x ∈ C, y �→ Φ(x, y) is convex and lower semicontinuous.
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Definition 2.1 (see [10]). Let E be a Banach space with the dual space E∗ and let K be a
nonempty subset of E. Let T : K → E∗ and η : K × K → E be two mappings. The
mapping T : K → E∗ is said to be η-hemicontinuous if, for any fixed x, y ∈ K, the function
f : [0, 1] → (−∞,∞) defined by f(t) = 〈T((1 − t)x + ty), η(x, y)〉 is continuous at 0+.

Lemma 2.2. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let T :
C → H be an η-hemicontinuous and relaxed η- α monotone mapping. Let Φ be a bifunction from
C × C to R satisfying (A1) and (A4). Let r > 0 and z ∈ C. Assume that

(i) η(x, x) = 0 for all x ∈ C;

(ii) for any fixed u, v ∈ C, the mapping x �→ 〈Tv, η(x, u)〉 is convex.

Then the following problems (2.6) and (2.7) are equivalent:

Find x ∈ C such that Φ
(

x, y
)

+
〈

Tx, η
(

y, x
)〉

+
1
r

〈

y − x, x − z
〉 ≥ 0, ∀y ∈ C; (2.6)

Find x ∈ C such that Φ
(

x, y
)

+
〈

Ty, η
(

y, x
)〉

+
1
r

〈

y − x, x − z
〉 ≥ α

(

y − x
)

, ∀y ∈ C. (2.7)

Proof. Let x ∈ C be a solution of the problem (2.6). Since T is relaxed η-αmonotone, we have

Φ
(

x, y
)

+
〈

Ty, η
(

y, x
)〉

+
1
r

〈

y − x, x − z
〉

≥ Φ
(

x, y
)

+ α
(

y − x
)

+
1
r

〈

y − x, x − z
〉

+
〈

Tx, η
(

y, x
)〉

≥ α
(

y − x
)

, ∀y ∈ C.

(2.8)

Thus x ∈ C is a solution of the problem (2.7).
Conversely, let x ∈ C be a solution of the problem (2.7). Letting

yt = (1 − t)x + ty, ∀t ∈ (0, 1), (2.9)

then yt ∈ C. Since x ∈ C is a solution of the problem (2.7), it follows that

Φ
(

x, yt

)

+
〈

Tyt, η
(

yt, x
)〉

+
1
r

〈

yt − x, x − z
〉 ≥ α

(

yt − x
)

= tpα
(

y − x
)

. (2.10)

The conditions (i), (ii), (A1), and (A4) imply that

〈

Tyt, η
(

yt, x
)〉 ≤ (1 − t)

〈

Tyt, η(x, x)
〉

+ t
〈

Tyt, η
(

y, x
)〉

= t
〈

T
(

x + t
(

y − x
))

, η
(

y, x
)〉

,

Φ
(

x, yt

) ≤ (1 − t)Φ(x, x) + tΦ
(

x, y
)

= tΦ
(

x, y
)

.

(2.11)
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It follows from (2.10)-(2.11) that

Φ
(

x, y
)

+
〈

T
(

x + t
(

y − x
))

, η
(

y, x
)〉

+
1
r

〈

y − x, x − z
〉 ≥ tp−1α

(

y − x
)

, ∀y ∈ C. (2.12)

Since T is η-hemicontinuous and p > 1, letting t → 0 in (2.12), we get

Φ
(

x, y
)

+
〈

Tx, η
(

y, x
)〉

+
1
r

〈

y − x, x − z
〉 ≥ 0 (2.13)

for all y ∈ C. Therefore, x ∈ C is also a solution of the problem (2.6). This completes the
proof.

Definition 2.3 (see [14]). Let E be a Banach space with the dual space E∗ and let K be a
nonempty subset of E. A mapping F : K → 2E is called a KKM mapping if, for any
{x1, . . . , xn} ⊂ K, co{x1, . . . , xn} ⊂ ⋃n

i=1 F(xi), where 2E denotes the family of all the nonempty
subsets of E.

Lemma 2.4 (see [14]). Let M be a nonempty subset of a Hausdorff topological vector space X and
let F : M → 2X be a KKM mapping. If F(x) is closed in X for all x ∈ X in K and compact for some
x ∈ K, then

⋂

x∈M F(x)/= ∅.

Next we use the concept of KKM mapping to prove two basic lemmas for our main
result. The idea of the proof of the next lemma is contained in the paper of Fang and Huang
[10].

Lemma 2.5. Let H be a real Hilbert space and C be a nonempty bounded closed convex subset of
H. Let T : C → H be an η-hemicontinuous and relaxed η-α monotone mapping, and let Φ be a
bifunction from C × C to R satisfying (A1) and (A4). Let r > 0. Assume that

(i) η(x, y) + η(y, x) = 0 for all x, y ∈ C;

(ii) for any fixed u, v ∈ C, the mapping x �→ 〈Tv, η(x, u)〉 is convex and lower
semicontinuous;

(iii) α : H → R is weakly lower semicontinuous; that is, for any net {xβ}, xβ converges to x in
σ(H,H) which implies that α(x) ≤ lim inf α(xβ).

Then problem (2.6) is solvable.

Proof. Let z ∈ C. Define two set-valued mappings Fz,Gz : C → 2H as follows:

Fz

(

y
)

=
{

x ∈ C : Φ
(

x, y
)

+
〈

Tx, η
(

y, x
)〉

+
1
r

〈

y − x, x − z
〉 ≥ 0

}

, ∀y ∈ C,

Gz

(

y
)

=
{

x ∈ C : Φ
(

x, y
)

+
〈

Ty, η
(

y, x
)〉

+
1
r

〈

y − x, x − z
〉 ≥ α

(

y − x
)
}

, ∀y ∈ C.

(2.14)
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We claim that Fz is a KKM mapping. If Fz is not a KKM mapping, then there exist
{y1, . . . , yn} ⊂ C and ti > 0, i = 1, . . . , n, such that

n∑

i=1

ti = 1, y =
n∑

i=1

tiyi /∈
n⋃

i=1

Fz

(

yi

)

. (2.15)

By the definition of F, we have

Φ
(

y, yi

)

+
〈

Ty, η
(

yi, y
)〉

+
1
r

〈

yi − y, y − z
〉

< 0, ∀i = 1, . . . , n. (2.16)

It follows from (A1), (A4), and (ii) that

0 = Φ
(

y, y
)

= Φ

(

y,
n∑

i=1

tiyi

)

+

〈

Ty, η

(
n∑

i=1

tiyi, y

)〉

≤
n∑

i=1

tiΦ
(

y, yi

)

+
n∑

i=1

ti
〈

Ty, η
(

yi, y
)〉

<
n∑

i=1

ti
1
r

〈

y − yi, y − z
〉

= 0,

(2.17)

which is a contradiction. This implies that Fz is a KKMmapping.
Now, we prove that

Fz

(

y
) ⊂ Gz

(

y
)

, ∀y ∈ C. (2.18)

For any given y ∈ C, taking x ∈ Fz(y), then

Φ
(

x, y
)

+
〈

Tx, η
(

y, x
)〉

+
1
r

〈

y − x, x − z
〉 ≥ 0. (2.19)

Since T is relaxed η-αmonotone, we have

Φ
(

x, y
)

+
〈

Ty, η
(

y, x
)〉

+
1
r

〈

y − x, x − z
〉

≥ Φ
(

x, y
)

+
〈

Tx, η
(

y, x
)〉

+ α
(

y − x
)

+
1
r

〈

y − x, x − z
〉

≥ α
(

y − x
)

.

(2.20)
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It follows that x ∈ Gz(y) and so

Fz

(

y
) ⊂ Gz

(

y
)

, ∀y ∈ C. (2.21)

This implies that Gz is also a KKMmapping. Now, since x �→ 〈Ty, η(x, y)〉 is a convex lower-
semicontinuous function, we know that it is weakly lower semicontinuous. Thus from the
definition ofGz and theweak lower semicontinuity of α, it follows thatGz(y) is weakly closed
for all y ∈ C. Since C is bounded closed and convex, we know that C is weakly compact, and
so Gz(y) is weakly compact in C for each y ∈ C. It follows from Lemmas 2.2 and 2.4 that

⋂

y∈C
Fz

(

y
)

=
⋂

y∈C
Gz

(

y
)

/= ∅. (2.22)

Hence there exists x ∈ C such that

Φ
(

x, y
)

+
〈

Tx, η
(

y, x
)〉

+
1
r

〈

y − x, x − z
〉 ≥ 0, ∀y ∈ C. (2.23)

This completes the proof.

Lemma 2.6. LetH be a real Hilbert space and letC be a nonempty bounded closed convex subset ofH.
Let T : C → H be an η-hemicontinuous and relaxed η-αmonotone mapping and letΦ be a bifunction
from C × C to R satisfying (A1), (A2), and (A4). Let r > 0 and define a mapping Tr : H → C as
follows:

Tr(x) =
{

z ∈ C : Φ
(

z, y
)

+
〈

Tz, η
(

y, z
)〉

+
1
r

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C

}

(2.24)

for all x ∈ H. Assume that

(i) η(x, y) + η(y, x) = 0, for all x, y ∈ C;

(ii) for any fixed u, v ∈ C, the mapping x �→ 〈Tv, η(x, u)〉 is convex and lower semicontinuous
and the mapping x �→ 〈Tu, η(v, x)〉 is lower semicontinuous;

(iii) α : H → R is weakly lower semicontinuous;

(iv) for any x, y ∈ C, α(x − y) + α(y − x) ≥ 0.

Then, the following holds:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive mapping, that is, for all x, y ∈ H,

∥
∥Trx − Try

∥
∥
2 ≤ 〈

Trx − Try, x − y
〉

; (2.25)

(3) F(Tr) = EP(Φ, T);

(4) EP(Φ, T) is closed and convex.
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Proof. The fact that Tr is nonempty is exactly the thesis of the previous lemma. We claim that
Tr is single-valued. Indeed, for x ∈ H and r > 0, let z1, z2 ∈ Trx. Then,

Φ(z1, z2) +
〈

Tz1, η(z2, z1)
〉

+
1
r
〈z2 − z1, z1 − x〉 ≥ 0,

Φ(z2, z1) +
〈

Tz2, η(z1, z2)
〉

+
1
r
〈z1 − z2, z2 − x〉 ≥ 0.

(2.26)

Adding the two inequalities, from (i)we have

Φ(z1, z2) + Φ(z2, z1) +
〈

Tz1 − Tz2, η(z2, z1)
〉

+
1
r
〈z1 − z2, z2 − z1〉 ≥ 0. (2.27)

From (A2), we have

〈

Tz1 − Tz2, η(z2, z1)
〉

+
1
r
〈z1 − z2, z2 − z1〉 ≥ 0, (2.28)

that is,

1
r
〈z1 − z2, z2 − z1〉 ≥ 〈

Tz2 − Tz1, η(z2, z1)
〉

. (2.29)

Since T is relaxed η-αmonotone and r > 0, one has

〈z1 − z2, z2 − z1〉 ≥ rα(z2 − z1). (2.30)

In (2.29) exchanging the position of z1 and z2, we get

1
r
〈z2 − z1, z1 − z2〉 ≥ 〈

Tz1 − Tz2, η(z1, z2)
〉 ≥ α(z1 − z2), (2.31)

that is,

〈z1 − z2, z2 − z1〉 ≥ rα(z1 − z2). (2.32)

Now, adding the inequalities (2.30) and (2.32), by using (iv) we have

−2‖z1 − z2‖2 = 2〈z1 − z2, z2 − z1〉 ≥ 0. (2.33)

Hence, z1 = z2.
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Next we show that Tr is firmly nonexpansive. Indeed, for x, y ∈ H, we have

Φ
(

Trx, Try
)

+
〈

TTrx, η
(

Try, Trx
)〉

+
1
r

〈

Try − Trx, Trx − x
〉 ≥ 0,

Φ
(

Try, Trx
)

+
〈

TTry, η
(

Trx, Try
)〉

+
1
r

〈

Trx − Try, Try − y
〉 ≥ 0.

(2.34)

Adding the two inequalities and by (i) and (A2), we get

〈

TTrx − TTry, η
(

Try, Trx
)〉

+
1
r

〈

Try − Trx, Trx − Try − x + y
〉 ≥ 0, (2.35)

that is,

1
r

〈

Try − Trx, Trx − Try − x + y
〉 ≥ 〈

TTry − TTrx, η
(

Try, Trx
)〉

≥ α
(

Try − Trx
)

.

(2.36)

In (2.36) exchanging the position of Trx and Try, we get

1
r

〈

Trx − Try, Try − Trx − y + x
〉 ≥ α

(

Trx − Try
)

. (2.37)

Adding the inequalities (2.36) and (2.37), we have

2
〈

Trx − Try, Try − Trx − y + x
〉 ≥ r

(

α
(

Trx − Try
)

+ α
(

Try − Trx
))

. (2.38)

It follows from (iv) that

〈

Trx − Try, Try − Trx − y + x
〉 ≥ 0, (2.39)

that is,

∥
∥Trx − Try

∥
∥
2 ≤ 〈

Trx − Try, x − y
〉

. (2.40)

This shows that Tr is firmly nonexpansive.
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Next, we claim that F(Tr) = EP(Φ, T). Indeed, we have the following:

u ∈ F(Tr) ⇐⇒ u = Tru

⇐⇒ Φ
(

u, y
)

+
〈

Tu, η
(

y, u
)〉

+
1
r

〈

y − u, u − u
〉 ≥ 0, ∀y ∈ C

⇐⇒ Φ
(

u, y
)

+
〈

Tu, η
(

y, u
)〉 ≥ 0, ∀y ∈ C

⇐⇒ u ∈ EP(Φ, T).

(2.41)

Finally, we prove that EP(Φ, T) is closed and convex. Indeed, Since every firm
nonexpansive mapping is nonexpansive, we see that Tr is nonexpansive from (2). On the
other hand, since the set of fixed points of every nonexpansive mapping is closed and
convex, we have that EP(Φ, T) is closed and convex from (2) and (3). This completes
the proof.

3. Main Results

In this section, we prove a strong convergence theorem which is our main result.

Theorem 3.1. Let C be a nonempty bounded closed convex subset of a real Hilbert space H and
let Φ : C × C → R be a bifunction satisfying (A1), (A2), (A3), and (A4). Let T : C → H be
an η-hemicontinuous and relaxed η-α monotone mapping, let A : C → H be a λ-inverse-strongly
monotone mapping, and let {Sn}∞n=1 : C → C be a countable family of nonexpansive mappings
such that F =

⋂∞
n=1 Fix(Sn) ∩ GEP(Φ, T)/= ∅. Assume that the conditions (i)–(iv) of Lemma 2.6 are

satisfied. Let α0 = 1 and assume that {αn}∞n=1 ⊂ (0, 1) is a strictly decreasing sequence. Assume that
{βn}∞n=1 ⊂ (c, d) with some c, d ∈ (0, 1) and {λn}∞n=1 ⊂ [a, b] with some a, b ∈ (0, 2λ). Then, for any
x1 ∈ C, the sequence {xn} generated by (1.14) converges strongly to x∗ = PFx1. In particular, if C
contains the origin 0, taking x1 = 0, then the sequence {xn} generated by (1.14) converges strongly to
the minimum norm element in F.

Proof. We split the proof into following steps.

Step 1. F is closed and convex, the sequence {xn} generated by (1.14) is well defined, and
F ⊂ Dn for all n ≥ 1.

First, we prove that F is closed and convex. It suffices to prove that GEP(Φ, T) is closed
and convex. Indeed, it is easy to prove the conclusion by the following fact:

∀p ∈ GEP(Φ, T) ⇐⇒ Φ
(

p, y
)

+
〈

Tp, η
(

y, p
)〉

+
1
λn

〈

y − p, λnAp
〉 ≥ 0, ∀y ∈ C

⇐⇒ Φ
(

p, y
)

+
〈

Tp, η
(

y, p
)〉

+
1
λn

〈

y − p, p − (

p − λnAp
)〉 ≥ 0, ∀y ∈ C

⇐⇒ p = Tλn(I − λnA)p.
(3.1)
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This implies that GEP(Φ, T) = Fix[Tλn(I − λnA)]. Noting that Tλn(I − λnA) is a nonexpansive
mapping for λn < 2λ and the set of fixed points of a nonexpansive mapping is closed and
convex, we have that GEP(Φ, T) is closed and convex.

Next we prove that the sequence {xn} generated by (1.14) is well defined and F ⊂ Dn

for all n ≥ 1. It is easy to see that Cn is closed and convex for all n ∈ N from the construction
of Cn. Hence,Dn is closed and convex for all n ∈ N. For any p ∈ F, since un = Tλn(xn − λnAxn)
and I − λnA is nonexpansive, we have (note that {αn} is strictly decreasing)

∥
∥yn − p

∥
∥ =

∥
∥
∥
∥
∥
αn

(

xn − p
)

+
n∑

i=1

(αi−1 − αi)βn
(

Sixn − p
)

+ (1 − αn)
(

1 − βn
)(

un − p
)

∥
∥
∥
∥
∥

≤ αn

∥
∥xn − p

∥
∥ +

n∑

i=1

(αi−1 − αi)βn
∥
∥Sixn − p

∥
∥ + (1 − αn)

(

1 − βn
)∥
∥un − p

∥
∥

≤ αn

∥
∥xn − p

∥
∥ +

n∑

i=1

(αi−1 − αi)βn
∥
∥xn − p

∥
∥

+ (1 − αn)
(

1 − βn
)∥
∥Tλn(xn − λnAxn) − Tλn

(

p − λnAp
)∥
∥

≤ αn

∥
∥xn − p

∥
∥ + (1 − αn)βn

∥
∥xn − p

∥
∥

+ (1 − αn)
(

1 − βn
)∥
∥(xn − λnAxn) −

(

p − λnAp
)∥
∥

≤ αn

∥
∥xn − p

∥
∥ + (1 − αn)βn

∥
∥xn − p

∥
∥ + (1 − αn)

(

1 − βn
)∥
∥xn − p

∥
∥

=
∥
∥xn − p

∥
∥.

(3.2)

So, F ⊂ Cn for all n ∈ N. Hence F ⊂ ⋂n
j=1 Cj , that is, F ⊂ Dn for all n ∈ N. Since Dn is closed,

convex, and nonempty, the sequence {xn} is well defined.

Step 2. limn→∞‖xn+1 − xn‖ = 0 and there exists x∗ ∈ C such that xn → x∗ as n → ∞.
From the definition of Dn, we see that Dn+1 ⊂ Dn for all n ∈ N and hence

xn+2 = PDn+1x1 ∈ Dn+1 ⊂ Dn. (3.3)

Noting that xn+1 = PDnx1, we get

‖xn+1 − x1‖ ≤ ‖xn+2 − x1‖ (3.4)

for all n ≥ 1. This shows that {‖xn − x1‖} is increasing. Since C is bounded, {‖xn − x1‖} is
bounded. So, we have that limn→∞‖xn − x1‖ exists.
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Noting that xn+1 = PDnx1 and xm+1 = PDmx1 ∈ Dm ⊂ Dn for all m ≥ n, we have

〈xn+1 − x1, xm+1 − xn+1〉 ≥ 0. (3.5)

It follows from (3.5) that

‖xm+1 − xn+1‖2

= ‖xm+1 − x1 − (xn+1 − x1)‖2

= ‖xm+1 − x1‖2 + ‖xn+1 − x1‖2 − 2〈xm+1 − x1, xn+1 − x1〉

= ‖xm+1 − x1‖2 + ‖xn+1 − x1‖2 − 2〈xn+1 − x1, xm+1 − xn+1 + xn+1 − x1〉

= ‖xm+1 − x1‖2 − ‖xn+1 − x1‖2 − 2〈xn+1 − x1, xm+1 − xn+1〉

≤ ‖xm+1 − x1‖2 − ‖xn+1 − x1‖2.

(3.6)

By taking m = n + 1 in (3.6), we get

‖xn+2 − xn+1‖ ≤ ‖xn+2 − x1‖2 − ‖xn+1 − x1‖2. (3.7)

Since the limits of ‖xn − x1‖ exists we get

lim
n→∞

‖xn+2 − xn+1‖ = 0, (3.8)

that is, xn+1 − xn → 0 as n → ∞. Moreover, from (3.6) we also have

lim
m,n→∞

‖xm+1 − xn+1‖ = 0. (3.9)

This shows that {xn} is a Cauchy sequence. Hence, there exists x∗ ∈ C such that

xn −→ x∗ ∈ C, as n −→ ∞. (3.10)

Step 3. limn→∞‖xn − un‖ = 0.
Since xn+1 ∈ Cn and xn − xn+1 → 0 as n → ∞, we have

∥
∥yn − xn+1

∥
∥ ≤ ‖xn − xn+1‖ −→ 0 as n −→ ∞, (3.11)

and hence

∥
∥yn − xn

∥
∥ ≤ ∥

∥yn − xn+1
∥
∥ + ‖xn − xn+1‖ −→ 0 as n −→ ∞. (3.12)
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Note that un can be rewritten as un = Tλn(xn − λnAxn) for all n ≥ 1. Take p ∈ F. Since
p = Tλn(p − λnAp), A is λ-inverse-strongly monotone, and 0 < λn < 2λ, we know that, for all
n ∈ N,

∥
∥un − p

∥
∥
2 =

∥
∥Tλn(xn − λnAxn) − Tλn(p − λnAp)

∥
∥
2

≤ ∥
∥xn − λnAxn − p − λnAp

∥
∥
2

=
∥
∥(xn − p) − λn(Axn −Ap)

∥
∥
2

=
∥
∥xn − p

∥
∥
2 − 2λn

〈

xn − p,Axn −Ap
〉

+ λ2n
∥
∥Axn −Ap

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 − 2λnλ

∥
∥Axn −Ap

∥
∥
2 + λ2n

∥
∥Axn −Ap

∥
∥
2

=
∥
∥xn − p

∥
∥
2 + λn(λn − 2λ)

∥
∥Axn −Ap

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2
.

(3.13)

Using (1.14) and (3.13), we have (note that {αn} is strictly decreasing)

∥
∥yn − p

∥
∥
2 =

∥
∥
∥
∥
∥
αn(xn − p) +

n∑

i=1

(αi−1 − αi)βn(Sixn − p) + (1 − αn)(1 − βn)(un − p)

∥
∥
∥
∥
∥

2

≤ αn

∥
∥xn − p

∥
∥
2 +

n∑

i=1

(αi−1 − αi)βn
∥
∥Sixn − p

∥
∥
2 + (1 − αn)

(

1 − βn
)∥
∥un − p

∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 +

n∑

i=1

(αi−1 − αi)βn
∥
∥xn − p

∥
∥
2

+ (1 − αn)
(

1 − βn
)(∥

∥xn − p
∥
∥
2 + λn(λn − 2λ)

∥
∥Axn −Ap

∥
∥
2
)

=
∥
∥xn − p

∥
∥
2 + (1 − αn)

(

1 − βn
)

λn(λn − 2λ)
∥
∥Axn −Ap

∥
∥
2
,

(3.14)

and hence

(1 − αn)(1 − d)a(2λ − b)
∥
∥Axn −Ap

∥
∥
2 ≤ (1 − αn)

(

1 − βn
)

λn(2λ − λn)
∥
∥Axn −Ap

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 − ∥

∥yn − p
∥
∥
2

≤ ∥
∥xn − yn

∥
∥
(∥
∥xn − p

∥
∥ +

∥
∥yn − p

∥
∥
)

.

(3.15)

Since {xn} and {yn} are both bounded, αn → 0, and xn − yn → 0, we have

Axn −Ap −→ 0 as n −→ ∞. (3.16)
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Using Lemma 2.6, we get

∥
∥un − p

∥
∥
2 =

∥
∥Tλn(xn − λnAxn) − Tλn(p − λnAp)

∥
∥
2

≤ 〈

xn − λnAxn −
(

p − λnAp
)

, un − p
〉

=
1
2

(∥
∥xn − λnAxn − (p − λnAp)

∥
∥
2 +

∥
∥un − p

∥
∥
2

−∥∥xn − λnAxn − (p − λnAp) − (un − p)
∥
∥
2
)

≤ 1
2

(∥
∥xn − p

∥
∥
2 +

∥
∥un − p

∥
∥
2 − ∥

∥xn − un − λn(Axn −Ap)
∥
∥
2
)

=
1
2

(∥
∥xn − p

∥
∥
2 +

∥
∥un − p

∥
∥
2 − ‖xn − un‖2

+2λn
〈

xn − un,Axn −Ap
〉 − λ2n

∥
∥Axn −Ap

∥
∥
2
)

.

(3.17)

So, we have

∥
∥un − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ‖xn − un‖2 + 2λn

〈

xn − un,Axn −Ap
〉 − λ2n

∥
∥Axn −Ap

∥
∥
2
. (3.18)

From (3.18), we have

∥
∥yn − p

∥
∥
2

=

∥
∥
∥
∥
∥
αn(xn − p) +

n∑

i=1

(αi−1 − αi)βn(Sixn − p) + (1 − αn)(1 − βn)(un − p)

∥
∥
∥
∥
∥

2

≤ αn

∥
∥xn − p

∥
∥
2 +

n∑

i=1

(αi−1 − αi)βn
∥
∥xn − p

∥
∥
2 + (1 − αn)

(

1 − βn
)∥
∥un − p

∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)βn

∥
∥xn − p

∥
∥
2 + (1 − αn)

(

1 − βn
)

×
(∥
∥xn − p

∥
∥
2 − ‖xn − un‖2 + 2λn

〈

xn − un,Axn −Ap
〉 − λ2n

∥
∥Axn −Ap

∥
∥
2
)

≤ ∥
∥xn − p

∥
∥
2 − (1 − αn)

(

1 − βn
)‖xn − un‖2 + 2(1 − αn)

(

1 − βn
)

λn
〈

xn − un,Axn −Ap
〉

,

(3.19)

and hence

(1 − d)(1 − αn)‖xn − un‖2 ≤
(

1 − βn
)

(1 − αn)‖xn − un‖2

≤ ∥
∥xn − yn

∥
∥
(∥
∥xn − p

∥
∥ +

∥
∥yn − p

∥
∥
)

+ 2(1 − αn)
(

1 − βn
)

λn‖xn − un‖
∥
∥Axn −Ap

∥
∥.

(3.20)
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By using ‖xn − yn‖ → 0 and (3.16), we have

‖xn − un‖ −→ 0 as n −→ ∞. (3.21)

Step 4. limn→∞‖xn − Sixn‖ = 0, for all i = 0, 1, . . . .
It follows from the definition of scheme (1.14) that

yn +
n∑

i=1

(αi−1 − αi)βn(xn − Sixn) − (1 − αn)βnxn = αnxn + (1 − αn)
(

1 − βn
)

un, (3.22)

that is,

n∑

i=1

(αi−1 − αi)βn(xn − Sixn) = xn − yn − xn + αnxn + (1 − αn)βnxn + (1 − αn)
(

1 − βn
)

un

= xn − yn + (1 − αn)
(

βn − 1
)

xn + (1 − αn)
(

1 − βn
)

un

= xn − yn + (1 − αn)
(

1 − βn
)

(un − xn).

(3.23)

Hence, for any p ∈ F, one has

n∑

i=1

(αi−1 − αi)βn
〈

xn − Sixn, xn − p
〉

= (1 − αn)
(

1 − βn
)〈

un − xn, xn − p
〉

+
〈

xn − yn, xn − p
〉

.

(3.24)

Since each Si is nonexpansive, by (2.4) we have

‖Sixn − xn‖2 ≤ 2
〈

xn − Sixn, xn − p
〉

. (3.25)

Hence, combining this inequality with (3.24), we get

1
2

n∑

i=1

(αi−1 − αi)βn‖Sixn − xn‖2 ≤ (1 − αn)
(

1 − βn
)〈

un − xn, xn − p
〉

+
〈

xn − yn, xn − p
〉

, (3.26)

that is (noting that {αn} is strictly decreasing),

‖Sixn − xn‖2 ≤
2(1 − αn)

(

1 − βn
)

(αi−1 − αi)βn

〈

un − xn, xn − p
〉

+
2

(αi−1 − αi)βn

〈

xn − yn, xn − p
〉

≤ 2(1 − αn)
(

1 − βn
)

(αi−1 − αi)βn
‖un − xn‖

∥
∥xn − p

∥
∥ +

2
(αi−1 − αi)βn

∥
∥xn − yn

∥
∥
∥
∥xn − p

∥
∥.

(3.27)

Since ‖un − xn‖ → 0 and ‖xn − yn‖ → 0, we have

lim
n→∞

‖Sixn − xn‖ = 0, ∀i = 1, 2, . . . . (3.28)
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Step 5. xn → x∗ = PFx1.
First we prove x∗ ∈ ⋂∞

i=1 Fix(Si). Indeed, since xn → x∗ and Sixn − xn → 0, we have
x∗ ∈ Fix(Si) for each i = 1, 2, . . .. Hence, x∗ ∈ ⋂∞

i=1 Fix(Si).
Next, we show that x∗ ∈ GEP(Φ, T). Noting that un = Tλn(xn − λnAxn), one obtains

Φ
(

un, y
)

+
〈

Tun, η
(

y, un

)〉

+
〈

Axn, y − un

〉

+
1
λn

〈

y − un, un − xn

〉 ≥ 0, ∀y ∈ C. (3.29)

Put ut = ty + (1− t)x∗ for all t ∈ (0, 1) and y ∈ C. Then, we have ut ∈ C. So, from (A2), (i), and
(3.29)we have

〈ut − un,Aut〉 ≥ 〈ut − un,Aut〉 − 〈ut − un,Axn〉 −
〈

ut − un,
un − xn

λn

〉

+ Φ(ut, un) +
〈

Tun, η(un, ut)
〉

= 〈ut − un,Aut −Aun〉 + 〈ut − un,Aun −Axn〉 −
〈

ut − un,
un − xn

λn

〉

+ Φ(ut, un) +
〈

Tun, η(un, ut)
〉

.

(3.30)

Since xn − un → 0, we have ‖Aun − Axn‖ → 0. Further, from monotonicity of A, we have
〈ut − un,Aut −Aun〉 ≥ 0. So, from (A4), (ii), and η-hemicontinuity of T we have

〈ut − x∗, Aut〉 ≥ Φ(ut, x
∗) +

〈

Tx∗, η(x∗, ut)
〉

. (3.31)

From (A1), (A4), (ii), and (3.31)we also have

0 = Φ(ut, ut) +
〈

Tx∗, η(ut, ut)
〉

≤ t
[

Φ
(

ut, y
)

+
〈

Tx∗, η
(

y, ut

)〉]

+ (1 − t)
[

Φ(ut, x
∗) +

〈

Tx∗, η(x∗, ut)
〉]

≤ t
[

Φ
(

ut, y
)

+
〈

Tx∗, η
(

y, ut

)〉]

+ (1 − t)〈ut − x∗, Aut〉
= t

[

Φ
(

ut, y
)

+ 〈Tx∗, η
(

y, ut

)]

+ (1 − t)t
〈

y − x∗, Aut

〉

,

(3.32)

and hence

0 ≤ Φ
(

ut, y
)

+ 〈Tx∗, η
(

y, ut

)

+ (1 − t)
〈

y − x∗, Aut

〉

. (3.33)

Letting t → 0, from (A3) and (ii) we have, for each y ∈ C,

0 ≤ Φ
(

x∗, y
)

+ 〈Tx∗, η
(

y, x∗) +
〈

y − x∗, Ax∗〉. (3.34)

This implies that x∗ ∈ GEP(Φ, T). Hence, we get x∗ ∈ F =
⋂∞

n=1 Fix(Sn) ∩GEP(Φ, T).
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Finally, we show that x∗ = PFx. Indeed, from xn+1 = PDnx and F ⊂ Dn, we have

〈x − xn+1, xn+1 − v〉 ≥ 0, ∀v ∈ F. (3.35)

Taking the limit in (3.35) and noting that xn → x∗ as n → ∞, we get

〈x − x∗, x∗ − v〉 ≥ 0, ∀v ∈ F. (3.36)

In view of (2.3), one sees that x∗ = PFx. This completes the proof.

Corollary 3.2. Let C be a nonempty bounded closed convex subset of a Hilbert space H and let
Φ : C × C → R be a bifunction satisfying (A1), (A2), (A3), and (A4). Let T : C → H be an η-
hemicontinuous and relaxed η-α monotone mapping and let S : C → C be a nonexpansive mapping
such that Fix(S) ∩ EP(Φ, T)/= ∅. Assume that the conditions (i)–(iv) of Lemma 2.6 are satisfied.
Assume that {αn}∞n=1 ⊂ (0, 1) with lim supn→∞αn < 1, {βn}∞n=1 ⊂ (c, d) with some c, d ∈ (0, 1)
and {λn}∞n=1 ⊂ (a,∞) with a ∈ (0,∞). Let x1 ∈ C and let {xn} be generated by

Φ
(

un, y
)

+
〈

Tun, η
(

y, un

)〉

+
1
λn

〈

y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)βnSxn + (1 − αn)
(

1 − βn
)

un,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Dn =
n⋂

j=1

Cj,

xn+1 = PDnx1, n ≥ 1.

(3.37)

Then the sequence {xn} converges strongly to x∗ = PFix(S)∩EP(Φ,T)x1. In particular, if C contains
the origin 0, taking x1 = 0, the sequence {xn} converges strongly to the minimum norm element in
Fix(S) ∩ EP(Φ, T).

Proof. In Theorem 3.1, put A ≡ 0, S1 = · · · = Sn = · · · = S. Then, we have

yn = αnxn +
n∑

i=1

(αi−1 − αi)βnSixn + (1 − αn)
(

1 − βn
)

un

= αnxn + (1 − αn)βnSxn + (1 − αn)
(

1 − βn
)

un,

‖Sxn − xn‖2 ≤ 2(1 − αn)
(

1 − βn
)

(1 − αn)βn
‖un − xn‖

∥
∥xn − p

∥
∥ +

2
(1 − αn)βn

∥
∥xn − yn

∥
∥
∥
∥xn − p

∥
∥.

(3.38)

On the other hand, for all λ ∈ (0,∞), we have that

〈

x − y,Ax −Ay
〉 ≥ λ

∥
∥Ax −Ay

∥
∥
2
, ∀x, y ∈ C. (3.39)
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So, taking a, b ∈ (0,∞) with 0 < a ≤ b < ∞ and choosing a sequence {λn} of real numbers
with a ≤ λn ≤ b, we obtain the desired result by Theorem 3.1.

Corollary 3.3. Let C be a nonempty bounded closed convex subset of a Hilbert space H and let
Φ : C × C → R be a bifunction satisfying (A1), (A2), (A3), and (A4). Let T : C → H be a
monotone mapping and let S : C → C be a nonexpansive mapping such that Fix(S) ∩ EP(Φ, T)/= ∅.
Assume that {αn}∞n=1 ⊂ (0, 1) with lim supn→∞αn < 1, {βn}∞n=1 ⊂ (c, d) with some c, d ∈ (0, 1) and
{λn}∞n=1 ⊂ (a,∞) with a ∈ (0,∞). Let x1 ∈ C and let {xn} be generated by

Φ
(

un, y
)

+
〈

Tun, y − un

〉

+
1
λn

〈

y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)βnSxn + (1 − αn)
(

1 − βn
)

un,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Dn =
n⋂

j=1

Cj,

xn+1 = PDnx, n ≥ 1.

(3.40)

Then the sequence {xn} converges strongly to x∗ = PFix(S)∩EP(Φ,T)x1. In particular, if C contains
the origin 0, taking x1 = 0, the sequence {xn} converges strongly to the minimum norm element in
Fix(S) ∩ EP(Φ, T).

Proof. In Corollary 3.2, put α ≡ 0 and η(x, y) ≡ x − y for all x, y ∈ C. Then T : C → H is a
monotone mapping and we obtain the desired result by Theorem 3.1.

Corollary 3.4. Let C be a closed convex subset of a Hilbert space H and let Φ : C × C → R

be a bifunction satisfying (A1), (A2), (A3), and (A4). Let A : C → H be a λ-inverse-strongly
monotone mapping and let S : C → C be a nonexpansive mapping such that Fix(S) ∩ EP/= ∅.
Assume that {αn}∞n=1 ⊂ (0, 1) with lim supn→∞αn < 1, {βn}∞n=1 ⊂ (c, d) with some c, d ∈ (0, 1) and
{λn}∞n=1 ⊂ (a, b) with 0 < a, b < 2λ. Let x1 ∈ C and let {xn} be generated by

Φ
(

un, y
)

+
〈

Aun, y − un

〉

+
1
λn

〈

y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)βnSxn + (1 − αn)
(

1 − βn
)

un,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Dn =
n⋂

j=1

Cj,

xn+1 = PDnx, n ≥ 1.

(3.41)

Then the sequence {xn} converges strongly to x∗ = PFix(S)∩EPx1. In particular, if C contains the origin
0, taking x1 = 0, the sequence {xn} converges strongly to the minimum norm element in Fix(S)∩EP.
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Proof. In Theorem 3.1, put T ≡ 0, η ≡ 0, α ≡ 0, and S1 = · · · = Sn = · · · = S. We obtain the
desired result by Theorem 3.1.

Corollary 3.5. Let C be a closed convex subset of a Hilbert space H and let Φ : C × C → R be a
bifunction satisfying (A1), (A2), (A3), and (A4). Let S : C → C be a nonexpansive mapping such
that Fix(S) ∩ EP(Φ)/= ∅. Assume that {αn}∞n=1 ⊂ (0, 1) with lim supn→∞αn < 1, {βn}∞n=1 ⊂ (c, d)
with some c, d ∈ (0, 1), and {λn}∞n=1 ⊂ (a,∞) with 0 < a < ∞. Let x1 ∈ C and let {xn} be generated
by

Φ
(

un, y
)

+
1
λn

〈

y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)βnSxn + (1 − αn)
(

1 − βn
)

un,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Dn =
n⋂

j=1

Cj,

xn+1 = PDnx, n ≥ 1.

(3.42)

Then the sequence {xn} converges strongly to x∗ = PFix(S)∩EP(Φ)x1. In particular, if C contains the
origin 0, taking x1 = 0, the sequence {xn} converges strongly to the minimum norm element in
Fix(S) ∩ EP(Φ).

Proof. In Corollary 3.4, by putting A ≡ 0 we obtain the desired result.

Corollary 3.6. Let C be a closed convex subset of a Hilbert space H and let A : C → H be a λ-
inverse-strongly monotone mapping. Let S : C → C be a nonexpansive mapping such that Fix(S) ∩
VI(C,A)/= ∅. Assume that {αn}∞n=1 ⊂ (0, 1) with lim supn→∞αn < 1, {βn}∞n=1 ⊂ (c, d) with some
c, d ∈ (0, 1), and {λn}∞n=1 ⊂ (a, b) with 0 < a, b < 2λ. Let x1 ∈ C and let {xn} be generated by

un = PC(xn − λnAxn),

yn = αnxn + (1 − αn)βnSxn + (1 − αn)
(

1 − βn
)

un,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Dn =
n⋂

j=1

Cj,

xn+1 = PDnx, n ≥ 1.

(3.43)

Then the sequence {xn} converges strongly to x∗ = PFix(S)∩VI(C,A)x1. In particular, if C contains the
origin 0, taking x1 = 0, the sequence {xn} converges strongly to the minimum norm element in
Fix(S) ∩ VI(C,A).
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Proof. In Theorem 3.1, put Φ ≡ 0, T ≡ 0, η ≡ 0, α ≡ 0, and S1 = · · · = Sn = · · · = S. Then, we
have

un = PC(xn − λnAxn), ∀x ≥ 1. (3.44)

Then, we obtain the desired result by Theorem 3.1.

Remark 3.7. The novelty of this paper lies in the following aspects.

(i) A new general equilibrium problem with a relaxed monotone mapping is
considered.

(ii) The definition of Dn is of independent interest.
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