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1. Introduction

The Banach contraction principle [1] states that for a complete metric space (X, d), every
contraction T on X, that is, for some r ∈ [0, 1), d(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X, has a
(unique) fixed point.

Connell [2] gave an example of a noncomplete metric space X on which every
contraction on X has a fixed point. Thus contractions cannot characterize the metric
completeness of X.

Theorem 1.1 (see [3, Kannan]). Let (X, d) be a complete metric space. Let T be a Kannan mapping
on X, that is, for some α ∈ [0, 1/2), d(Tx, Ty) ≤ αd(x, Tx) + αd(y, Ty) for all x, y ∈ X. Then T
has a (unique) fixed point.

Subrahmanyam [4] proved that Kannan mappings can be used to characterize the
completeness of the metric. That is, a metric space X is complete if and only if every Kannan
mapping on X has a fixed point.

In 2008 Suzuki [5] introduced a new type of mappings and presented a generalization
of the Banach contraction principle in which the completeness can also be characterized by
the existence of fixed points of these mappings. Define a nonincreasing function θ from [0, 1)
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onto (1/2, 1] by

θ(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if 0 ≤ r ≤
(√

5 − 1
)
/2,

(1 − r)r−2 if
(√

5 − 1
)
/2 ≤ r ≤ 2−1/2,

(1 + r)−1 if 2−1/2 ≤ r < 1.

(1.1)

Theorem 1.2 (see [5]). For a metric space (X, d), the following are equivalent:

(i) X is complete;

(ii) every mapping T on X such that there exists r ∈ [0, 1), θ(r)d(x, Tx) ≤ d(x, y) implies
d(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X has a fixed point.

In 2008, Kikkawa and Suzuki [6] partially extended Theorem 1.2 to multivalued mappings.

Theorem 1.3 (see [6]). Define a strictly decreasing function η from [0, 1) onto (1/2, 1] by η(r) =
1/(1 + r). Let (X, d) be a complete metric space and let T : X → 2X \ ∅ be a multivalued mapping
with bounded and closed values. Assume that there exists r ∈ [0, 1) such that

η(r)d(x, Tx) ≤ d(x, y) implies H
(
Tx, Ty

) ≤ rd(x, y), (1.2)

for all x, y ∈ X, then there exists z ∈ X such that z ∈ Tz.
Obviously, the converse of Theorem 1.3 is valid since 1/(1 + r) ≤ θ(r) for all r ∈ [0, 1).

Moţ and Petruşel [7] proved the following theorem which is a generalization of
Kikkawa and Suzuki Theorem.

Theorem 1.4 (see [7]). Let (X, d) be a complete metric space and let T : X → 2X\∅ be a multivalued
mapping with closed values and satisfies the following: if for nonnegative numbers a, b, c with a+ b +
c ∈ [0, 1) and for each x, y ∈ Y , one has

1 − b − c
1 + a

d(x, Tx) ≤ d(x, y) implies H
(
Tx, Ty

) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty). (1.3)

Then T has a fixed point.

In this paper, we will characterize the completeness of a metric space by the existence
of fixed points for both single-valued and multivalued mappings. We first aim to extend, in
Section 3, the Suzuki’s result (Theorem 1.2) to more general classes of mappings. We then
consider multivalued mappings in Section 4. We also show in this section that the converse
of Theorem 1.4 is true.
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2. Preliminaries

Let (X, d) be a complete metric space and let f : X → X be a mapping. We say that f is
a Caristi mapping if there exists a lower semicontinuous function ϕ : X → R such that ϕ is
bounded below and

d
(
x, f(x)

) ≤ ϕ(x) − ϕ(f(x)), for x ∈ X. (2.1)

Recall that a mapping f is lower semicontinuous if for each x0 ∈ X and for every ε > 0, there
exists a neighborhoodU of x0 such that f(x) ≥ f(x0) − ε for all x ∈ U.

For a metric space (X, d), let Cl(X) and CB(X) denote, respectively, a collection of all
nonempty closed subsets of X and a collection of all nonempty bounded closed subsets of X.
LetH be the Hausdorff metric on CB(X). That is, for A,B ∈ CB(X),

H(A,B) = max

{

sup
a∈A

d(a, B), sup
b∈B

d(b,A)

}

, (2.2)

where d(x,D) := inf{d(x, y) : y ∈ D} is the distance from a point x in X to a subset D of X.
The next theorem plays important roles in this paper.

Theorem 2.1 (see cf. [8]). If T is a mapping of a complete metric space X into the family of all
nonempty closed subsets of X and ϕ : X → R+ ∪ {+∞} is a lower semicontinuous function such that
the following condition holds:

inf
{
d
(
x, y
)
+ ϕ
(
y
)
: y ∈ T(x)} ≤ ϕ(x), for each x ∈ X, (2.3)

then T has at least one fixed point.

3. Completeness and Single-valued Mappings

In 2008, Kikkawa and Suzuki [9] proved fixed point theorems for some generalized Kannan
mappings. Let ϕ be a nonincreasing function defined from [0,1) onto (1/2,1] by

ϕ(r) =

⎧
⎨

⎩

1 if 0 ≤ r ≤ 2−1/2,

(1 + r)−1 if 2−1/2 ≤ r < 1.
(3.1)

Theorem 3.1 (see [9]). Let (X, d) be a complete metric space and let T be a mapping on X. Let
α ∈ [0, 1/2) and put r := α/(1 − α) ∈ [0, 1). Assume that

ϕ(r)d(x, Tx) ≤ d(x, y) implies d
(
Tx, Ty

) ≤ αd(x, Tx) + αd(y, Ty), (3.2)

for all x, y ∈ X, then T has a unique fixed point z and limnT
nx = z holds for every x ∈ X.
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Theorem 3.2 (see [9]). Let (X, d) be a complete metric space and let T be a mapping on X. Suppose
that there exists r ∈ [0, 1) such that

θ(r)d(x, Tx) ≤ d(x, y) implies d
(
Tx, Ty

) ≤ r[d(x, Tx) ∨ d(y, Ty)], (3.3)

for all x, y ∈ X. Then T has a unique fixed point z and limnT
nx = z holds for every x ∈ X.

The above theorems inspire us to present another version of Theorem 1.2. Before doing
that we present first the following theorem. The proof of which is a mild modification of the
proofs in [5, 9].

Theorem 3.3. Let (X, d) be a complete metric space and let T be a mapping on X such that there
exists r ∈ [0, 1), θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rd(x, Tx) ∨ rd(y, Ty) ∨ rd(x, y) for
all x, y ∈ X, then T has a fixed point.

Proof. Since θ(r) ≤ 1, θ(r)d(x, Tx) ≤ d(x, Tx) holds for every x ∈ X, and thus

d
(
Tx, T2x

)
≤ rd(x, Tx) ∨ rd

(
Tx, T2x

)
, ∀x ∈ X. (3.4)

If d(Tx, T2x) ≤ rd(Tx, T2x) for some x ∈ X, then Tx = T(Tx), and we get a fixed point Tx of
T.

Suppose now that

d
(
Tx, T2x

)
≤ rd(x, Tx), ∀x ∈ X. (3.5)

We fix x0 ∈ X and define a sequence {xn} in X by xn = Tnx0.
Then d(xn, xn+1) ≤ rnd(x0, Tx0), and so

∑∞
n=1d(xn, xn+1) < ∞. Thus {xn} is a Cauchy

sequence. Since X is complete, {xn} converges to some point z ∈ X.
We show that

d(z, Tx) ≤ rd(z, x) ∨ rd(x, Tx), for each x ∈ X \ {z}. (3.6)

Suppose x /= z. Since xn → z as n → ∞, there exists n0 ∈ N such that d(xn, z) ≤ (1/3)d(z, x)
for each n ≥ n0. Observe that

θ(r)d(xn, Txn) ≤ d(xn, Txn) = d(xn, xn+1) ≤ d(xn, z) + d(z, xn+1)

≤ 2
3
d(x, z) ≤ d(x, z) − d(xn, z) ≤ d(xn, x).

(3.7)

Hence d(xn+1, Tx) = d(Txn, Tx) ≤ rd(xn, Txn) ∨ rd(x, Tx) ∨ rd(xn, x) for each n ≥ n0. Letting
n → ∞ we get d(z, Tx) ≤ rd(z, x) ∨ rd(x, Tx), for all x /= z and we obtain (3.6).
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As in the proof of [5, Theorem 1.2], we show that Tkz = z for some k from which it
is proved that z is a fixed point of T. For this purpose, we assume Tkz/= z for all k and find a
contradiction. We show, by induction, that

d
(
Tk+1z, z

)
≤ rkd(z, Tz), hold ∀k. (3.8)

From (3.6)we have

d
(
z, T2z

)
≤ rd(z, Tz) ∨ rd

(
Tz, T2z

)

≤ rd(z, Tz) ∨ r2d(z, Tz) = rd(z, Tz).
(3.9)

Suppose d(z, Tk+1z) ≤ rkd(z, Tz). Thus

d
(
z, Tk+2z

)
≤ rd

(
Tk+1z, Tk+2z

)
∨ rd

(
z, Tk+1z

)
by (3.6),

≤ r · rk+1d(z, Tz) ∨ r · rkd(z, Tz),

= rk+1d(z, Tz) by (3.5).

(3.10)

Thus (3.8) holds and now we find a contradiction in each of the following cases.

Case 1 (0 ≤ r < (
√
5 − 1)/2). We have r2 + r − 1 < 0.

Assume d(T2z, z) < d(T2z, T3z) then

d(z, Tz) ≤ d
(
z, T2z

)
+ d
(
T2z, Tz

)
< d
(
T2z, T3z

)
+ d
(
T2z, Tz

)

≤ r2d(z, Tz) + rd(z, Tz) < d(z, Tz),
(3.11)

which is a contradiction. So

d
(
T3z, Tz

)
≤ r
(
d
(
z, T2z

)
∨ d(z, Tz) ∨ d

(
T2z, T3z

))

≤ r
(
rd(z, Tz) ∨ d(z, Tz) ∨ r2d(z, Tz)

)
= rd(z, Tz).

(3.12)

Hence d(z, Tz) ≤ d(z, T3z) + d(T3z, Tz) ≤ r2d(z, Tz) + rd(z, Tz) < d(z, Tz), which is a
contradiction.

Case 2 ((
√
5 − 1)/2 ≤ r < 2−1/2). We have 2r2 < 1.

We show, by induction, that

θ(r)d
(
Tkz, Tk+1z

)
≤ d
(
z, Tkz

)
, ∀k ≥ 2 (∗)
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If d(z, T2z) < θ(r)d(T2z, T3z), then

d(z, Tz) ≤ d
(
z, T2z

)
+ d
(
T2z, Tz

)
< θ(r)d

(
T2z, T3z

)
+ rd(z, Tz)

≤
(
1 − r
r2

)

r2d(z, Tz) + rd(z, Tz) = d(z, Tz),
(3.13)

which is a contradiction. Therefore θ(r)d(T2z, T3z) ≤ d(z, T2z).
Suppose θ(r)d(Tkz, Tk+1z) ≤ d(z, Tkz). Thus

d
(
Tz, Tk+1z

)
≤ r
(
d
(
z, Tkz

)
∨ d(z, Tz) ∨ d

(
Tkz, Tk+1z

))

≤ r
(
rk−1d(z, Tz) ∨ d(z, Tz) ∨ rkd(z, Tz)

)
= rd(z, Tz).

(3.14)

If d(z, Tk+1z) < θ(r)d(Tk+1z, Tk+2z), then

d(z, Tz) ≤ d
(
z, Tk+1z

)
+ d
(
Tk+1z, Tz

)
< θ(r)d

(
Tk+1z, Tk+2z

)
+ rd(z, Tz)

≤
(
1 − r
r2

)

rk+1d(z, Tz) + rd(z, Tz) < (1 − r + r)d(z, Tz) = d(z, Tz),
(3.15)

which is a contradiction. Hence θ(r)d(Tk+1z, Tk+2z) ≤ d(z, Tk+1z), and thus (∗) holds.
For k ≥ 2, d(z, Tz) ≤ d(z, Tk+1z) + d(Tk+1z, Tz) ≤ rkd(z, Tz) + rd(z, Tz). We have

d(z, Tz) ≤ rd(z, Tz) < d(z, Tz), which is a contradiction.

Case 3 (2−1/2 ≤ r < 1). We claim that θ(r)d(x2n, x2n+1) ≤ d(x2n, z) or θ(r)d(x2n+1, x2n+2) ≤
d(x2n+1, z). Suppose not,

d(x2n, x2n+1) ≤ d(x2n, z) + d(z, x2n+1)
< θ(r)(d(x2n, x2n+1) + d(x2n+1, x2n+2))

≤ θ(r)(1 + r)d(x2n, x2n+1)
= d(x2n, x2n+1),

(3.16)

which is a contradiction. So there exists a subsequence {nk} of {n} such that θ(r)d(xnk , xnk+1) ≤
d(xnk , z):

d(z, Tz) = lim
k
d(xnk+1 , Tz) ≤ lim

k
(rd(xnk , z) ∨ rd(xnk , Txnk) ∨ rd(z, Tz))

= rd(z, Tz).
(3.17)

Thus Tz = z, which is a contradiction.



Fixed Point Theory and Applications 7

In fact the following theorem shows that the converse of Theorem 3.3 is valid.

Theorem 3.4. Let (X, d) be a metric space. Then the following are equivalent:

(i) X is complete;

(ii) for each r ∈ [0, 1), every mapping T on X such that

1
1 + r

d(x, Tx) ≤ d(x, y) implies d
(
Tx, Ty

) ≤ rd(x, y), (3.18)

for all x, y ∈ X has a fixed point;

(iii) for each r := 2α ∈ [0, 1), every mapping T on X such that

θ(r)d(x, Tx) ≤ d(x, y) implies d
(
Tx, Ty

) ≤ αd(x, Tx) + αd(y, Ty), (3.19)

for all x, y ∈ X has a fixed point;

(iv) for each r ∈ [0, 1), every mapping T on X such that

θ(r)d(x, Tx) ≤ d(x, y) implies d
(
Tx, Ty

) ≤ rd(x, Tx) ∨ rd(y, Ty) (3.20)

for all x, y ∈ X has a fixed point;

(v) For nonnegative numbers a, b, c with a + b + c ∈ [0, 1), every mapping T on X such that

1 − b − c
1 + a

d(x, Tx) ≤ d(x, y) implies d
(
Tx, Ty

)

≤ ad(x, y) + bd(x, Tx) + cd(y, Ty),
(3.21)

for all x, y ∈ X has a fixed point;

(vi) for each r := 2β + γ ∈ [0, 1), every mapping T on X such that

θ(r)d(x, Tx) ≤ d(x, y) implies d
(
Tx, Ty

)

≤ γd(x, y) + β[d(x, Tx) + d(y, Ty)],
(3.22)

for all x, y ∈ X has a fixed point;

(vii) for each r ∈ [0, 1), every mapping T on X such that

θ(r)d(x, Tx) ≤ d(x, y) implies d
(
Tx, Ty

)

≤ rd(x, y) ∨ rd(x, Tx) ∨ rd(y, Ty),
(3.23)

for all x, y ∈ X has a fixed point.
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Proof. The implication (i)⇒(vii) is exactly Theorem 3.3.
(vii)⇒(vi). Let T satisfy (3.22). We show that T satisfies (3.23) to obtain a fixed point for

T . Let θ(r)d(x, Tx) ≤ d(x, y), r := 2β+ γ . Thus d(Tx, Ty) ≤ γd(x, y) +β[d(x, Tx) +d(y, Ty)] ≤
(2β + γ)max{d(x, y), d(x, Tx), d(y, Ty)} = rd(x, y) ∨ rd(x, Tx) ∨ rd(y, Ty), and (3.23) holds.

(vi)⇒(v). Let T satisfy (3.21). To show T satisfies (3.22), let θ(r)d(x, Tx) ≤ d(x, y),
a = γ , b = c = β and r = 2β+ γ . Notice that θ(r) ≥ 1/(1+ r) = 1/(1+2β+ γ) = 1/(1+a+b+c) ≥
(1 − b − c)/(1 + a). Thus ((1 − b − c)/(1 + a))d(x, Tx) ≤ θ(r)d(x, Tx) ≤ d(x, y). So we get
d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty) = γd(x, y) + βd(x, Tx) + βd(y, Ty), and (3.22)
holds.

(v)⇒(ii). Let T satisfy (3.18). To show T satisfies (3.21), let ((1−b−c)/(1+a))d(x, Tx) ≤
d(x, y), a = r, b = c = 0. Thus (1/(1+ r))d(x, Tx) = ((1− b − c)/(1+ a))d(x, Tx) ≤ d(x, y), and
so d(Tx, Ty) ≤ rd(x, y) = ad(x, y) + bd(x, Tx) + cd(y, Ty) and (3.21) holds.

(ii)⇒(i). Follows the same proof of Theorem 1.2. Notice that, for 0 ≤ r < 2−1/2, 1/(1 +
r) ≤ θ(r).

(vii)⇒(iv). Let T satisfy (3.20). To show T satisfies (3.23), let θ(r)d(x, Tx) ≤ d(x, y).
Thus d(Tx, Ty) ≤ rd(x, Tx) ∨ rd(y, Ty) ≤ rd(x, y) ∨ rd(x, Tx) ∨ rd(y, Ty).

(iv)⇒(iii). Let T satisfy (3.19). We show T satisfies (3.20). Let θ(r)d(x, Tx) ≤ d(x, y),
r = 2α. Thus d(Tx, Ty) ≤ αd(x, Tx) + αd(y, Ty) ≤ (2α)max{d(x, Tx), d(y, Ty)} = rd(x, Tx) ∨
rd(y, Ty).

(iii)⇒(i). We know that every Kannan mapping belongs to the class of mappings in
(iii). Thus X is complete by Subrahmanyam [4].

4. Completeness and Multivalued Mappings

Inspired by Theorem 1.2 and Theorem 1.3, we prove the following theorem for a larger class
of mappings under some certain assumptions.

Theorem 4.1. Let (X, d) be a metric space. Then the following are equivalent:

(i) X is complete;

(ii) for each r ∈ [0, 1), every mapping T : X → Cl(X) such that θ(r)d(x, Tx) ≤ d(x, y)
implies H(Tx, Ty) ≤ rd(x, y) ∨ rd(x, Tx) ∨ rd(y, Ty), x, y ∈ X and the function x �→
d(x, Tx) is lower semicontinuous has a fixed point.

Observe that Theorem 4.1 is not covered by Theorem 3.4 when considering as single-
valued mappings.

Proof of Theorem 4.1. (i)⇒(ii). Let ε > 0 be small enough so that ε + r < 1 and define ϕ(x) =
(1/ε)d(x, Tx). For any x ∈ X, we can find some f(x) ∈ Tx satisfying d(x, f(x)) ≤ (1/(ε +
r))d(x, Tx). To apply Theorem 2.1, it remains to show that d(x, f(x)) ≤ ϕ(x)−ϕ(f(x)), x ∈ X.
We have d(x, Tx) ≤ d(x, f(x)) ≤ (1/θ(r))d(x, f(x)). Thus H(Tx, Tf(x)) ≤ rd(x, f(x)) ∨
rd(f(x), Tf(x)) ∨ rd(x, Tx).Note that

d
(
f(x), Tf(x)

) ≤ H(Tx, Tf(x))

≤ rd(x, f(x)) ∨ rd(f(x), Tf(x)) ∨ rd(x, Tx).
(4.1)

Let K := rd(x, f(x)) ∨ rd(f(x), Tf(x)) ∨ rd(x, Tx).
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Case K = rd(x, f(x)) : d(f(x), Tf(x)) ≤ rd(x, f(x)).
Case K = rd(x, Tx) : d(f(x), Tf(x)) ≤ rd(x, Tx) ≤ rd(x, f(x)).
Case K = rd(f(x), Tf(x)) : d(f(x), Tf(x)) ≤ rd(f(x), Tf(x))which is impossible.
Hence

d
(
x, f(x)

)
=

1
ε

(
(ε + r)d

(
x, f(x)

) − rd(x, f(x)))

≤ 1
ε

(

(ε + r) · 1
ε + r

d(x, Tx) − d(f(x), Tf(x))
)

= ϕ(x) − ϕ(f(x)).
(4.2)

Thus T has a fixed point by Theorem 2.1.
(ii)⇒(i). Suppose X is not complete.
Define a function f as in the proof of Theorem 1.2 and a mapping T as follows:
for each x ∈ X, since f(x) > 0 and limnf(un) = 0, there exists υ ∈ N satisfying

f(uυ) ≤ (θ(r)r/(3 + r + θ(r)r))f(x).
We put Tx = {un : f(un) ≤ (θ(r)r/(3 + r + θ(r)r))f(x)} and write g(x) = supy∈Txf(y).
It is obvious that g(x) ≤ (θ(r)r/(3 + r + θ(r)r))f(x) for all x ∈ X. Since f(y) < f(x),

for all y ∈ Tx, for all x ∈ X, thus x /∈ Tx. That is, T does not have a fixed point. Note that

f(x) − f(y) ≤ d(x, y) ≤ f(x) + f(y), ∀y ∈ Tx. (4.3)

We have

f(x) − g(x) ≤ d(x, Tx) ≤ f(x) + g(x), (4.4)

H
(
Tx, Ty

) ≤ g(x) + g(y). (4.5)

Fix x, y ∈ X with θ(r)d(x, Tx) ≤ d(x, y). To show that the mapping T satisfies the
condition in (ii), that is, for all x, y ∈ X,

θ(r)d(x, Tx) ≤ d(x, y) implies H
(
Tx, Ty

) ≤ rd(x, y) ∨ rd(x, Tx) ∨ rd(y, Ty). (4.6)

Observe that

d
(
x, y
) ≥ θ(r)d(x, Tx)
≥ θ(r)(f(x) − g(x))

≥ θ(r)
(

1 − θ(r)r
3 + r + θ(r)r

)

f(x)

=
(
θ(r)(3 + r)
3 + r + θ(r)r

)

f(x).

(4.7)
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Case 1 (f(y) ≥ f(x)).

H
(
Tx, Ty

) ≤ g(x) + g(y) = 3 + r
3
(
g(x) + g

(
y
)) − r

3
(
g(x) + g

(
y
))

by (4.5)

≤ 3 + r
3

· θ(r)r
3 + r + θ(r)r

(
f(x) + f

(
y
)) − r

3
(
g(x) + g

(
y
))

+
r

3
(
f
(
y
) − f(x))

≤ 3 + r
3

· r

3 + r
(
f(x) + f

(
y
)) − r

3
(
g(x) + g

(
y
))

+
r

3
(
f
(
y
) − f(x))

≤ r

3
d(x, Tx) +

r

3
d
(
y, Ty

)
+
r

3
d
(
x, y
)

by (4.4)

≤ rd(x, Tx) ∨ rd(y, Ty) ∨ d(x, y).

(4.8)

Case 2 (f(y)df(x), d(x, y) < θ(r)d(y, Ty)).

H
(
Tx, Ty

) ≤ g(x) + g(y) ≤ θ(r)r
3 + r + θ(r)r

(
f(x) + f

(
y
))

by (4.5)

≤ θ(r)r
3 + r

d(x, Tx) +
θ(r)r

3 + r + θ(r)r
f(x)

≤ θ(r)r
3 + r

d(x, Tx) +
θ(r)r

3 + r + θ(r)r
3 + r + θ(r)r
θ(r)(3 + r)

d
(
x, y
)

≤ r

3
d(x, Tx) +

r

3
d
(
x, y
) ≤ rd(x, Tx) ∨ d(x, y) ∨ rd(y, Ty).

(4.9)

Therefore (4.6) holds.

It remains to show that the mapping x �→ d(x, Tx) is lower semicontinuous, that is,

∀ε > 0, ∃δ > 0 such that d
(
y, Ty

) ≥ d(x, Tx) − ε, ∀y ∈ Bd(x, δ). (4.10)

Suppose not, then there exists ε > 0 such that d(yk, Tyk) < d(x, Tx) − ε, for all yk ∈
Bd(x, (1/k)), for each k. Since d(yk, Tyk) = infukm∈Tykd(yk, u

k
m), ∃{ukm} ⊆ Tyk such that

limmd(yk, ukm) = d(yk, Tyk).We have d(yk, ukm)−(1/k) ≤ d(yk, Tyk) < d(x, Tx)−ε, for all large
m. Thus for each k, d(x, ukm)−d(x, yk)− (1/k) ≤ d(yk, ukm)− (1/k) ≤ d(yk, Tyk) < d(x, Tx)− ε,
for all largem. So for thosem,d(x, ukm) − (2/k) + ε < d(x, Tx). Consequently,

f(x) − 2
k
+ ε = lim

m

(

d
(
x, ukm

)
− 2
k
+ ε
)

≤ d(x, Tx), ∀k, (4.11)
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which impliest that

f(x) + ε = lim
k

(

f(x) − 2
k
+ ε
)

≤ d(x, Tx) ≤ d(x, um), ∀um ∈ Tx
≤ lim

m
d(x, um)

= lim
n
d(x, un) = f(x),

(4.12)

a contradiction. Thus the mapping x �→ d(x, Tx) is lower semicontinuous.

The converse of Theorem 1.4 is also valid by following the same proof of Theorem 1.2.
Assuming that X is not complete, we find a fixed point free mapping T satisfying the
condition in Theorem 1.4. Following the same proof of Theorem 1.2 by replacing ηr/(3 + ηr)
by β/(1 + β) where β = b ∧ c, we obtain f(Tx) ≤ β/(1 + β)f(x) for all x ∈ X and T is fixed
point free. We now verify the condition in Theorem 1.4 for T.

Fix x, y ∈ X with (1 − b − c)/(1 + a)d(x, Tx) ≤ d(x, y).We show that

H
(
Tx, Ty

) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty). (4.13)

Observe that

d
(
x, y
) ≥ 1 − b − c

1 + a
d(x, Tx) ≥ 1 − b − c

1 + a
(
f(x) − f(Tx))

≥ 1 − b − c
1 + a

(

1 − β

1 + β

)

f(x) =
1 − b − c
1 + a

(
1

1 + β

)

f(x).

(4.14)

Case 1 (f(y) ≥ f(x)).

H
(
Tx, Ty

) ≤ f(Tx) + f(Ty)

=
(
1 + β

)(
f(Tx) + f

(
Ty
)) − β(f(Tx) + f(Ty))

≤ (1 + β) · β

1 + β
(
f(x) + f

(
y
)) − β(f(Tx) + f(Ty))

≤ βd(x, Tx) + βd(y, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty).

(4.15)
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Case 2 (f(y) ≤ f(x), d(x, y) < (1 − b − c)/(1 + a)d(y, Ty)).

H
(
Tx, Ty

) ≤ f(Tx) + f(Ty) ≤ β

1 + β
(
f(x) + f

(
y
))

≤ βd(x, Tx) + β

1 + β
f(x) ≤ βd(x, Tx) + β

(
1 + β

)

1 + β
1 + a

1 − b − cd
(
x, y
)

≤ βd(x, Tx) + β(1 + a)
1 − b − c

1 − b − c
1 + a

d
(
y, Ty

)
= βd(x, Tx) + βd

(
y, Ty

)

≤ ad(x, y) + bd(x, Tx) + cd(y, Ty).

(4.16)

Therefore (4.13) holds, and the proof of the converse of Theorem 1.4 is complete.

Moreover, by following the proof of Theorem 1.4, we can partially extend the class of
mappings and still obtain their fixed points. Notice that (1 − 2β)/(1 + γ) ≤ 1/(2β + γ + 1).

Theorem 4.2. Let (X, d) be a metric space. Then the following are equivalent:

(i) X is complete.

(ii) every mapping T : X → Cl(X) such that for each β, γ ∈ R+ with 2β + γ ∈ [0, 1) and for
each x, y ∈ X,

1
2β + γ + 1

d(x, Tx) ≤ d(x, y) implies H
(
Tx, Ty

) ≤ βd(x, Tx) + βd(y, Ty) + γd(x, y),
(4.17)

has a fixed point.

Proof. (i)⇒(ii). Following the same proof of Theorem 1.4 by replacing η := (1 − b − c)/(1 + a)
in its proof by η := 1/(2β + γ + 1). Thus we obtain a sequence {xn} such that

(1) xn+1 ∈ T(xn), for each n ∈N and;

(2) d(xn, xn+1) ≤ (k(β + γ)/(1 − kβ))nd(x0, x1), for n ∈N.

Choose k so that 1 < k < 1/(γ + 2β) and therefore 0 ≤ k(β + γ)/(1 − kβ) < 1. We see that the
sequence {xn} is Cauchy in X, and so {xn} converges to some z ∈ X. We show d(z, Tx) ≤
γd(z, x) + βd(x, Tx), for each x ∈ X \ {z}.

Suppose x /= z. Since xn → z as n → ∞, there exists n0 ∈ N such that d(xn, z) ≤
(1/3)d(z, x) for each n ≥ n0. We have ηd(xn, Txn) ≤ d(xn, Txn) ≤ d(xn, xn+1) ≤ d(xn, z) +
d(z, xn+1) ≤ (2/3)d(x, z) ≤ d(x, z) − d(xn, z) ≤ d(xn, x). Hence d(xn+1, Tx) ≤ H(Txn, Tx) ≤
βd(xn, Txn) + βd(x, Tx) + γd(xn, x) for each n ≥ n0. Letting n → ∞, we get d(z, Tx) ≤
γd(z, x) + βd(x, Tx), for all x /= z as desired.

Next, we showH(Tx, Tz) ≤ βd(x, Tx)+βd(z, Tz)+γd(x, z), for all x ∈ X. For x /= z,we
obtain for each n ∈N,yn ∈ Tx such that d(z, yn) ≤ d(z, Tx)+ (1/n)d(x, z). Clearly d(x, Tx) ≤
d(x, yn) ≤ d(x, z)+d(z, yn) ≤ d(x, z)+d(z, Tx)+(1/n)d(x, z) ≤ (1+γ+(1/n))d(x, z)+βd(x, Tx),
for all n ∈ N. Hence, as n → ∞ we get (1 − β)d(x, Tx) ≤ (1 + γ)d(x, z) and so ηd(x, Tx) ≤
d(x, z) implying thatH(Tx, Tz) ≤ βd(x, Tx) + βd(z, Tz) + γd(x, z) for x ∈ X.
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Finally, we obtain

d(z, Tz) = lim
n
d(xn+1, Tz) ≤ lim

n
H(Txn, Tz),

≤ lim
n

(
βd(xn, Txn) + βd(z, Tz) + γd(xn, z)

)
= 0.

(4.18)

Thus z = Tz and T has a fixed point.
(ii)⇒(i). Let β = 0, and γ = r, we have (1/(r + 1))d(x, Tx) ≤ d(x, y) implying

H(Tx, Ty) ≤ rd(x, y). Hence X is complete by the converse of Theorem 1.4.

5. Caristi Set-Valued Mappings

In 2008, Ćirić [10] proved the following fixed point theorems.

Theorem 5.1 ([10]). Let (X, d) be a complete metric space and let T : X → Cl(X). If there exist
constants b, c ∈ (0, 1), c < b, such that for any x ∈ X there is y ∈ Tx satisfying the following two
conditions:

bd
(
x, y
) ≤ d(x, Tx), d

(
y, Ty

) ≤ cd(x, y). (5.1)

Then T has a fixed point in X provided a function f(x) = d(x, Tx) is lower semicontinuous.

Theorem 5.2 ([10]). Let (X, d) be a complete metric space and T : X → Cl(X). If there exists a
function ϕ : [0,∞) → [0, 1) satisfying

lim
r→ t+

supϕ(r) < 1, for each t ∈ [0,∞), (5.2)

and such that for any x ∈ X there is y ∈ Tx satisfying the following two conditions:

d
(
x, y
) ≤ (2 − ϕ(d(x, y)))d(x, Tx), d

(
y, Ty

) ≤ ϕ(d(x, y))d(x, y). (5.3)

Then T has a fixed point in X provided a function f(x) = d(x, Tx) is lower semicontinuous.

We give a simple proof of each of these theorems.

Proof of Theorem 5.1. Define a lower semi-continuous function ϕ by ϕ(x) = 1/(b − c)d(x, Tx).
For any x ∈ X, we can find some f(x) ∈ Tx satisfying

bd
(
x, f(x)

) ≤ d(x, Tx), d
(
f(x), Tf(x)

) ≤ cd(x, f(x)). (5.4)
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We show that d(x, f(x)) ≤ ϕ(x) − ϕ(f(x)), x ∈ X. Let x ∈ X. Clearly,

d
(
x, f(x)

)
=

1
b − c

(
bd
(
x, f(x)

) − cd(x, f(x))) ≤ 1
b − c

(
bd
(
x, f(x)

) − d(f(x), Tf(x)))

≤ 1
b − c

(
d(x, Tx) − d(f(x), Tf(x))) = ϕ(x) − ϕ(f(x)).

(5.5)

Hence T has a fixed point by Theorem 2.1.

Proof of Theorem 5.2. Let k = inf (ϕ(r) − 1)2/(2 − ϕ(r)) > 0 and ψ(x) = (1/k)d(x, Tx). For each
x ∈ X, there exists f(x) ∈ Tx such that

d
(
x, f(x)

) ≤ (2 − ϕ(d(x, f(x))))d(x, Tx), d
(
f(x), Tf(x)

) ≤ ϕ(d(x, f(x)))d(x, f(x)).
(5.6)

Furthermore, d(x, f(x)) ≤ ψ(x) − ψ(f(x)), x ∈ X. Indeed,

d
(
x, f(x)

)
=

1
k

((
ϕ
(
d
(
x, f(x)

))
+ k
)
d
(
x, f(x)

) − ϕ(d(x, f(x)))d(x, f(x)))

≤ 1
k

((

ϕ
(
d
(
x, f(x)

))
+

(
ϕ
(
d
(
x, f(x)

)) − 1
)2

2 − ϕ(d(x, f(x)))
)

d
(
x, f(x)

)

−ϕ(d(x, f(x)))d(x, f(x)))

≤ 1
k

((
1

2 − ϕ(d(x, f(x)))
)

d
(
x, f(x)

) − ϕ(d(x, f(x)))d(x, f(x))
)

≤ 1
k

(
d(x, Tx) − d(f(x), Tf(x))) = ψ(x) − ψ(f(x)).

(5.7)

Thus T has a fixed point by Theorem 2.1.
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