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1. Introduction

Let H be a real Hilbert space whose inner product and norm are denoted by (-,-) and || - ||,
respectively. Let C be a nonempty closed convex subset of H, and let F be a bifunction of
C x Cinto R, where R is the set of real numbers. The equilibrium problem for F: CxC — R
is to find x € C such that

F(x,y)>0, VYyeC. (1.1)

The set of solutions of (1.1) is denoted by EP(F). Recently, Combettes and Hirstoaga [1]
introduced an iterative scheme of finding the best approximation to the initial data when
EP(F) is nonempty and proved a strong convergence theorem. Let A : C — H be a nonlinear
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map. The classical variational inequality which is denoted by VI(A,C) is to find u € C such
that

(Au,v -u) >0, VYveC. (1.2)

The variational inequality has been extensively studied in literature. See, for example, [2, 3]
and the references therein. Recall that a mapping T of C into itself is called nonexpansive if

|Su—-Sv|| <|lu-v|, YuveC (1.3)

A mapping f : C — C is called contractive if there exists a constant € (0,1) such that

lfu-foll <plu-ol, YuveC (1.4)

We denote by F(S) the set of fixed points of S.

Some methods have been proposed to solve the equilibrium problem and fixed
point problem of nonexpansive mapping; see, for instance, [3-6] and the references therein.
Recently, Plubtieng and Punpaeng [6] introduced the following iterative scheme. Let x; € H
and let {x,}, and {u,} be sequences generated by

1
F(u,,v)+—(y—u,u,—x,)>0, VYyeH,
(tn, y) + =y ) y 15

Xn+1 = Y f (%) + (I — a2, A) Su,, VneN.

They proved that if the sequences {a, } and {r,,} of parameters satisfy appropriate conditions,
then the sequences {x,} and {u,} both converge strongly to the unique solution of the
variational inequality

((A-yf)z,z-x)>0, VxeF(S)NEP(F), (1.6)
which is the optimality condition for the minimization problem

. 1
xeF(rsl}gwlgP(F)E Ax, x) = h(x), (17)

where h is a potential function for y f.

Let A: H — H be a single-valued nonlinear mapping, and let M : H — 2H be a
set-valued mapping. We consider the following variational inclusion, which is to find a point
u € H such that

0eAu)+Mu), (1.8)

where 6 is the zero vector in H. The set of solutions of problem (1.8) is denoted by I(A, M).
If A =0, then problem (1.8) becomes the inclusion problem introduced by Rockafellar [7].
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If M = 06¢c, where C is a nonempty closed convex subset of H and 6¢c : H — [0, oo] is the
indicator function of C, that is,

+o0, x¢C,

0, x €C,
8¢ (x) = { (1.9)

then the variational inclusion problem (1.8) is equivalent to variational inequality problem
(1.2). It is known that (1.8) provides a convenient framework for the unified study of optimal
solutions in many optimization related areas including mathematical programming, com-
plementarity, variational inequalities, optimal control, mathematical economics, equilibria,
game theory. Also various types of variational inclusions problems have been extended and
generalized (see [8] and the references therein.)

Very recently, Peng et al. [9] introduced the following iterative scheme for finding
a common element of the set of solutions to the problem (1.8), the set of solutions of an
equilibrium problem, and the set of fixed points of a nonexpansive mapping in Hilbert space.
Starting with x; € H, define sequence, {x,}, {y,}, and {u,} by

F (un,y) + rl (y —tn, uy —x,) 20, Vy€eH,

Xns1 = Ay f (Xn) + (1 — ay) Sy, (1.10)

Yn = Jmp (Un — NAuy,), Vn >0,

for all n € N, where A € (0,2a], {a,} C [0,1] and {r,} C (0,00). They proved that
under certain appropriate conditions imposed on {a,} and {r,}, the sequences {x,}, {y.},
and {u,} generated by (1.10) converge strongly to z € F(T) n I(A,M) N EP(F), where
z = Prsynra,mnep(r) f (2).

Motivated and inspired by Plubtieng and Punpaeng [6], Peng et al. [9] and Aoyama et
al. [10], we introduce an iterative scheme for finding a common element of the set of solutions
of the variational inclusion problem (1.8) with multi-valued maximal monotone mapping
and inverse-strongly monotone mappings, the set of solutions of an equilibrium problem and
the set of fixed points of a nonexpansive mapping in Hilbert space. Starting with an arbitrary
x1 € H, define sequences {x,}, {y.} and {u,} by

F (un,y) + rl (y —un, uty—x,) >0, VyeH,

Xni1 = anY f (Xn) + (I — anB) Suyn, (1.11)

Yn = ]M,)L (un - /\Aun) , VYn>0,

for all n € N, where A € (0,2a], {a,} C [0,1], and let {r,} C (0, o); B be a strongly bounded
linear operator on H, and {S,} is a sequence of nonexpansive mappings on H. Under suitable
conditions, some strong convergence theorems for approximating to this common elements
are proved. Our results extend and improve some corresponding results in [3, 9] and the
references therein.
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2. Preliminaries

This section collects some lemmas which will be used in the proofs for the main results in the
next section.

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respectively.

It is wellknown that for all x, v € H and A € [0, 1], there holds

e+ (1= Dy | = MxlP+ A =0 [ly|F =A@ =1 [|x -y (2.1)

Let C be a nonempty closed convex subset of H. Then, for any x € H, there exists a unique
nearest point of C, denoted by Pcx, such that ||x — Pcx|| < ||x — y|| for all y € C. Such a Pc is
called the metric projection from H into C. We know that P is nonexpansive. It is also known
that, Pcx € C and

(x=Pcx,Pcx—-z)>0, VxeH and zeC. (2.2)

It is easy to see that (2.2) is equivalent to

llx = z||* > ||lx = Pex||* + ||z - Pex|*, VxeH, zeC. (2.3)

For solving the equilibrium problem for a bifunction F : C x C — R, let us assume
that F satisfies the following conditions:

(A1) F(x,x) =0 forall x € C;
(A2) F is monotone, thatis, F(x,y) + F(y,x) <0 for all x,y € C;
(A3) foreach x,y,z € C,

}21(1)1: (tz+(1-tx,y) <F(x,y); (2.4)

(A4) for each x € C,y — F(x,y) is convex and lower semicontinuous.
The following lemma appears implicitly in [11] and [1].
Lemma 2.1 (See [1, 11]). Let C be a nonempty closed convex subset of H and let F be a bifunction
of C x C in to R satisfying (A1)—(A4). Let r > 0 and x € H. Then, there exists z € C such that
1
F(z,y)+;<y—z,z—x)20, Vy e C. (2.5)

Define a mapping T, : H — C as follows:

Tr(x):{zeC:F(z,y)+%(y—z,z—x>20, VyEC}, (2.6)



Fixed Point Theory and Applications 5

forall z € H. Then, the following hold:

(1) T, is single-valued;
(2) T, is firmly nonexpansive, that is, for any x,y € H,

ITx - Tyl* < {Trx - Ty, x - y); (2.7)

(3) E(T;) = EP(F);
(4) EP(F) is closed and convex.

We also need the following lemmas for proving our main result.

Lemma 2.2 (See [12]). Let H be a Hilbert space, C a nonempty closed convex subsetof H, f : H —
H a contraction with coefficient 0 < a < 1, and B a strongly positive linear bounded operator with
coefficient y > 0. Then :

(1) if 0<y <Y/a, then (x—y,(B~yf)x - (B-yf)y) > F - ya)llx - yl%x,y € H.
2) if 0<p <|IBI", then ||l - pB| < 1 - pF.

Lemma 2.3 (See [13]). Assume {ay,} is a sequence of nonnegative real numbers such that
aps1 < (1 - Yn) a,+6, mn2x0, (2.8)

where {y,} is a sequence in (0,1) and {6,} is a sequence in R such that

(1) XoZayn = 0
(2) limsup,, _, 6x/Yn < 00r 372164 < o0.

Then lim,, _, wa, = 0.

Recall that a mapping A : H — H is called a-inverse-strongly monotone, if there
exists a positive number a such that

(Au—- Av,u-v) > al|Au- Av|?, VYu,ve H. (2.9)

Let I be the identity mapping on H. It is well known thatif A: H — H is a-inverse-
strongly monotone, then A is 1/a-Lipschitz continuous and monotone mapping. In addition,
if 0 < A < 2a, then I — 1A is a nonexpansive mapping.

A set-valued M : H — 2H is called monotone if for all x,y € H,f € Mx and g €
My imply (x -y, f — g) > 0. A monotone mapping M : H — 2! is maximal if its graph
G(M) = {(x,f) e HxH | f € M(x)} of M is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping M is maximal if and only if
for(x,f) e HxH,(x-y, f —g) >0forevery (y,g) € G(M) implies f € Mx.

Let the set-valued mapping M : H — 2 be maximal monotone. We define the
resolvent operator Jys, associated with M and 1 as follows:

Tava () = T+ AM) ™ (u), VueH, (2.10)
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where A is a positive number. It is worth mentioning that the resolvent operator Ja;, is
single-valued, nonexpansive and 1-inverse-strongly monotone, see for example [14] and that
a solution of problem (1.8) is a fixed point of the operator Jy\ (I — LA) for all A > 0, see for
instance [15].

Lemma 2.4 (See [14]). Let M : H — 2H be a maximal monotone mapping and A : H — H be
a Lipschitz-continuous mapping. Then the mapping S = M + A : H — 2H is a maximal monotone

mapping.

Remark 2.5 (See [9]). Lemma 2.4 implies that I(A, M) is closed and convex if M : H — 2H is
a maximal monotone mapping and A : H — H be an inverse strongly monotone mapping.

Lemma 2.6 (See [10]). Let C be a nonempty closed subset of a Banach space and let {S,} a sequence
of mappings of C into itself. Suppose that 3,1 sup{||Su+1z — Suzl|| : z € C} < oo. Then, for each
x € C, {Sux} converges strongly to some point of C. Moreover, let S be a mapping from C into itself
defined by

Sx=1limS,x, VxeC. (2.11)

n—oo

Then lim,, _, o, sup{||Sz - S,z|| : z€ C} = 0.

3. Main Results

We begin this section by proving a strong convergence theorem of an implicit iterative
sequence {x,} obtained by the viscosity approximation method for finding a common
element of the set of solutions of the variational inclusion, the set of solutions of an
equilibrium problem and the set of fixed points of a nonexpansive mapping.

Throughout the rest of this paper, we always assume that f is a contraction of H into
itself with coefficient p € (0,1), and B is a strongly positive bounded linear operator with
coefficient y and 0 < y < y/p. Let S be a nonexpansive mapping of H into H. Let A: H — H
be an a-inverse-strongly monotone mapping, M : H — 2H be a maximal monotone mapping
and let s be defined as in (2.10). Let {T, } be a sequence of mappings defined as Lemma 2.1.
Consider a sequence of mappings {S,} on H defined by

Spx=ayyf(x)+(I-a,B)S]mup (I -AA)T,,x, x€H, n>1, (3.1)

where {a,} C (0,||B||™!). By Lemma 2.2, we note that S, is a contraction. Therefore, by the
Banach contraction principle, S, has a unique fixed point x,, € H such that

Xn = anY f (xn) + (I = ayB) S]my (I = LA) T, xy. (3.2)

Theorem 3.1. Let H be a real Hilbert space, let F be a bifunction from H x H — R satisfying
(A1)—(A4) and let S be a nonexpansive mapping on H. Let A : H — H be an a-inverse-strongly
monotone mapping, M : H — 2H be a maximal monotone mapping such that Q := F(S) NEP(F) N
I(A, M) #@. Let f be a contraction of H into itself with a constant p € (0,1) and let B be a strongly
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bounded linear operator on H with coefficient y > 0 and 0 < y < y/p. Let {x,}, {yn} and {u,} be

sequences generated by x1 € H and

1
F (un,y) + r—(y—un,un -x,)>0, VyeH

Xn = anY f (x) + (I — a,B) Syn, (3.3)

Yn = Ima (Un — MAu,) VYn >0,

where A € (0,2a], {r,} C (0,00) and {a,} C [0,1] satisfy lim, ,,a, = 0 and liminf, _, .1, >
0. Then, {x,}, {yn} and {u,} converges strongly to a point z in Q which solves the variational
inequality:

((B-yf)z,z-x)<0, xeQ. (3.4)
Equivalently, we have z = Po(I — B+ yf)(z).

Proof. First, we assume that a,, € (0, ||B|™!). By Lemma 2.2, we obtain ||I - a,,B|| < 1 -a,}. Let
v € Q. Since u, = T;, x,, we have

4 = 0l = 1Ty, %0 = T, 0 < llxa — 0] ¥ €. (3.5)

We note from v € Q that v = Jp) (v — AAv). As I — LA is nonexpansive, we have

yn =2l = T (n = AAuy) = Jpa (v - LAD) |

(3.6)
< |l (un — AAUy) — (v - LAD) || < |luy — | < [lxn — |
for all n € N. Thus, we have
”xn - UH = ”an}"f (xn) +({ - a,B) Syn - Z)”
< aullyf (xu) = Bo|| + [[I — a,Bl||lyn —
<anllyf (xn) = Bo|l + (1 - anYy) lx, — ol
vf ( Y) 37)

<aully (f (xn) = £ (©)) + (vf (v) = Bo) [ + (1 - atnY) l|xn = 2|
< anypllxn = vll + anlly f (v) = Bl + (1 - ay¥) [lxn = o||
= (1-an (¥ = yP)) lxn — vl + aully f (v) - Boll.

It follows that ||x, — o|| < ||yf(v) — Bo||/(y — ypB),Vn > 1. Hence {x,} is bounded and we
also obtain that {u,},{y.}, { f(xx)},{Sy.} and { Au,} are bounded. Next, we show that ||y, —
Syn|l — 0. Since a, — 0, we note that

[, — Syn” = an“Yf (xn) = Bsyn” — 0 asn— oo. (3.8)
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Moreover, it follows from Lemma 2.1 that

iy — ’0||2 =T}, xn — Trnv||2 <(Ty,xy — T, 0,x, —0) = (Uy —V, Xy — V)

1 (3.9)
= 5 (latn = 0P + 00 = 2 = 120 = ),

and hence ||u, — v||* < ||x, — ©||* = ||xn — un||*>. Therefore, we have

1% = 0l = [|ay f (xn) + (I = 2,B) Sy, — ||
= ||(I - auB)(Syn - v) + atu(y f (xn) - B0)||?
< (1= )’ ISy — o|* + 20 (y f (xa) = Bo, %2 = 0)
< (1= an¥)?|lyn = 0||* + 200y (f (xu) = f (), %0 = 0) + 204 (y f (0) = B0, x, - 0)
<(1- an?)zﬂun —o|* + 20,7 (f (xn) = f (V) , x0 — ©) + 2a,(y f (V) = Bv, x,, — V)
< (1= a7)* { Il = 01 = 1t = wall?} + 2y Bl - oI
+ 22|y f (v) = Bol|[lcn — o
= (1-2a, (F=B) + (@)”) llxn = I* = (1 = )10 =
+ 22ty f (v) - Bollllxc, - |
< llatn = I + @ ln = 0I* = (1 = a¥) [0 = sl + 22tully f () = Boll |l o,

(3.10)

and hence
(1 - an?)lexn - un“2 < an?ZHxn - U||2 + 2‘xn||Yf (v) = Bo|l||x, — ]| (3.11)

Since {x,} is bounded and a,, — 0, it follows that ||x,, — u,|| — Oasn — co.
Put M = sup,., {llyf (v) - Bo|l[|x,, — o||}. From (3.10), it follows by the nonexpansive of
Jm,x and the inverse strongly monotonicity of A that

len =0l < (1= )" [[yn = 0|1” + 20y Bllxa = oI + 20, M
< (1= a7t — M) — (0 = LAD)|? + 2,y Bl|x — 0% + 20, M
< (1-a,7) {||un — 0|+ A (A= 20) || Aty — Av||2} + 20yl — OI* + 2a,M
< (1=a¥) 1% =]+ (1= F)* A (A=2ax) || Atty, — A0|* + 201,y | X0 —0|* + 20, M
- <1—2cxn (?—yﬁ)+((xn?)2> 2=+ (1=a,T) A (A=20) || Atz — Av|> +2a, M

< loxen = 7)”2 + “n?zllxn - v”2 + (1 - 0‘71?)2-)L (A —2a) [|Auy - AUI|2 +2a, M,
(3.12)
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which implies that
1= a,7)°A Qat = A) | Aty — AD|* < a7 |30 — 0| + 20, M. (3.13)
Y Y

Since &, — 0, we have ||Au,—Av|| — O0asn — oo.Since Jpr, is 1-inverse-strongly monotone
and I — LA is nonexpansive, we have

¥ = o|” = 1Jags (= M) = ata (v = LAD) |2 < (1t — LAty — (v = LAD) , Yy — 0)

1
=5 {”un—)LAun_(U_)lAU)||2+ ||yn—v||2— ||ttn—AAu, —(v-1AD) - (y,—v) ||2}

1

< 5 { It = 01 + lyw = 0] = |40 = yu = L(Au, - A0) |}

NI~ NI

{||un—v||2+ ||yn—v||2—||un—yn||2+2/\ (Un—Yn, Atty— AV) = 1| Aty — Av||2} .
(3.14)

Thus, we have
lyn - '0||2 <ty —v|* - [|en - yn”z + 21 (U — Yn, Aty — AV) — \*|| Ay, — Av|*. (3.15)
From (3.5), (3.10), and (3.15), we have

loen =0l < (1= ) lyn = 0|” + 200y fllxs oI + 204 M

<(1- txn?)2 {||un -l - ||2en — yn”2 + 24 (Uy — Yn, Aty — Av) — N*|| Auy, — AvllZ}
+ 20,y Bl — 0|* + 2a,M

< (1= @) llxn = ol* = (1= @) |t = yul|* + 2(1 = @) *A (e = Y, Auty, — Av)
— (1 - a,7)* V|| A, — A0l + 20,y Bl — 0|* + 20, M

= (1=2a, (F=¥B) + ()" l1xn = 01> = (1 = 20F)* [t =y
+2(1- an?)z)t (un = Yn, Auy, — Av) — (1 - (Xn?)z)LZHAun - Av|® + 2a,M

< 1w = oI + @ llen = 0> = (1= @) | = yu®
+2(1- zxn?)z)t (un = Yn, Auy, — Av) — (1 - an?)z)@HAun - Av|? + 2a, M.

(3.16)

Thus, we get

(1= au?)*[[tn = yll” < @a¥lln = 01 +2(1 = @a¥)*A (ttn = Y, Aut — Av) (3.17)
= (1 - ay¥) A% Aty — Av|” + 20, M.
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Since o, — 0, ||Au, — Av|| — 0asn — oo, we have |ju, — y,|| — 0asn — oo. It follows
from the inequality [|yn — Synll < [lyn — unll + l[un — xull + |lxn — Syx|| that |ly» — Syu|| — 0as
n — co. Moreover, we have [|x,; — yall < ||xn — sl + [[un = ynll — Oasn — oo.

PutU = SJpma(I — LA). Since both S and [ (I — LA) are nonexpansive, we have U
is a nonexpansive mapping on H and then we have x, = a,yf(x,) + (I — a,,B)UT,, x, for all
n € N. It follows by Theorem 3.1 of Plubtieng and Punpaeng [6] that {x,} converges strongly
to z € F(U) N EP(F), where z = Prapnepr) (Y f + (I = B))zand ((B-yf)z,u—z) >0, for all
u € F(U) N EP(F). We will show that z € F(S) N I(A, M). Since {x,} converges strongly to
z, we also have x, — z. Let us show z € F(S). Assume z ¢ F(S). Since ||x, — y»|| — 0 and
x, — z, we have y, — z Since z # Sz, it follows by the Opial’s condition that

liminf||y, - z|| < liminf|ly, — Sz|| < liminf {||yx — Sy + [|Syx — Szl|}
n [ee] n [e] n [e] (318)
< liminf||ly, - z||.

This is a contradiction. Hence z € F(S). We now show that z € I(A, M). In fact, since A
is a—inverse-strongly monotone, A is an 1/a-Lipschitz continuous monotone mapping and
D(A) = H. It follows from Lemma 2.4 that M+ A is maximal monotone. Let (p, g) € G(M+A),
thatis, g — Ap € M(p). Again since vy, = Jp (un, — LAu,), we have u, — AAu, € (I +AM)(y,),
that is,

}L (un —Yn— )LAun) eEM (]/n) . (319)
By the maximal monotonicity of M + A, we have
1
<P “Yn, &~ AP - 1 (un —Yn— )‘Aun)> >0, (3.20)
and so
1
<P - y”’g> 2(P—YnAp+ n (u" ~Yn _J\Aun)
= <p—yn,Ap—Ayn+Ayn - Auy, + Jl—\ (un—yn)> (3.21)
1
>0+ (p = Yn, Ay — Auy) + <p —yn,X (un - yn)> .

It follows from ||u, — y.|| — 0, ||Au, — Ay,|| — 0and y, — z that

lim (p-y,,g)=(p—2¢) >0. (3.22)

n— oo

Since A + M is maximal monotone, this implies that 0 € (M + A)(z), thatis, z € I(A, M).
Hence, z € Q := F(S)NEP(F)NI(A, M). Since F(S)NI(A, M) = F(S)NF(Jma(I-1A)) c F(U),
we have Q C F(U)NEP(F). Itimplies that z is the unique solution of the variational inequality
(3.4). O
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Now we prove the following theorem which is the main result of this paper.

Theorem 3.2. Let H be a real Hilbert space, let F be a bifunction from H x H — R satisfying
(A1)—(A4) and let {S,} be a sequence of nonexpansive mappings on H. Let A : H — H be an
a-inverse-strongly monotone mapping, M : H — 2H be a maximal monotone mapping such that
Q = " ,F(Sy) NEP(F) N I(A, M) #@. Let f be a contraction of H into itself with a constant
p € (0,1) and let B be a strongly bounded linear operator on H with coefficienty > 0and 0 <y <y/p.
Let {x,}, {yn} and {u,} be sequences generated by x, € H and

F (un,y) + %(y—un,un -x,) >0, VyeH

Xn+l = an]’f (xn) + (I - “nB) Snyn/ (323)
Yn = ]M,)L (un - )LAun) Yn>0,
forall n € N, where A € (0,2a], {a,} C [0,1] and {r,} C (0, 00) satisfy
lima, =0, Z a, = oo, Z |41 — aty| < 00,
" - (3.24)
liminfr, >0, Z [Fne1 — 7| < 0.
n—oo n:1

Suppose that 3771 sup{||Sns1z — Spz|| : z € K} < oo for any bounded subset K of H. Let S be a
mapping of H into itself defined by Sx = lim,_,,S,x, for all x € H and suppose that F(S) =
M1 F(Sy). Then, {x,}, {yn} and {u,} converges strongly to z, where z = Po(I - B +yf)(z) isa
unique solution of the variational inequalities (3.4).

Proof. Since a, — 0, we may assume that a,, < ||B||™! for all n. First we will prove that {x,} is
bonded. Let v € Q. Then, we have

X1 = 0ll = ey f (xa) + (I = 24B) Sy — 0
< atylly f (xn) = Bol| + |1 - a Bl |y — |
< ayllyf (xu) - Boll + (1 - a,¥) l|xa - |
< aully (f (xa) = £ (©)) + (vf (©) = Bo) | + (1 = an¥) s = || (3.25)
< ayPllxa — vl + anlly f (v) = Bol| + (1 - an¥) [lxa - 0l
= (1= an (T~ YB)) lxu = 0l + aullyf () - Bo|

Iyf (v) -~ Boll

=(1-ay(y-ya ”xn_v”"'an Y -ya —
(1-an (¥ - ya)) (r=ya) =52

It follows from (3.25) and induction that

- ol < max { Iz =l = If () ~B@) I}, n20 (326)
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Hence {x,} is bounded and therefore {u,}, {y.}, {f(x4)}, {Snyn} and {A(u,)} are also
bounded. Next, we show that ||x,.1 — x,]| — 0. Since I — LA is nonexpansive, it follows
that

1Yne1 = Yull = 1avia (a1 — MAuyi1) = Tara (U — MAuy,) ||

(3.27)
< || (un+1 - )tAun+1) — (up — )LAun) || < ||un+1 - un“-

Then, we have

xn42 = Xpsall = llans1y f (xns1) + (I = @n11B) SpiaYnsr — @y f (xn) = (I = @4 B) Syl
= ||anayf (xni1) + (I = @ni1B) Sps1Yna1 — any f (xn) — (I — 2,B) Sy
— (I = an+1B) Sps1yn + (I = @ns1B) Spi1yu — (I = @4 B) Spi1yn
+ (I - a,B) S|
= ||(I = an1B) (Sna1¥ns1 — Sne1Yn) + (@ — Ani1) BSpi1yn
+ (I = auB) (Sni1¥n=Sn¥n) + (@nr1=n) Y f (Xn) + i1y f (Xna1=f (xa)) ||
< (1=ana1Y) lYns1=Yaull+lan—ana| 1BSns1yull+ (1=an¥) [|Sns1yn—Snynll
+lan = anal lyf (xn) | + @naa ¥ Bllxnss — x|
< (1= anaa) |Yner = Yaul| + @neryBllxna = xall
+ oy = api1| (IBSwsaymll + Iy f Gen) ) + 1Sns1yn = Snymll
< (1= an) ltna = tnll + ana P l1xnsr = 2ull + latn — atpsa | M

+sup {”Sn+1z - SnZ” VS {yn} } ’
(3.28)
where M := sup{max{||BS,c1¥all, Iy f(xn)|l} : 1 > 0} < co. On the other hand, we note that
F (tn,y) +rl(y—un,un—xn> >0, VyeH, (3.29)

1
F (uns1,y) + — (Y = Uns1, Uns1 = Xna1) 20, Yy € H. (3.30)
n+

Putting y = 1,41 in (3.29) and y = u, in (3.30), F(up, ttpe1) + (1/70) (tps1 — U,y — x,) 2 0
and F (i1, Un) + (1/7ns1) (Un = Uns1, U1 — Xni1) 2 0. By (A2), we have

<un+1 ~ Up, u"r_ Tn_ Hnel 7 Tl > >0 (3.31)

n Tn+1
and hence

n
(tns1 — Xps1)) > 0. (3.32)

n+l

<un+1 —Up, Up — Upy1 + Upyl — X —
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Since liminf, _, 7, > 0, we assume that there exists a real number b such that r, > b > 0 for
all n € N. Thus, we have

r
||un+l - un”2 < <un+1 — U, Xn+1 — Xp + <1 - ’ n1> (Upa1 — xn+1)>
" (3.33)

1-In
-

n+l

< lttmsr = ] {an x4 e xmn},

and hence

1
“un+1 - un” < ||xn+1 - xn” + r |rn+1 - rnl “un+1 - xn+1”
i (3.34)

1
< ||xn+1 - xn” + E |rn+1 - rnl L/
where L = sup{||lu, — x,| : n € N}. From (3.28), we have

— 1
02 = Xl (1= tusF) (Bn = 2l + 1t = 1ol L) + @Bl =]

+ |y = apar| M +sup {||Sps1z — Snzll - z € {yn} }

(1 - any)
b

+ |y — apar| M +sup {||Sps1z — Snzll - z € {yn} }

= (1 - anay + ane1YP) [|Xna1 — xal| + [Tps1 — 1| L

(3.35)
_ L
< (1 — Ayl (Y - Yﬂ)) ”xn+1 - xn” + E |rn+l - rn| + |‘Xn - ‘Xn+1| M
+sup {[ISn1z — Szl : z € {yn}}.
Since {y,} is bounded, it follows that >,72; sup{||Sy+1z — Suz| : z € {yn}} < oo. Hence, by
Lemma 2.3, we have ||x,41 — x,|]| = o0 asn — oo. From (3.34) and |r,,;1 — 1| — 0, we have

limy, -, oo || Un+1 — tn|| = 0. Moreover, we have from (3.27) that limy, ., || Yn+1 — ¥l = 0.
We note from (3.23) that x, = a1y f (x4-1) + (1 — a4-1B) Sp-1yn-1. Then, we have

2, — Snyn” < lxn = Sn—l]/n—l” + ”Sn—l]/n—l - Sn—lyn” + ”Sn—lyn - SnynH
< an—l”)/f (xn—l) - BSn—l]/n—l” + ”yn—l - yn” (336)
+sup {[ISn-1z = Szl s z € {yn}}-

Since a, — 0, ||Yn-1—Yall — 0and sup{||Sy-12—Snz| : z € {yn}} — 0, we get ||x,—Snya| —
0. From the proof of Theorem 3.1, we have

[t = 011* < |30 = ) = |20 — )%, (3.37)
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for all v € Q. Therefore, we have

i =0l = llawy f(x0) + (I = €uB)Suyn = o||°
= ||(T = @uB)(Suyn - ©) + a(y f (xu) - BO)||”
< (1= an7)?||Suyn = || + 22 (y f () = Bv, x,, - ©)
< (1= ) yn = 01* + 200y (f (%) = f (0), X = ) + 22u(yf (v) = B, X0 = V)
< (1= any) lltn — 0% + 200y (f (xn) = f (©) , %0 = 0) + 22, (yf (v) = Bv, x, - 0)
< (1= )’ {lln = 012 = 1t = a1} + 200yl — 1
+ 20, ||yf (0) = Bo|| lxu o]
= (1-200 (F=7B) + (@1)”) llxn = 0P = (1 = @)1 = 10|
+ 24, ||y f (©) - Bo]| |, o]

< 120 = 0l + an¥ 1% = 0l = (1 = aa¥) [0 — al® + 2aully f (v) = Bollllx — ||
(3.38)

and hence

—\ 2 —_
(1= any) %0 — al® < ¥ 12w = 0> + 2aully f (©) = Bollllxn = 0l + [0 = 011 = | X0s1 = |
< oy |0 = 0|I* + 2atully f (v) = Bo|||lx, -

+ [lxn = x|l (1 = 2l + [xpe1 = 0l]) -
(3.39)

Since {x,} isbounded, a,, — 0and ||x, — x,:1]| — 0, it follows that ||x, —u,|| — Oasn — oo.
Put M = sup,,{[lyf(v) — Bo|||lx» — o||}. It follows from (3.38), the nonexpansive of
Jm,a and the inverse strongly monotonicity of A that
2 —\2 2 2
1 = 01 < (1= @) [lyn = oI + 20y Blln - 0 + 200 M
< (1= a,7) 21| (tn = MAu) — (v = LAD)|? + 2,y Bl|xn — 0% + 20, M
< (1-a,y)? {||u,, — 0P+ A (A= 2a) || Aup - Av||2} + 20,y Bl|xn — 0|7 + 20, M
< (1= an) llxn - o) + (1= an) A (A - 2ax) || Auty, — Av|]?
+ 20,y Pl xn — o|)? + 2a,M
- (1—20(" (7-yﬁ)+(a,,7)2) locu—o)% + (1-a,F)*A (A=2ax) || Aty — Av||? + 2a, M

< ltn = 0|2 + an P llxn — o) + (1= a,) A (A = 2a2) || Aty — Ao + 2, M.
(3.40)
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This implies that

(1= a7)’L Qe = 1) [|Atty ~ AD|? < a7Plls = ]2 + 20, M + |25 = ] = |11 — 0]

< Y 11200 =l + 20, M+ |30, = X1 || (|3 = 0|+ |21 =2]]) -
(3.41)

Since a,, — 0 and ||x, — x,1|| — 0, we have ||Au, — Av|| — 0asn — oo.From (3.5), (3.15)
and (3.38), we have

%01 —|I* < (1 - zxnf)z”yn - v||2 +2a,yB|xn — v|* + 22, M

<(1- ocn?)2 {||un -0l = |lun - yn”z + 24 (Uy = Yn, Aty — Av) — N?|| Ay — A’0||2}
+ 20,y B0 — 0|* + 22, M

< (L= @) ’llxn = 0l = (1= @) |t = yul|* + 2(1 = @a¥)*A (tn =y, Aut — Av)
— (1 - ay7)* V|| Ay, — A0l + 20,y Bl — 0| + 20, M

= (1=2a, (F=yB) + (@:)”) llxn = oI1° = (1 = ) [t =y
+2(1 = a,7) A (= Yo, Aty — A0) = (1 - a,7)*A?|| Anty, — Av|? + 22, M

< Jln = 0 + a0 = 01 = (1= )|t =y

+2(1- an?)zl (tn = Yn, Auy, — Av) — (1 - zxn?)z)LZHAun - Av|* + 2a, M.
(3.42)

Thus, we obtain

(1 - an?>2”un - ]/n”2 < an?ZHxn - Ullz + 2(1 - ‘Xn?)z)L <un = Yn, Ally — AU>
— (1- awy) ¥ Auy, = Av|* + 20, M + |25 = 0> = 2001 - 0|
< an)72||xn — o>+ 2(1- (xn?)z)x (un = Yn, Auy, — Av)

- (1_‘xn?)z)‘zllAun_Av||2+2“nM+ |30 =Xl (lxn =2+ [|2xne1—l])
(3.43)

Since a, — 0, ||Au, — Av|| — 0and ||x, — xp41]] — 0, we have |lu, —yu|| = 0asn — oo. It
follows from the inequality ||y =S, ¥n|l < [[Vn—tnll+||ttn—2n ||+ ]| Xn—=Snyn|| that |yn—=Spyall — 0
asn — oo. Moreover, we note that ||x, — y,|| < ||xn — tn|| + [|[4n — yu|| = 0asn — oo. Since

1Syn = yull < I1SYn = Suyull + 1Snyn — yall

(3.44)
<sup {”SZ -Snzll:z € {yn}} + ”Snyn - yn”
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for all n € N, it follows that lim,, _, oo ||Sy» — Y| = 0. Next, we show that

limsup ((B-yf)z z—-x,) <0, (3.45)

n—oo

where z = Po(I - B + yf)(z) is a unique solution of the variational inequality (3.4). To show
this inequality, we choose a subsequence {x,,} of {x,} such that

lim ((B=yf)z,z—xu) =limsup ((B-yf)z,z—xp). (3.46)

n—oo

Since {uy,,} is bounded, there exists a subsequence {uni]_ } of {u,,} which converges weakly to

w. Without loss of generality, we can assume that u,, — w. From ||u, — y,|| — 0, we obtain
Yn,w. Let us show w € EP(F). It follows by (3.23) and (A2) that

rl (Y = tn, Uy — x) > F (y,un) (3.47)
and hence
<y — Up,, un,-r— Xn; > >F (y, uni) . (3.48)

Since (un, — xp,) /1w, — 0and u,, — w, it follows by (A4) that 0 > F(y,w) for all y € H. For ¢
withO<t<landy € H,lety; =ty + (1 - t)w. Since y € H and w € H, we have y; € H and
hence F(y;, w) < 0. So, from (A1) and (A4) we have

0=F(y,yi) <tF (yr,y) + A=H F (yr,w) <tF (y1,y), (349)

and hence 0 < F(y;, y). From (A3), we have 0 < F(w, y) for all y € H and hence w € EP(F).
By the same argument as in proof of Theorem 3.1, we have w € F(S) N I(A, M) and hence
w € Q. This implies that

limsup((B-yf)zz—x,) = ili_)m((B—yf) z,z2—%y) =((B-yf)z,z-w) <0. (3.50)

n—oo
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Finally we prove that x, — z. From (3.23), we have

w1 = 27 = [lawy £ (ea) + (I = €uB) Suyn - z||*
= |lan (y f (xn) = B2) + (I = uB)(Suyn - 2)|’
< |I(I = auB) (Suyn = 2) || + 2y f (xtn) = Bz, X1 - 2)
< (1)’ lyn—2|* + 2y ( f ()= £ (2), X1 —2) +2an (Y f (2)~BZ, X1~ 2)
< (1Y)l =2I" + 20y Bllxn =2l 1201 -2+ 2 (y f (2)~ B2, X1 -2)

< (=) lxa =217 + anyB (Ilxn =217 + 101 ~zI7) +2a, (¥ f (2)~B2, %1 -2).

(3.51)
This implies that
1541 — Z||2 < 1- 2“"71+_(Z:}}_:;2 +anyp [[xn — z||2 + 1 —2Z:Yﬂ (vf (z) — Az, xp41 — 2)
: [1 Sl DL “"] S B
- anyp 1-auyp (3.52)
T (1S (2) = Az = 2)

< (1=yn) 120 = 2I* + 6,

where y, := (2a; (7 = y)/(1 = oy yp) and 6, := o/ (1 = an YP) {@aF llxn = 2IP + 2(y f(2) -
Az, xu1 — z)}. It easily verified that y,, — 0, 3,;2y» = o0 and limsup, _, _6n/y, < 0. Hence,
by Lemma 2.1, the sequence {x, } converges strongly to z. O

Asin [10, Theorem 4.1], we can generate a sequence {S,} of nonexpansive mappings
satisfying condition >,,”; sup{||Sps12 — Sxz|| : z € K} < o0. for any bounded K of H by using
convex combination of a general sequence {Tk} of nonexpansive mappings with a common
fixed point.

Corollary 3.3. Let H be a real Hilbert space, let F be a bifunction from H x H — R satisfying
(A1)~(A4) and let A : H — H be an a-inverse-strongly monotone mapping, M : H — 2H bea
maximal monotone mapping. Let f be a contraction of H into itself with a constant § € (0,1) and let
B be a strongly bounded linear operator on H with coefficient y > 0 and 0 <y < y/p. Let {pk} bea
family of nonnegative numbers with indices n, k € N with k < n such that

() Seafl=1,forall neN;
(ii) lim,—, Bk > 0, for every k € N;

(iii) Z%Z’Z:llﬁ’ﬁn _ﬁ]rﬂ < oo.
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Let {Tx} be a sequence of nonexpansive mappings on H with Q := F(N;2,F(Tx)) N EP(F) N
I(A, M) # @ and let {x,}, {y,} and {u,} be sequences generated by x; € H and

F (tn,y) + rl(y—un,un -x,) >0, VYyeH

X1 = anY f (n) + (L= auB) 3 frTiyn, (3.53)
k=1

Yn = ]M,/\ (un - )LAun) Yn>0,

forall n € N, where A € (0,2a], {a,} C [0,1] and {r,} C (0, o0) satisfy

[e'e] [ee]
Ji_r)r;oan=0, thn=00, Z|lxn+1—lxn|<00,
n=1 n=1
_ (3.54)
liminfr, >0, Z |71 — 70| < o0.
n— oo lel

Then, {x,}, {yn} and {u,} converges strongly to z in Q which solves the variational inequality:
((B-yf)zz-x)20, xeQ. (3.55)

If S, =5,B=1andy =1in Theorem 3.2, we obtain the following corollary.

Corollary 3.4 (see Peng et al. [9]). Let H be a real Hilbert space, let F be a bifunction from CxC —
R satisfying (A1)—(A4) and let S be a nonexpansive mapping on H. Let A : H — H be an a-
inverse-strongly monotone mapping, M : H — 2 be a maximal monotone mapping such that
Q:=F(S)NEP(F)NI(A, M) #@. Let f be a contraction of H into itself with a constant p € (0,1).
Let {x,}, {yn} and {u,} be sequences generated by x, € H and

F (un,y) + ri(y—un,un -x,)>0, VYyeH

Xn+1 = anf (xn) + (I - an) Synl (356)
Yn = Ima (Uy — AAu,)  Vn 20,
foralln € N, where A € (0,2a], {a,} C [0,1] and {r,} C (0, o) satisfy
lima, =0, Z a, = oo, Z |41 — ty| < 00,
= n=1 n=1
- (3.57)
liminfr, >0, Z [Fne1 — 7| < 0.
n— oo o

Then, {xn}, {yn} and {u,} converges strongly to z € Q, where z = Pq f ().
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If S, =S, A=0and M = 0 in Theorem 3.2, we obtain the following corollary.

Corollary 3.5 (see S. Plubtieng and R. Punpaeng [6]). Let H be a real Hilbert space, let F be a
bifunction from H x H — R satisfying (A1)—(A4) and let S be a nonexpansive mapping on H such
that Q := F(S)NEP(F) #@. Let f be a contraction of H into itself with a constant p € (0,1) and let
B be a strongly bounded linear operator on H with coefficient y > 0and 0 <y <y /p. Let {x,}, {u,}
and be sequences generated by x, € H and

1
F(uny) + —(y = ttn,un = 2x) 20, Vy € H

(3.58)
Xp+1 = an}’f (xn) + (I — a,B) Suy,
forall n € N, where {a,} C [0,1] and {r,} C (0, o) satisfy
lima, =0, Z a, = oo, Z |ani1 — ] < oo,

n— oo - =

" o (3.59)
liminfr, >0, Z [ne1 — 7| < 0.
n— oo =1

Then, {x,} and {u,} converges strongly to a point z in Q which solves the variational inequality:

(B-yf)z,z-x)>20, xeQ. (3.60)
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