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1. Introduction

Let H be a real Hilbert space with inner product { -, - ) and norm || - ||, respectively. Suppose
that C is nonempty, closed convex subset of H and F is a bifunction from C x C to R, where
R is the set of real number. The equilibrium problem is to find a x € C such that

F(x,y) >0, VyeC. (1.1)

The set of such solutions is denoted by EP(f). Numerous problems in physics, optimization,
and economics reduce to find a solution of equilibrium problem. Some methods have been
proposed to solve the equilibrium problems in Hilbert space, see, for instance, Blum and
Oettli [1], Combettes and Hirstoaga [2], and Moudafi [3].

A mapping A : C — H is called monotone if (Au — Av,u —v) > 0. Ais called relaxed
(u, v)-cocoercive, if there exist constants u > 0 and v > 0 such that

(Ax - Ay, x —y) 2 -ul|Ax - Ay|P +olx - yI?, V¥x,y€C, (1.2)
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when u = 0, A is called v-strong monotone; when v = 0, A is called relaxed u-cocoercive.
Let A: C — H be a monotone operator, the variational inequality problem is to find a point
u € C, such that

(Au,v-u)>0, VYveC. (1.3)

The set of solutions of variational inequality problem is denoted by VI(C, A). The variational
inequality problem has been extensively studied in literatures, see, for example, [4, 5] and
references therein.

Let B be a strong positive bounded linear operator on H with coefficient ¥y, that is,
there exists a constant ¥ > 0 such that (Bx, x) > ¥||x||, forallx € H. A typical problem is to
minimize a quadratic function over the set of the fixed points of a nonexpansive mapping on
a real Hilbert space H:

ngI}l(I%)(Ax,x) - <xlb>l (14)

where T is a nonexpansive mapping on H and b is a point on H.

A mapping T from C into itself is called nonexpansive, if || Tx-Ty|| < |[[x-y]||, Vx,y € C.
The set of fixed points of T is denoted by F(T). Let {T;}Y; be a finite family of nonexpansive
mappings and F = ﬂglF (T;) # @, define the mappings

Upg = A1 Ti+ (1 - An1)],
Upp = dypTolyg + (1 - A0)1,
(1.5)
UnN-1 = AN Tnalpn-a + (1= Ayn-1) ],

Wy =UpN = Ay NTNUp N1 + (1= Agn) T,

where {1,,;}~, ¢ (0,1] for all #n > 1. Such a mapping W, is called W-mapping generated by

T1,T,,...,Tn and {4, }f\zfl. We know that W, is nonexpansive and F(W,,) = ﬂ{ZlP(Ti), see [6].
Let S : C — C be a nonexpansive mapping and f : C — C is a contractive with

coefficient a € [0, 1). Marino and Xu [7] considered the following general iterative scheme:

X1 = &Y f (%) + (1 — a,B) Sx,. (1.6)

They proved that {x,} converges strongly to z = Pr(s)(I-B+7y f)(z), where Pr(s) is the metric
projection from H onto F(S).
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By combining equilibrium problems and (1.6), Plutbieng and Pumpaeng [8] proposed
the following algorithm:

F(un,y) + l(y —Up, Uy —X,) 20, Yy€H,
Tn (1.7)

Xni1 = any f (%) + (I — a,B) Suy.

They proved that if the sequences {a,} and {r,} satisfy some appropriate conditions, then
sequence {x,} convergence to the unique solution z of the variational inequality

((B-yf)z,x-z) >0, VxeF(S)NEP(F). (1.8)

Motivated by [8], Colao et al. [9] introduced an iterative method for equilibrium problem
and finite family of nonexpansive mappings

F(un,y) + l<y —Up, Up—Xy) 20, VyeH,
Tn (1.9)

X1 = An Y f (%) + Pxp + (1 = B)I — ayB)Wyuy,

and proved that {x,} converges strongly to a point x* € F N EP(F) and x* also solves the
variational inequality (1.8). For equilibrium problems, also see [10, 11].

On the other hand, let A : C — C be a a-cocoercive mapping, for finding common
element of the solution of variational inequality problems and the set of fixed point of
nonexpansive mappings, Takahashi and Toyoda [12] introduced iterative scheme

X1 = Xy + (1= ) SPe (I — 1, A) xy. (1.10)

They proved that {x,} converges weakly to z € F(S) N VI(C, A). Inspired by (1.10) and [13],
Y. Yao and J.-C. Yao [14] given the following iterative process:

Yn = Pc(I - .)LnA)xn,
(1.11)
Xp+1 = Al + PuXn + YuSPc (I — Xy A) Y,

and proved that {x,} converges strongly to z € F(S) N VI(C, A). By combining viscosity
approximation method and (1.10), Chen et al. [15] introduced the process

Xpe1 = Anf (Xn) + PuSPc(I — My A)xy, (1.12)
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and studied the strong convergence of sequence {x,} generated by (1.12). Motivated by (1.6),
(1.11), and (1.12), Qin et al. [16] introduced the following general iterative process

Yn = Pc (I - SnA)xn/
(1.13)
X1 = Y f (Waxn) + (I = ayBYW,Pc (I = t,A)yy,

and established a strong convergence theorem of {x,} to an element of (Y, F(T;) N VI(C, A).
The purpose of this paper is to introduce the iterative process: x; € H and
1
F(un,y) + T—(y —Un, Un—X) 20, Yy €eC,
n

Yn = bty + (1 = b)) Wy, Pe (I - 5,A) uy, (1.14)

X1 = Y f (Wixn) + xn + (1 = B)I — ayB)YW,, Pc (I = t,A) Y,

where W, is defined by (1.5), A is (1, v)-cocoercive, and B is a bounded linear operator. We
should show that the sequences {x, } converge strongly to an element of NY,F(T;)NVI(C, A)n
EP(F). Our result extends the corresponding results of Qin et al. [16] and Colao et al. [9], and
many others.

2. Preliminaries

Let H be a real Hilbert space and C a nonempty, closed convex subset of H. We denote strong
convergence of {x,} to x by x, — x and weak convergence by x, — x. Let Pc : C — H
is a mapping such that for every point x € H, there exists a unique Pcx € C satisfying
llx = Pex|| < |lx = y||, for all y € C. P¢ is called the metric projection of H onto C. It is known
that Pc is a nonexpansive mapping from H onto C. It is also known that Pcx € C and

(x=Pcx,Pcx-y)>0, VxeH,yeC, (2.1)

>, Vx,yeH. (2.2)

(x =y, Pex = Pcy) > || Pex - Py

Let A : C — H be a monotone mapping of C into H, then u € VI(C, A) if and only if
u = Pc(u — MAu), forall A > 0. The following result is useful in the rest of this paper.

Lemma 2.1 (see [17]). Assume {a,} is a sequence of nonegative real number such that

ans1 < (1= an)an +6,, Yn2>0, (2.3)

where {a,} is a sequence in (0,1), and {6,} is a sequence in R such that

(1) X5lottn = oo,
(2) limsup, _,_ (6,/an) <0o0r 37|64 < o0.

Then, lim,, _, xa, = 0.



Fixed Point Theory and Applications 5

Lemma 2.2 (see [18]). Let {x,}, {un} be bounded sequences in Banach space E satisfying xp.1 =
TpXn + (1= Ty)u, (foralln > 0) and iminf,, _, o (||4pe1 — tn || = || Xne1 — Xn||) < 0. Let T, be a sequence
in [0,1] with 0 < liminf, 7, <limsup, , 7, < 1. Then, im, _, o ||x, — u,|| = 0.

Lemma 2.3. For all x,y € H, there holds the inequality

e + yll < llx[* + 2(y, x + y)- (2:4)
Lemma 2.4 (see [7]). Assume that A is a strong positive linear bounded operator on a Hilbert space
H with coefficient ¥ > 0and 0 < p < ||A||™L. Then ||I - pA|| <1 - py.

For solving the equilibrium problem for a bifunction F : C x C — R, we assume that
F satisfies the following conditions:

(A1) F(x,x) =0forallx € C;
(A2) F is monotone: F(x,y) + F(y,x) <0forallx,y € C;
(A3) forallx,y,z € C, limsup, (F(tz+ (1 -t)x,y) < F(x,y);

(A4) forall x € C,F(x, - ) is convex and lower semicontinuous.
The following result is in Blum and Oettli [1].

Lemma 2.5 (see [1]). Let C be a nonempty closed convex subset of a Hilbert space E, let F be a
bifunction from C x C into R satisfying (A1)—(A4), let r > 0, and let x € H. Then there exists z € C
such that

F(z,y)+%(y—z,z—x)20, Vy e C. (2.5)

We also know the following lemmas.
Lemma 2.6 (see [19]). Let C be a nonempty closed convex subset of Hilbert space H, let F be a

bifunction from C x C to R satisfying (A1)—(A4), let r > 0, and let x € H, define a mapping T, :
H — Cas follows:

Tr(x):{zeC:F(z,y)+%(y—z,z—x>ZO,VyEC}, (2.6)

forall x € H. Then, the following holds:

(1) T, is single-valued;
(2) T, is firmly nonexpansive-type mapping, that is, for all x,y € H,

|| Tx - Try”2 <(T,x-T,y,x-y); (2.7)

(3) F(T;) = EP(F);
(4) EP(F) is closed and convex.
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A monotone operator T : H — 2! is said to be maximal monotone if its graph G(T) =
{(u,v) : v € Tu} is not properly contained in the graph of any other monotone operators. Let
A be a monotone mapping of C into H and let N¢(v) be the normal cone for C at a point
v € C, thatis

Nc(w)={xeH:(v-y,x)>0,YyeC}. (2.8)

Define

Av+ Nc(v), veC,
Tv:{ c®) 2.9)

, véC.

It is known that in this case T is maximal monotone, and 0 € Tv if and only if v € VI(C, A).

3. Strong Convergence Theorem

Theorem 3.1. Let H be a real Hilbert space and C be a nonempty closed convex subset of H. {T;}~,

a finite family of nonexpansive mappings from C into itselfand F : CxC — Ra bifunction satisfying
(A1)—(A4). Let A : C — H be relaxed (u,v)-cocoercive and p-Lipschitzian. Let f : C — C be an
a-contraction with 0 < a <1 and B a strong positive linear bounded operator with coefficient y > 0,
y is a constant with 0 < y < y/a. Let sequences {a,}, {b,} bein (0,1) and {r,} be in (0,00), pisa
constant in (0,1). Assume Cy = ﬂfZlF(Ti) NVI(C,A) NEP(F) # @ and
(i) imy oty = 0, 307 a0y = o0;
(ii) imy, - oo|trys1 — 7n] = 0, liminf,, _, 1, > 0;
(iii) {sn}, {tn} € [a,b] for some a, bwith0 < a < b < 2(v—up?)/p* and lim,, _, o, |Sys1— Sy =
limy, . o [tns1 — ta| = 0;

(iv) limy, - o[ A1 — Ap| = limy, . o |bys1 — bu| = 0.
Then the sequence {x,} generated by (1.14) converges strongly to x* € Cy and x* solves the
variational inequality x* = Pc,(I — (B -y f))x*, that is,

(yfx*—Bx",x—x*) <0, VxeC,. (3.1)

Proof. Without loss of generality, we can assume a,, < (1 — f)||B|| ™. Then from Lemma 2.4 we
know

a, _

B||S(l—ﬂ)(l—l_ﬁ}f):l—ﬁ—an?. (3.2)

oy
1-p)I-a,B||=0-p)|I-
[ =p)1 =B = =) |- 125
Since A is relaxed (u, v)-cocoercive and u-Lipschitzian and (iii) holds, we know from [14]
that for all x, y € C and n > 1, the following holds:

(I =snA)x = (I-sA)y| < llx -yl
(3.3)
| (I - taA)x = (I-ta A)y| < llx -yl
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We divide the proof into several steps.
Step 1. {x,} is bounded.

Take p € Cy, notice that u, = T;,x, and form Lemma 2.6(2) that T, is nonexpansive,
we have

lltn = pll = [ITr, %0 = Tr,p|| < |20 = pl|- (3.4)

Since p = W,Pc(p — sp,Ap), we have

lyn = Pl = [[baten + (1 = bu) WaPc (tn = snAun) — p||
< by|un = pl| + (1 = bn) [[WaPe (un = snAun) - p||
<bylun = p|l + (1= bn)|[tn = snAun = (p = suAp) || (35)
<bulun = p|| + (1= ba)[|un - p||
< |lxn - pll

Then we have

|xne1 = Il = lletny f (Waxn) + Pou + (1 = P)I = anBYWoPe (I = taA)yn = p|
= |l (y f (Wnxn) = Bp) + p(xu = p)
+ (=PI = anB)Wn(Pc(I - tn A)yn = p) ||
= au||y f (Waxn) = Bp|| + Bllxn = p|| + (1 = B = anY) [|yn = p||-

(3.6)

Thus From (3.5) we have

01 = pI| < @y || f (Waxn) = f(p) || + aully £ ) - Bp]| + Bl|xn —p||
+ (1= p—an))|lxn —pll
< anya||xn = pl| + aullyf(p) = Bp|| + (1 = axp)||xu - p|
= (1= an(y = ay)) | %2 = || + aullyf (p) - Bp||

) __ . If ) - Byl 3.7
= (1-an(7 - no Pl ey ) T
(1= an(y =)l =pll + an(y - ay)- ===

7

lyf(p) —BPII}
Yy —ay

lyf(p) —BP”}
el

Smax{”xn -p

Smax{”xl -p

hence {x,} is bounded, so is {u,}, {y.}.
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Step 2. limy, o ||xp41 — Xn|| = 0.
Let xp11 = pxn + (1 = p)zy, foralln > 0, where

1
1-p

Zy =

[any f (Waxy) + (1 = B)I — anB)W,Pc(yn — taAya)]. (3.8)
Then we have

1
||Zn+1 - Zn” = m”Y(anﬂf(Wonm—l) - anf(ann))
+ ((1 - ,6)1 - an+1B) Wi Pc (]/n+1 - tn+1A]/n+1)
= (1= P)I = anB)WyPc(yn = taAya) |
= “ﬁ(‘xnﬂf(wnﬂxnﬂ) - anf(wnxn))
+ [Wn+1PC (yn+1 - tn+1A]/n+1) - W, Pc (]/n - tnA]/n)]

1

— —1 — ﬂ [an+lBWn+1 PC (yn+1 - tﬂ+1Ayn+1>

— 4y BW,, P (Y — taAya) | H

(3.9)

< ”Wn+1PC (yml - tn+1Ayn+1) - WnHPC (]/n - tn+1Ayn) ”
+ ”Wn+1PC (yn - tnﬂA:V") =W Pe (y" B t"Ay"> ”
+ ”Wn+1PC (yn - tnA]/n) - WiPc (y" N t”Ayn) " + Ky,

where

Ko = 25 0N Waiaiw) |+ [BWast e (st = i Ay )

TS ONF (Waxn) |+ IBWaPe (o = Ay )

(3.10)
+

Next we estimate ” W1 Pc (yn+1 —tni Ayn+1 ) Wy Pc (yn —tni1 Ayn) ”/ ||Wn+1 Pc (yn —tui1 Ayn) -
Wi Pe(Yn — taAyn) || and |Wi1 Pe(Yn — tnAYn) — Wi Pe(Yn — thAyy)||. At first

”Wn+1PC (yn - tn+1A]/n) - Wn+1PC (]/n - tnA]/n) ” < ”tnAyn - tn+1Ayn” = |tn+1 - tnl : ||14(yn”)
3.11
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Put v, = Pc(y, — taAy,), we have

[WhirPe (yn = tnAyn) = WaPe (Yn = tnAya) |
= ||Whi10n = Wy, ||
= || Ups1,n0n = Unn0n|
[ At NTN Ut 1D + (1 = Dt ) O = A NTN U N7 = (1= Ao )|
< A, NTNU i1, N-100 = Ay NTNU N1 || + [Asin = dnn| - | 2n]|
< M N | Una,N-10n = U N-10n|| + [ AN = AN ]| - | TNU -1 |
S LETSUNED SN R | Lo

< ”un+1,N—1vn - LIn,N—lvrz” + |)‘n+1,N - An,N|(|lTNun,N—lvn” + ”Un”)

By recursion we get

N
”Wn+1PC (yn - tnAyn) - WuPc (yn - tnAyn) ” <M - Zl)tnﬂ,i - )Ln,ilr
i=1

for some M > 0. Similarly, we also get

N
[Waia Pe (un = spAy) = Wy Pe (= spAuy) || < M - D [ A = Anil-
i=1

Since
1
F(un,y) + r—(y— U, Up —Xn) 20, Yy eC,
n
1
F(tni1,y) + ——(Y = Uns1, Uns1 = Xps1) 20, Vy €C.
Tn+l
Put y = uy. in the first inequality and y = u,, in the second one, we have

1
F(un/ un+l) + r_<un+1 —Up, Up — xn> >0,
n

F(un+1; un) + <un — Ups1, Uns1 — xn+1> > 0.

Tnsl

Adding both inequality, by (A2) we have

1 1
<un+1 — Uy, P (un - xn) - i (un+1 - xn+1)> >0,
n n+

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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therefore, we have

Tnel — T
<un+1 —Up, Uy — Ups1 + (xn+1 - xn) + n; ) “ (un+1 - xn+l)> >0, (3.18)
n+

which implies that

Ilun+1 — Uy ”2 < <un+1 — Uy, (xn+1 - xn) + M (un+1 - xn+1)>
T+l

(3.19)
<Nt =l { s =5l 4 T .
Tn+1
Hence we have
[Tne1 = 7l
”un+1 - un” < ”xn+1 - xn” + —”unﬂ - xn+1”r (320)
Y1
so, by (3.20) and the property ||(I — t,A)x — (I - t,A)y|| < ||x - y||, we arrive at
”Wn+1PC (yn+1 - tn+1Ayn+1) - Wn+1 PC (yn - tn+1Ayn) ”
< ||y = yall
= ||bn+1un+1 + (1 - bn+1)Wn+1PC (I - 5n+1A)un+1
= by — (1= by )W, P (I - 55 A)uy||
= ||bn+1 (un+1 - un) + (bn+1 - bn)un
+ (1 - bn+1) [Wn+1PC (un+l - Sn+1AAun+l) - WunPc (un - 5n+1Aun)]
+ (1 - bn+1) [Wn+1PC (un - Sn+1Aun) - Wy Pc (un - SnAun)] (3 21)

X (1= bpi1) [Wis1Pe (un — $pAuy) — Wy Pe (y — SnAuty) |
+ (by = by ) Wi Pty — 54 Auy) ||
< byt || tner = ttn|| + [brst = bl - ||un|
+ (1= by [[ttnsr = e[| + (1 = bpa) 50 = S| - || Asta|
+ (1= buit) [|[Wa Pe (un — spAun) = Wy Pe (uy — snAuty) ||
o=l - IWaPe it — 50 At |
= [Jstnsr = tn|| + (1 = brsr) || W1 P (st — 50 Atty) = Wy P (tn — spAuy) || + Ko,
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where

Kz = (1= by [0 = s - ([ At + [ = Bl (IWaPe 1t = s | + o]

Therefore, by (3.14) and (3.20) we get

[|Whi1 Pe (Ynat = tni1 AYni1) = Waia Pe (Yn — tie1 Ayn) ||

L kI

< ||xn+1 - xn” +
Tni1

N
+ (1 - bn+1>M : Zl)lnﬂ,i - )‘n,i| + K2~
i=1

Now submitting (3.11), (3.13), and (3.23) into (3.9), we have

[Trs1 — Tl

ool ”un+1 — Xn+1 II

201 = zall = [l20ns = 2| +

N
+ (1 - bn+1)M : Zl/\nﬂ,i - )‘n,il +Ks
i=1

N
+ |tn+1 - tnl : ”A]/n” +M - Z|-’\n+1,i - -)Ln,il + Kl-
i=1

Thus conditions (ii), (iii), and (iv) imply that

timsup([[2n.1 ~ 2al] - 01 ) <0

n— oo
Then, Lemma 2.2 yields

i =5 = Ji 0= ) 2] =

Step 3. limy, . ||Ay, — Ap|| = lim, _, || Au, — Ap|| = 0 for p € Cy.

11

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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Note that

lyn =PI = baten + (1 = bu) WaPe (I = spA)un —p||*
< bullun = p|I* + (1= ba) [| (4 = 50 Au) = (p = 50 Ap) ||°
= buflun = p||” + (1~ ba)
% {|[un = pII* = 280 (1t = p, At = Ap) + 53| Aun - Ap||*) (3.27)
< flun=pl + (1 -ba)
x (2851]| Aun = Ap||* = 2550 [un = p|* + 53| Auen — Ap||}

=l + (1= b2) <25nu rs2o 2;*;”) | At - Ap|]®

o0 =PI = |1 Pc(yn = tnAyn) = Pe(p — taAp) |I*
<1 (n = p) ~ ta(Ayn - Ap)|?
= [y = PII* = 2ta(yn — P, Ayn - Ap) + ]| Aya - Ap||” (3.28)

< |lya —plI* + 2tuu|| Ay - Ap|| = 2t0||yu - p||* + ]| Aya — Ap||®

2t,v
<Ny =pIP + (26 - 220 ) Ay - 9],

hence by 2t,u + 2 — (2t,v/pu*) < 0, we know

25,0
o =PI <l =PI < 1 = I+ (1 o) (250053 = S22 Y A= Aplf. - 329)

By Lemma 2.3, we have

%1 = pII* = Newy f (W) + B+ (1 = P)I = @ B)Wyws = p||*
1= 8) W~ p) + B~ )] + s f Warea) ~ B
<@ =P (Wavw = p) +B(n =) |I” + 200 (y f (Wnt) = BWy0n, X1~ p)
< (= BIWaon P+ Bl pIF + 220 f (Wata) — BWon 0~ p)

<A =P)llow-pl* + Bllxn - p||* + 2a0 My,
(3.30)
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for some M; > 0. Submitting (3.28) into (3.30), we have

2t,v
[0 =PI < (=) [l =17+ (2= 252 ) s = ]

Bl pI + 20,y

< =l + (1= ) (2t 6 - 22 ) Ay, - Ap]| + 2,0,

which implies

2t,v B
12

1= (2 -2t ) v - A

< len = plI* = llensn = plI* + 20,y

= 1% = vt + %ot = I = [ = I+ 2,0,

= |20 = X1 ||” +2(%n = Xns1, Xus1 — p) + 20, M

< ||xn = xnaa ||2 + 2|\ = X || - |[2%ne1 — p|| + 200 M3,
hence from conditions (i), (iii), and (3.26), we have

Jim [| Ay, — Ap]| = 0.

Similarly, submitting (3.29) into (3.30), we also have

lim [| Au, - Apl| = 0.

Step 4. limy,, »||Wpv, — v, = 0.
By (2.2) we have

o = PII* = [P (Yn — tnAyn) = Pc(p - taAp) ||
<{(Yn — tnAyn) = (p — taAp), v — p)
1
= 5 llyn — taAyn = (p = tuAp) |* + [[on —pII”
~ 1Y = vn — ta(Ayw — AP) |

2 2 2
< S{llyn=pl" + llon =" = lyn — o0 = tn(Ayn — Ap) ||}

NIl — NI+~

2 2 2 2
{lyn =pII" + llow = pII" = lyn - vall” - 22| Aya - Ap||

+ 2t (Yn = Un, Ay — Ap)},

13

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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hence

lon =PI < llxa =PI = llyn = oall” - £ ]| Ay = Ap]*

+ 2ty = oall - | Ayn - Apl.

(3.36)

Submitting (3.36) into (3.30), we have

1 =PI < @ =B {1xn =PI = 1n = vull” = ]| Ay = Ap||® + 2tu ||y = val| - || Ay — Ap]|}

+ B - p| + 200, M.

(3.37)
This implies that
(1= P)llya = oall* < %0 = pII* = %01 = PII* - £2l| Ay - Ap|?
(3.38)
+ 2ty ||yn — onl| - || Ayn — Ap|| + 20, M;.
Hence by Step 3 we get
lim ||y, — va|| = 0. (3.39)
Put y, = byu, + (1 — by)Whq,, where g, = Pc(I — s,A)u,. We have
[Wagn = pII* < [|Pc(I = $0A) 1 = Pe(I = suA)p||”
< (un = spAuty = (p = 5uAp), Wadn - p)
1 2 2
= 5 {llun = suAsen = (p = 52 AP) |” + [[Wag ~ p|
) (3.40)
= ||t = Wign = 50 (Aun — Ap)||”}
1 2 2 2
< 5 {llwn = pl”+ Wadn = pII" = llin = Wag|
- sa || Ayn - Ap”2 + 28, (tty — Wign, Auy, — Ap) }.
Hence
IWadn = pII* < lun = pII* = llttn = Wagal® = 53| Ay - Ap|”
(3.41)

+ 25 ||ttn — Wil - ||Aun — Ap||,
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so, we get

v = PI1* < bullun = p|* + (1 = ba) |[Wagu - p||°
<l = pI* = (1 = bu) |40 = Wagu|®

+ (1=ba) [~ 3]l Ay = Ap[|” + 25|t = Wag| - || Auen ~ Ap]]].
Submitting into (3.30), we have

s =plI* < A= B){ltn =PI = (1= bu) [t~ W

15

(3.42)

+ (1=00) [~ 53 [| Ay = Ap||” + 25ul|tn ~ Waga| - || Auen — Ap|[]}

+ﬂ||.xn _P”2 +2anM1

< lxn =pII* = (1 = B) (1 = by) ||t = Wagn|* + K,

where
K = (1= ) [~ 1| Ay~ Apl[ + 250~ Wagal] - [| A~ Apl[] + 2,0,
which implies
im0, — W] = 0.
So, we have
1im ||y = ]| = lim (1 b,) [ ~ Wa]| =0,
which together with (3.39) gives
,}ij{}o”“n — o =0.

Since u, = Ty, x, and T}, is firmly nonexpansive, we have

S <Tr,,xn - Tr,,P, Xn — P>

ln = pII* = 1T, = T, p

1 2 2 2
= 5 {lwn =PI + [l = pII” = 1 Tru200 = 217},

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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which implies

2 (3.49)

llun =PI < I =pII* = llotn = %
which together with (3.30) gives
e =PI < (1= B) o = I+ Blla I + 20,04
< =P {llon = wnll” + [ = pII” + 2(00 = ttn, 10 = p))
+ Bllxn = pII” + 20, My (3.50)
< (= Pllow=uall* + (1= B) (llxa = pII = lln = xa]")
+2(1=P)llon = unll - [|en = pl| + Bllxn = pII” + 20, M1
So

(1= )t = xal” < (1= P)llow = 0a* + [l = pII = 1 =

(3.51)
+2(1 = P)||on — tta| - |lun — p|| + 220 M.
Now (3.47) and condition (i) imply that
lim ||u, — x,|| = 0. (3.52)

Since
60 =~ W) < [ = e + [~ Wo
= (| = X || + [ty f (W) + Bn + ((1 = B)I = 2 BY W0 — Wiy, |
= {120 = || + llw [y f (Won) = BWyws] + B (o = Wiron) |
< [l = x| + an ([l (Warea) | + [|BWava][) + Bllcn = Won|. .

Then we get

an

1-p

[l = Waou| [xn = Xna | + 75 I f Waxa) [| + [[BWwal)), - (3:54)

1
< —]
1-p
hence

lim ||x, - W,0,]| = 0. (3.55)
n—oo
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Note that
([Wavn = On|| < ||Wnon = x| + |20 =t || + |00 = ©a|, (3.56)
thus from (3.47)—(3.55), we have
r}ijr;o||vn - Wy, = 0. (3.57)

Step 5. limsup, _, _(yf(x*)-Bx"*, x,:1—x*) <0, where x* is the unique solution of variational
inequality (yfx* — Bx*,x —x*) <0, forall x € Cy.
Take a subsequence {x,, } of {x,.1}, such that

limsup(y f (x*) — Bx", xps1 — x*) = jlirr;o(yf (x*) = Bx", xp, — X*). (3.58)

n—oo

Since {x,} is bounded, without loss of generality, we assume {x,, } itself converges weakly to
a point p. We should prove p € Cy = ﬂf\:llF(Ti) NVI(C,A) N EP(F).

First, let

Av+ Nc(v), veC,
To = (3.59)
, vgC,

with the same argument as used in [14], we can derive p € T~10, since T is maximal monotone,
we know p € VI(C, A).
Next, from (A2), for all y € C we have

%(y — U, Un = Xn) > F(y,un), (3.60)
n
in particular

Up, — Xy,
Y=ty ———— > F(y, tn,). (3.61)
nj

Condition (A4) implies that F is weakly semicontinuous, then from (3.52) and let j — oo we
have

F(y,p) <0, VYyeC (3.62)
Replacing y by y; :=ty + (1 - t)p with t € [0,1], using (A1) and (A4), we get

0=F(y, i) =tF(y,y) + 1= )F(y1,p) <tF(y1,y)- (3.63)
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Divide by t in both side yields F(ty + (1 - t)p,y) > 0, let t — 0%, by (A3) we conclude
F(p,y) >0, forally € C. Therefore, p € EP(F).

Finally, from ||x, — v,|| — 0 we know that v,, — p (j — o0). Assume p ¢ NY,F(Ty),
that is, p# W,p, foralln € N. Since Hilbert space satisfies Opial’s condition, we have

lim inf||v,,, — p|| < liminf||v,, - W,,pl|

]

< hjnig‘f(llvnf = Wi, o || + [Wa o, - Wap||) (3.64)

< liminf||v, - p||,
)

this is a contradiction, thus p € ﬂf\:le (T;), therefore, p € Cy = ﬂglF (T;) N VI(C, A) NEP(F). So
we know

lim sup(y f (x*) = Bx*, xp41 — x*) = lerI;o(yf(x*) - Bx", x,; - x*)

(3.65)
=(yf(x") - Bx",p - x") <0.

Step 6. The sequence {x,} converges strongly to x*.
From the definition of {x,} and Lemmas 2.3, and 2.4, we have

s =1 = (L= )T = aB) (W = x°) + B )] + iy (Wo) — B
<11 = BT = @uB) (Wyv, = x7) + (s = )] |I°
+ 20, (y f (Wyx) — Bx*, xpi1 — x*)

R LT

+2anY<f(an") _f<X*)/xn+1 - x*> + thn(yf(x*) - BX*,xn+1 — x*>

((1-p) —anp)’
< T

+ acty (||2en = 2|7 + |20 = *|7) + 20 (y £ (x*) = Bx*, 201 — x¥)

1-p) - any)’
< (U200 sy ) =

2
+ Pl = x|’

[Wwn = x| + Bllxa = x°||7

e @ty = 2 [P+ 20 (f () = B X~ 3°)

2=2

— any * 12
- (1 (T -ap)an+ 1Tﬂ) - x|

v a5~ 2+ 23y F (") - B~ 3°),
(3.66)
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which implies that

2 < (1220 - apa a0y "
—_ < _
I =1 < (™ * gyt P
o (rf(x*) = B Xy =)
Ty yf(x X", Xn41 — X
o (¥ (3.67)
_ (1_M>||xn_x* 2
1-aa,y
a a ?2 2
+ m{ 1n_ﬁ [lxn = x*||” +2{y f (x*) = Bx*, xps1 — x*)}.
Since from condition (i) we have X,>°, (2a,(y — ay)/1 — aa,y) = oo and
a ?2
limsuplrlTﬁllxn - x|+ 2(y f(x*) = Bx*, X1 — x*) <0, (3.68)
so, by Lemma 2.1, we conclude ||x,, — x*||. This completes the proof. O

Putting F = 0 and b, = p = 0 for all n > 1 in Theorem 3.1, we obtain the following
corollary.

Corollary 3.2. Let H bea real Hilbert space and C be a nonempty closed convex subset of H. {T;}; a
finite family of nonexpansive mappings from C into itself. Let A : C — H be relaxed (u, v)-cocoercive
and p-Lipschitzian. Let f : C — C be an a-contraction with 0 < a <1 and B a strong positive linear
bounded operator with coefficient y > 0, y be a constant with 0 <y <y /a. Let sequences {a,}, {b,}
in (0,1) and B be a constant in (0,1). Assume Cy = ﬂf\zle(Ti) NVI(C,A) # & and

(i) imy oty =0, X7 a0y = 0;

(ii) {sn}, {ta} € [a,b] for some a, bwith0 < a <b < (2(v — up?))/p? and lim,, _, 5 |Sps1 —
Sul = limy, . o |tns1 — ta| = 0;

(i) Ty o) Ans1 — An| = 0.

Then the sequence {x,} generated by x; € C and

Yn = buxy + (1= by )W, Pc (I - 5,A) Xy,

(3.69)
X1 = AnY f (Waxn) + By + (1 = p)I — a,B)W,Pc (I — t,A) Y,

converges strongly to x* € Cy and x* solves the variational inequality x* = Pc,(I — (B -y f))x*, that
is,

(yfx*=Bx*,x—x*) <0, VxeC,. (3.70)

Putting Pc(I — sp,A) = Pc(I -t,A) =Iand N =1, T; =S, p = b, = 0in Theorem 3.1,
we obtain the following corollary.
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Corollary 3.3. Let H be a real Hilbert space and C be a nonempty closed convex subset of H. S a
finite family of nonexpansive mappings from C into itself and F : C x C — R a bifunction satisfying
(A1)—(A4). Let f : C — C be an a-contraction with 0 < a < 1 and B a strong positive linear bounded
operator with coefficient y > 0, y is a constant with 0 <y <y/a. Let sequences {a,}, {b,} in (0,1)
and {ry} in (0, 00). Assume Cy = F(S) N EP(F) # @ and

(i) imy oty =0, X7 a0y = 0;

(ii) imy, — oo|7ns1 — 7| = 0, liminf, _ 7, > 0.

Then the sequence {x,} generated by x, € C and

F(un,y) + l<y —Up, Uy —X,) 20, Yy e€H,
Tn (3.71)

ot = 0 £(S%) + (1 - uB) St

converges strongly to x* € Cy and x* solves the variational inequality x* = Pc,(I - (B—yf))x", that
is,

(yfx* - Bx*,x—x*) <0, VxeC. (3.72)
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