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Let D be a bounded, convex domain in Cn, and suppose that φ : D→D is holomorphic.
Assume that ψ : D → C is analytic, bounded away from zero toward the boundary of
D, and not identically zero on the fixed point set of D. Suppose also that the weighted
composition operator Wψ,φ given by Wψ,φ( f )= ψ( f ◦φ) is compact on a holomorphic,
functional Hilbert space (containing the polynomial functions densely) on D with repro-
ducing kernelK satisfyingK(z,z)→∞ as z→ ∂D. We extend the results of J. Caughran/H.
Schwartz for unweighted composition operators on the Hardy space of the unit disk and
B. MacCluer on the ball by showing that φ has a unique fixed point in D. We apply this
result by making a reasonable conjecture about the spectrum of Wψ,φ based on previous
results.

Copyright © 2007 Dana D. Clahane. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let φ be a holomorphic self-map of a bounded domain D in Cn, and suppose that ψ is
a holomorphic function on D. We define the linear operator Wψ,φ on the linear space of
complex-valued, holomorphic functions �(D) by

Wψ,φ( f )= ψ( f ◦φ). (1.1)

Wψ,φ is called the weighted composition operator induced by the weight symbol ψ and
composition symbol φ. Note thatWψ,φ is the (unweighted) composition operator Cφ given
by Cφ( f )= f ◦φ, when ψ = 1.

It is natural to consider the dynamics of the sequence of iterates of a composition sym-
bol of a weighted composition operator and the spectra of such operators. The following
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classical result of [1] began this line of investigation for compact, unweighted composi-
tion operators in the one-variable case. The reader is referred to [2, Chapter 2] for basic
facts about composition operators and the definition of the Hardy space of the unit disk.

Theorem 1.1. Let φ : Δ→Δ be an analytic self-map of the unit disk Δ in C. If Cφ is compact
or power compact on the Hardy space H2(Δ), then the following statements hold.

(a) φ has a unique fixed point in Δ (this point turns out to be the so-called Denjoy-Wolff
point a of φ in Δ; see [2, Chapter 2]).

(b) The spectrum of Cφ is the set consisting of 0, 1, and all powers of φ′(a).

The analogue of this result for Hardy spaces of the unit ball Bn in Cn was obtained by
MacCluer in [3].

Theorem 1.2. Let φ : Bn→Bn be a holomorphic self-map of Bn and suppose that p ≥ 1. If
Cφ is compact or power compact on the Hardy space Hp(Bn), then

(a) φ must have a unique fixed point in Bn (again, this point is the so-called Denjoy-
Wolff point a of φ in Bn; see [2, Chapter 2]);

(b) the spectrum of Cφ is the set consisting of 0, 1, and all products of eigenvalues of
φ′(a).

This result also holds for weighted Bergman spaces of Bn [2]. The proofs of parts (a)
of Theorems 1.1 and 1.2 appeal to the Denjoy-Wolff theorems in Δ and Bn. Therefore,
it is natural to consider whether Theorem 1.1 holds when Bn is replaced by more gen-
eral bounded symmetric domains or even the polydisk Δn. It has been shown that the
Denjoy-Wolff theorem fails in Δn for n > 1; nevertheless, it is shown in [4] that Mac-
Cluer’s results can be generalized from Bn to arbitrary bounded symmetric domains that
are either reducible or irreducible.

Recently, in [5] (additionally, see [6–8] for related results), Theorem 1.1 has been ex-
tended to weighted composition operators on a certain class of weighted Hardy spaces of
Δ, when ψ is bounded away from 0 toward the unit circle in C.

Theorem 1.3. Let (bj) j∈N be a sequence of positive numbers such that liminf j→∞b
1/ j
j ≥ 1,

and letH2
b (Δ) be the weighted Hardy space of analytic functions f : Δ→Cwhose MacClaurin

series f (z)=∑∞
j=0ajz

j satisfy
∑∞

j=0|aj|2b2
j <∞. Suppose that φ : Δ→Δ is analytic, and let

ψ : Δ→C be an analytic map that is bounded away from zero toward the unit circle. Assume
that Wψ,φ is compact on H2

b (Δ). Then the following statements hold:
(a) φ has a unique fixed point a∈ Δ;
(b) the spectrum of Wψ,φ is the set

{
0,ψ(a)

}∪ {ψ(a)
[
φ′(a)

] j
: j ∈N

}
. (1.2)

In Section 2, we will introduce some basic notation. The main objective of this paper
is to obtain a version of part (a) of Theorem 1.3 that applies to a large class of functional
Hilbert spaces on convex domains in one or more variables. This result will be stated
and proved in Section 3. In Section 4, we apply our main result to Hardy and weighted
Bergman spaces of bounded symmetric domains and make a natural conjecture about
the spectrum of Wψ,φ when it is compact in the general setting of our main result.
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2. Notation and definitions

As in [2, page 2], a Hilbert space � is called a functional Hilbert space on a given set X if
the following conditions hold.

(1) Its underlying vector space consists of complex-valued functions on X , with vec-
tor addition given by pointwise addition of functions, and scalar multiplication
given by (α f )(x)= α f (x) for α∈ C, f ∈�, and x ∈ X .

(2) Whenever f ,g ∈� and f (x)= g(x) for all x ∈ X , we have that f = g.
(3) Whenever f ,g ∈�,x, y ∈ X , and f (x)= f (y) for all f ∈�, we have that x = y.
(4) For each x ∈ X , the point evaluation functional Px on �, given by Px( f )= f (x)

for all f ∈�, is bounded.
Fix n∈N. We denote the usual Euclidean distance from z ∈ Cn to A⊂ Cn by d(z,A),

and we say that z→A if and only if d(z,A)→0.
LetD be a bounded domain inCn, and suppose that ψ :D→C. We say that ψ is bounded

away from zero toward the boundary of D if and only if

lim inf
z→v

∣
∣ψ(z)

∣
∣ > 0 for each v ∈ ∂D. (2.1)

If � is a functional Hilbert space of holomorphic functions defined on a domain D ⊂ Cn,
then for each z ∈D, there is a unique Kz ∈� such that

f
(
z
)= 〈 f ,Kz〉 ∀ f ∈�. (2.2)

This uniqueness allows one to define the reproducing kernel K : D × D→C for � by
K(z,w)= Kz(w).

3. The main result

The following result continues ideas in [1] and the fixed point portion of [4, Theorem
4.2]. In preparation for the proof that follows, we refer the reader to [4] for the definition
of compact divergence.

Theorem 3.1. LetD ⊂ Cn be a bounded, convex domain, and suppose that � is a functional
Hilbert space of holomorphic functions on D with reproducing kernel K :D×D→C. Assume
that K(z,z)→∞ as z→∂D, and assume that the polynomial functions on D are dense in �.
Suppose that ψ :D→C is holomorphic and bounded away from zero toward the boundary of
D, and let φ : D→D be holomorphic, with ψ not identically zero on the fixed point set of φ.
Assume that Wψ,φ is compact on �. Then φ has a unique fixed point in D.

Proof. Let kz = Kz/‖Kz‖�. Since K(z,z)→∞ as z→∂D and the polynomials functions on
D are dense in �, one can show, using an argument identical to that of the proof of [4,
Lemma 3.1], that kz→0 weakly as z→∂D. From the linearity of Wψ,φ and the identity

W∗
ψ,φKz = ψ(z)Kφ(z), (3.1)
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it immediately follows that

∥
∥W∗

ψ,φkz
∥
∥2

�
= ∣∣ψ(z)

∣
∣2
K(z,z)−1K

[
φ(z),φ(z)

]
. (3.2)

Since kz→0 weakly as z→∂D, we then have that

lim
z→∂D

|ψ(z)|2K(z,z)−1K[φ(z),φ(z)]= 0. (3.3)

First, suppose that φ has no fixed point in D. We will obtain a contradiction. Let z ∈ D.
Since D is convex, the sequence of iterates φ( j) of φ is compactly divergent [9, page 274].
Thus, for every compact K ⊂D, there is an N ∈N such that φ( j)(z)∈D\K for all j ≥N .

Since for any ε > 0, the set Kε of all w ∈D such that d(w,∂D)≥ ε is compact, it follows
from the statement above that for all ε > 0, there is an N ∈ N such that for all j ≥ N ,
φ( j)(z) �∈ Kε; alternatively, d(φ( j)(z),∂D) < ε for j ≥N . Hence we have that φ( j)(z)→∂D as
j→∞ for all z ∈D. This sequence has a subsequence, which we relabel again without loss
of generality as φ( j)(z), such that φ( j)(z)→ν for some ν∈ ∂D. Since K(z,z)→∞ as z→∂D
by assumption, it must be the case that

lim
j→∞

K
[
φ( j)(z),φ( j)(z)

]=∞. (3.4)

Consequently, for any z ∈D, and for infinitely many values of j, we have that

K
{
φ
[
φ( j)(z)

]
,φ
[
φ( j)(z)

]}
> K

[
φ( j)(z),φ( j)(z)

]
> 0. (3.5)

This statement and the assumption that ψ is bounded away from 0 toward the boundary
of D together imply that there must be μ > 0 and δ > 0 such that whenever w ∈ D and
d(w,ν) < δ, we have that |ψ(w)| > μ. In addition, for sufficiently large j, we have that
d(φ( j)(z),ν) < δ, so that for these values of j, |ψ[φ( j)(z)]| > μ. Therefore, for any z ∈ D,
there is an N ∈N such that the following inequality holds for infinitely many j ≥N :

∣
∣ψ(φ( j)(z))

∣
∣2
K
{
φ
[
φ( j)(z)

]
,φ
[
φ( j)(z)

]}
> μ2K

[
φ( j)(z),φ( j)(z)

]
> 0. (3.6)

In particular, for any z ∈D, there are infinitely many values of j such that

|ψ[φ( j)(z)]|2K[φ( j)(z),φ( j)(z)]
−1
K{φ[φ( j)(z)],φ[φ( j)(z)]} > μ2. (3.7)

Denote this sequence of values of j by ( jk)k∈N. Then, we have that φ( jk)(z)→ν as k→∞.
This fact, in combination with the fact that the above inequality holds for the subsequence
( jk)k∈N of N for our arbitrary choice of z ∈ D, leads to a contradiction of (1.1). Hence
the assumption that φ has no fixed points is false.

To show that φ has only one fixed point, assume to the contrary that φ has more than
one fixed point. By a result of Vigué, the fixed point set of a holomorphic self-map of a



Dana D. Clahane 5

bounded, convex domain in Cn is a connected, analytic submanifold of that domain (see
[4, Theorem 4.1] or [10]). Since the fixed point set of φ is not a singleton by assumption,
we must have in particular that the fixed point set of φ is uncountable. Denote this set of
fixed points by �. We then have that

W∗
ψ,φ(Ka)= ψ(a)Kφ(a) = ψ(a)Ka ∀a∈�. (3.8)

Therefore, for all a∈�, we have that ψ(a) is an eigenvalue of the compact operatorW∗
ψ,φ.

Since ψ is continuous and � is a connected, analytic manifold in Cn, ψ(�) must be either
a singleton or uncountable.

First, assume that ψ(�) is a singleton {λ}, so that Condition (3.8) becomes

W∗
ψ,φ(Ka)= λKφ(a) = λKa ∀a∈�. (3.9)

By the assumption that ψ is not identically zero on �, we have that λ �=0. Since
{Ka : a ∈ D} is a linearly independent set, it follows that the λ-eigenspace of W∗

ψ,φ has
infinite dimension. However, by [11, Proposition 4.13], this infiniteness contradicts the
compactness of W∗

ψ,φ on �∗.
Next, assume that ψ(�) is uncountable. Then, by Condition (3.8), W∗

ψ,φ has uncount-

ably many eigenvalues ψ(a) with a ∈�. Now, since � contains the polynomials and is,
therefore, infinite-dimensional, �∗ is also infinite-dimensional. Therefore, the compact
operatorW∗

ψ,φ has countably many eigenvalues [11, Theorem. 7.1, page 214], and we have
again obtained a contradiction.

Hence our assumption that φ has more than one fixed point is false. �

4. Remarks

Based on the results to date, it is obviously natural to consider whether or not the follow-
ing conjecture holds.
Conjecture 1. Suppose that D ⊂ Cn is a bounded, convex domain such that a given func-
tional Hilbert space of holomorphic functions � in which the polynomials are contained
densely has reproducing kernel K satisfying K(z,z)→∞ as z→∂D. Let ψ : D→C be holo-
morphic and suppose that ψ is bounded away from 0 toward ∂D. Assume that φ : D→D
is a holomorphic map and that Wψ,φ is compact on �. Then, the spectrum of Wψ,φ is
the set {ψ(a)σ : σ ∈ E}, where E is the set consisting of 0, 1, and all possible products of
eigenvalues of φ′(a).

The resolution of whether this conjecture holds is open even for classical function
spaces in the multivariable case. It would also be of interest to determine whether or not
one can remove the assumption in Theorem 3.1 that ψ does not vanish on the fixed point
set of φ. Notice, for example, that this assumption is not needed in Theorem 3.1.

B. MacCluer has pointed out to the author that by using [2, Exercise 5.1.1], it can
be shown that under the hypotheses of Theorem 3.1 in the case of the Bergman space
A2(D), Wψ,φ cannot be compact unless Cφ is compact. It is, therefore, natural to consider
whether or not this statement holds for other functional Hilbert spaces on Δ or other
domains, under the hypotheses of Theorem 3.1.
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Note that if D = Δ or Bn, the fixed point of φ in Theorem 3.1 is precisely the so-called
Denjoy-Wolff point of φ, to which the iterates of φ converge uniformly on compacta.
One can consider the question of whether or not this uniform convergence holds in the
general setting of Theorem 3.1. However, as is stated in [4], an interesting aspect of the
above result is that in the case when D = Δn, the Denjoy-Wolff theorem fails, and there
is no unique “Denjoy-Wolff point”. Nevertheless, Theorem 3.1 holds even for reducible
convex domains such as Δn.

The convexity of D in the proof of Theorem 3.1 is used in two places: (a) to establish
that if φ has no interior fixed points, the iterates of φ diverge compactly, and (b) to estab-
lish the assertion that when D is convex, the fixed point set of φ is a connected, analytic
submanifold ofD. It is, therefore, of interest to determine to what extent the hypothesis of
convexity can be weakened in such a way that tasks (a) and (b) can still be simultaneously
completed.

Let G be a simply connected region that is properly contained in C, and suppose that
τ : Δ→C is the Riemann mapping for G. Let H2(G) be the Hardy space of functions f :
G→C that are analytic and satisfy

sup
0<r<1

∫

τ({z∈Δ:|z|=r})

∣
∣ f (z)

∣
∣2|dz| <∞. (4.1)

In [7], it is shown that if Cφ is compact on H2(G) for some analytic φ : Δ→Δ, then φ
must have a unique fixed point in G. Of course, such a domain G can have boundary
portions that are concave though all domains in C are trivially pseudoconvex [12]. On
the other hand, as is well known, the Riemann mapping theorem does not extend to
several complex variables, and the proof in [7] does seem to rely on the Denjoy-Wolff
theory that is inherent from the convexity of Δ.

Note that in the proof of Theorem 3.1, all that was needed from Vigué’s theorem is
the assertion that if the fixed point set of a holomorphic self-map of a convex domain is
nonempty, then, it either contains one point or uncountably many points. Vigué, in [13],
has shown that the fixed point set of a holomorphic self-map of any bounded domain
D (note that “convex” is omitted!) in Cn is also an analytic submanifold of D, but it is
an interesting and open question as to whether or not the fixed point set in this case is
necessarily connected for general bounded domains besides the convex ones.

M. Abate has conjectured that the answer is affirmative for a topologically contractible,
strictly pseudoconvex domain. A resolution of this conjecture, together with a compact
divergence result appearing in [14], would imply that Theorem 3.1 extends to these do-
mains.

For the weighted Hardy spaces H2
b (Δ) of the unit disk in Δ ∈ C, the Hardy spaces

H2(D) and weighted Bergman spaces A2
α(D), where D is either Bn, Δn, or more generally,

any bounded symmetric domain in its Harish-Chandra realization (see [4]), the repro-
ducing kernel K satisfies K(z,z)→∞ as z→Δ (resp., z→D), so the following fact, which
extends the fixed point results in [1, 5], is an immediate consequence of Theorem 3.1.

Corollary 4.1. Suppose that � is either the Hardy space H2(D) or the weighted Bergman
space A2

α(D) of a bounded symmetric domain D with α < αD, where αD is a certain critical
value that depends on D (cf. [4]), and assume that ψ : D→C is analytic, bounded away
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from zero, and not identically zero on the fixed point set of φ. Suppose that φ : D→D is
holomorphic, and let Wψ,φ be compact on �. Then, φ has a unique fixed point in D. This
result also holds when D = Δ and �=H2

b (Δ).

Proof. The assertions aboutH2(D) andA2
α(D) immediately follow from Theorem 3.1 and

the fact that their reproducing kernels approach infinity along {(z,z) : z ∈D} as z→D (see
[4]). The assertion about �=H2

b (Δ) also immediately follows from Theorem 3.1 and the
fact that the assumed condition on the sequence (bj) j∈N implies that the reproducing

kernel K for H2
b (Δ) satisfies the same singularity property toward the boundary along the

diagonal (cf. [4]). �
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