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We present common fixed point theory for generalized contractive R-subweakly com-
muting maps and obtain some results on invariant approximation.

1. Introduction and preliminaries

Let S be a subset of a normed space X = (X, - [|) and T and I self-mappings of X.
Then T is called (1) nonexpansive on S if [|[Tx — Ty|| < |lx — yll for all x,y € §; (2) I-
nonexpansive on S if ||Tx — Tyll < [[Ix — Iy|| for all x,y € §; (3) I-contraction on S
if there exists k € [0,1) such that |Tx — Tyll < kllIx — Iyl for all x,y € S. The set of
fixed points of T (resp., I) is denoted by F(T) (resp., F(I)). The set S is called (4) p-
starshaped with p € S if for all x € S, the segment [x, p] joining x to p is contained in
S (ie., kx+ (1 —k)p € S for all x € S and all real k with 0 < k < 1); (5) convex if S is p-
starshaped for all p € S. The convex hull co(S) of S is the smallest convex set in X that
contains S, and the closed convex hull clco(S) of S is the closure of its convex hull. The
mapping T is called (6) compact if cIT(D) is compact for every bounded subset D of
S. The mappings T and I are said to be (7) commuting on Sif ITx = TIx for all x € §;
(8) R-weakly commuting on S [7] if there exists R € (0,) such that ||TIx — ITx| <
R||Tx — Ix|| for all x € S. Suppose S C X is p-starshaped with p € F(I) and is both
T- and I-invariant. Then T and I are called (8) R-subweakly commuting on S [11] if
there exists R € (0,00) such that || TIx — ITx|| < Rdist(Ix,[Tx, p]) for all x € S, where
dist(Ix, [Tx, p]) = inf{||Ix — z|| : z € [Tx, p]}. Clearly commutativity implies R-subweak
commutativity, but the converse may not be true (see [11]).

The set Ps(x) = {y € S: [ly — x|l = dist(X,S)} is called the set of best approximants to
X € X out of S, where dist(,S) = inf{||y — X|| : y € S}. We define Ci(X) = {x € S:Ix €
Ps(x)} and denote by 3 the class of closed convex subsets of X containing 0. For S € J,
we define S; = {x € S: ||x]| <2]||x]|}. It is clear that Ps(X) C S; € J,.

In 1963, Meinardus [6] employed the Schauder fixed point theorem to establish the
existence of invariant approximations. Afterwards, Brosowski [2] obtained the following
extension of the Meinardus result.
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TaeoreM 1.1. Let T be a linear and nonexpansive self-mapping of a normed space X,
S C X such that T(S) C S, and x € F(T). If Ps(X) is nonempty, compact, and convex, then
Ps(X)NF(T) + @.

Singh [15] observed that Theorem 1.1 is still true if the linearity of T is dropped and
Ps(X) is only starshaped. He further remarked, in [16], that Brosowski’s theorem remains
valid if T is nonexpansive only on Ps(x)U{x}. Then Hicks and Humphries [5] improved
Singh’s result by weakening the assumption T'(S) C S to T(dS) C S; here dS denotes the
boundary of S.

On the other hand, Subrahmanyam [18] generalized the Meinardus result as follows.

THEOREM 1.2. Let T be a nonexpansive self-mapping of X, S a finite-dimensional
T-invariant subspace of X, and x € F(T). Then Ps(X) N F(T) # &.

In 1981, Smoluk [17] noted that the finite dimensionality of S in Theorem 1.2 can be
replaced by the linearity and compactness of T. Subsequently, Habiniak [4] observed that
the linearity of T in Smoluk’s result is superfluous.

In 1988, Sahab et al. [8] established the following result which contains Singh’s result
as a special case.

TueoreM 1.3. Let T and I be self-mappings of a normed space X, S C X such that T(0S) C
S, and x € F(T)NF(I). Suppose T is [-nonexpansive on Ps(x)U{x}, I is linear and contin-
uous on Ps(X), and T and I are commuting on Ps(X). If Ps(x) is nonempty, compact, and
p-starshaped with p € F(I), and if I(Ps(x)) = Ps(X), then Ps(X)NF(T)NF(I) + @.

Recently, Al-Thagafi [1] generalized Theorem 1.3 and proved some results on invariant
approximations for commuting mappings. More recently, with the introduction of non-
commuting maps to this area, Shahzad [9, 10, 11, 12, 13, 14] further extended Al-Thagafi’s
results and obtained a number of results regarding best approximations. The purpose of
this paper is to present common fixed point theory for generalized I-contraction and R-
subweakly commuting maps. As applications, some invariant approximation results are
also obtained. Our results extend, generalize, and complement those of Al-Thagafi [1],
Brosowski [2], Dotson Jr. [3], Habiniak [4], Hicks and Humphries [5], Meinardus [6],
Sahab et al. [8], Shahzad [9, 10, 11, 12], Singh [15, 16], Smoluk [17], and Subrahmanyam
[18].

2. Main results

TaeoreM 2.1. Let S be a closed subset of a metric space (X,d), and T and I R-weakly
commuting self-mappings of S such that T(S) C I(S). Suppose there exists k € [0,1) such
that

d(Tx, Ty) < kmax{d(lx,ly),d(lx, Tx),d(Iy, Ty), % [d(Ix, Ty)+d(Iy, Tx)]} (2.1)

forallx,y € S. If I(T(S)) is complete and T is continuous, then SNF(T)NF(I) is singleton.
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Proof. Let xo € S and let x; € S be such that Ix; = Txo. Inductively, choose x, so that
Ix, = Tx,—1. This is possible since T(S) C I(S). Notice

d(Ixni1,Ix,) = d(Tx, Txp—1)
< kmax {d([xn,lxn,l),d(lxn,Txy,),d(Ixn,l,Txn,l),
%[d([xn,Txn,l) +d(Ix,,,1,Txn)]7s>

= kmax {d([xn,lxn,l),d(lxn, Tx,),
] (2.2)
d(Ixn-1, Txn-1), Ed(Ixn—lyTxn)}

< kmax {d([xn,lxn_l),d(lxn, Tx,),

%[d([xn,l,lxn) +d(1xn,Txn)]}
< kd(Ixp,Ix,—1)

for all n. This shows that {Ix,} is a Cauchy sequence in S. Consequently, {Tx,} is a
Cauchy sequence. The completeness of cI(T(S)) further implies that Tx, — y € § and
so Ix, — y asn — oo. Since T and I are R-weakly commuting, we have

d(TIx,,ITx,) < RA(Tx,,1x,). (2.3)

This implies that ITx, — Ty as n — co. Now

d(Tx,, TTx,) < kmax{d(lx,,,ITxn),d(Ix,,, Tx,),d(ITx,, TTx,),

| (2.4)
3 [d(Ixy, TTxy) +d (1T, Txn)]}.
Taking the limit as n — oo, we obtain
d(y,Ty) < kmaX{d(y, Ty),d(y,y),d(Ty,Ty),
%[d(y, Ty) +d(Ty,y)]} 2.5)

=kd(y,Ty),

which implies y = Ty. Since T(S) C I(S), we can choose z € S such that y = Ty = Iz.
Since

d(TTx,,Tz) < kmax {d(ITxn,Iz),d(ITxn, TTx,),d(I1z,Tz),
] (2.6)
> [d(ITx,, Tz) +d(1z, TTx,)] },
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taking the limit as n — oo yields

d(Ty,Tz) <kd(Ty,Tz). (2.7)

This implies that Ty = Tz. Therefore, y = Ty = Tz = Iz. Using the R-weak commutativ-
ity of T and I, we obtain

d(Ty,ly) =d(TIz,ITz) < Rd(TzIz) = 0. (2.8)

Thus y=Ty=1y. Clearly y is a unique common fixed point of T'and I. Hence SN F(T) N
F(I) is singleton. [l

THEOREM 2.2. Let S be a closed subset of a normed space X, and T and I continuous self-
mappings of S such that T'(S) C I(S). Suppose I is linear, p € F(I), S is p-starshaped, and
c(T(S)) is compact. If T and I are R-subweakly commuting and satisfy

ITx—Tyll < max{l\lx—lyll,dist (Ix,[Tx, p]),dist (Iy,[Ty,p]),
(2.9)
ldist (1x, [Ty, p]) + dist (1, [T p)] |

forallx,y €S, then SNF(T)NF(I) + @.

Proof. Choose a sequence {k,} C [0,1) such that k, — 1 as n — . Define, for each n, a
map T, by T,(x) = k,Tx + (1 — k,)p for each x € S. Then each T), is a self-mapping of S.
Furthermore, T,,(S) C I(S) for each n since I is linear and T'(S) C I(S). Now the linearity
of I and the R-subweak commutativity of T and I imply that

|| Tlx — IT,x|| = kol TIx — ITx| < k,Rdist (Ix, [ Tx, p])

2.10
< R Tox — Ix] (2.10)

for all x € S. This shows that T, and I are k,R-weakly commuting for each n. Also
| Tox = Tuyl| = kall Tx = Ty |
< knmax{lllx—lyll,dist(lx,[Tx,p]),dist (Iy,[Ty,p]),
1. .. .
E[dlst(lx,[Ty,p])+dlst(ly,[Tx,p])]} (2.11)
< eymax { 11 = Iyl 11 = Tl 1Ty = T,

%[Hlx— Toyl|+ Iy - Tnx||]}

for all x,y € S. Now Theorem 2.1 guarantees that F(T,)nF(I) = {x,} for some x, € S.
The compactness of cI(T(S)) implies that there exists a subsequence {x,,} of {x,} such
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that x,, — y € Sas m — oo. By the continuity of T and I, we have y € F(T) n F(I). Hence
SNF(T)NF(I) + @. O

The following corollaries extend and generalize [3, Theorem 1] and [4, Theorem 4].

COROLLARY 2.3. Let S be a closed subset of a normed space X, and T and I continuous self-
mappings of S such that T(S) C I(S). Suppose I is linear, p € F(I), S is p-starshaped, and
cl(T(S)) is compact. If T and I are R-subweakly commuting and T is I-nonexpansive on S,
then SNF(T)NE(I) + @.

CoROLLARY 2.4. Let S be a closed subset of a normed space X, and T and I continuous
self-mappings of S such that T(S) C I(S). Suppose I is linear, p € F(I), S is p-starshaped,
and cl(T(S)) is compact. If T and I are commuting and satisfy (2.9) for all x,y € S, then
SNF(T)nF(I) + @.

Let D&'(R) = Ps(R)NGY' (R), where

G'(R) = {x € S: IIx—X| < 2R+ 1)dist(&,5)}. (2.12)

Tueorem 2.5. Let T and I be self-mappings of a normed space X with x € F(T)nF(I) and
S C X such that T(dSNS) C S. Suppose I is linear on D§’I(3?), p € F(I), D§’I(3Ac) is closed
and p-starshaped, clT(D?’I(J?)) is compact, and 1 (D?’I(?c)) = D?’I(fc). If T and I are R-
subweakly commuting and continuous on Dy (%) and satisfy, for all x € DY (X)U (%},

1 Ix — IX]| ify=2x%,
| Tx—Tyll < maX{HIx—Iyll,dist (Ix,[Tx, p]),dist (Iy,[Ty,pl),

%[dist (Ix, [ Ty, p]) +dist (I, [ Tx, pm} ify € D' (%),
(2.13)

then Ps(x)NF(T)NF(I) + @.

Proof. Letx e D?’I(?c). Then x € 9SNS (see [1]) and so Tx € S since T(dSNS) C S. Now
ITx - x|l = 1 Tx - TX|| < |lIx - Ixl| = [[1x — X|| = dist(X,S). (2.14)

This shows that Tx € Pg(x). From the R-subweak commutativity of T and I, it follows that

IITx - x|l =

ITx — TX|l <RI Tx — Ix|| +||I?x — IX]| < (2R+ 1) dist(X,S). (2.15)

This implies that Tx € G§’I (%). Consequently, Tx € Dg’l (x) and so T(D?’I (x))c ng‘” (x) =
I(Dg’l(y?)). Now Theorem 2.2 guarantees that Ps(X)nF(T)NF(I) + @. O

TueoREM 2.6. Let T and I be self-mappings of a normed space X with x € F(T)NF(I) and
S C X such that T(dSNS) C I(S) C S. Suppose I is linear on D?’I(fc), p e F(I), D?’I(fc) is
closed and p-starshaped, A T(DY' (%)) is compact, and I(G'(z))nDe' (z) € I(DR (X))
DN(R). If T and I are R-subweakly commuting and continuous on D&’ (X) and satisfy, for
all x € DY (X)U{R}, (2.13), then Ps(R)NE(T)NF(I) + @.
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Proof. Let x € D§’I (x). Then, as in Theorem 2.5, Tx € D?’I (%), that is, T(D?’I (x)) C
D& (R). Also [|(1 — k)x + kX — || < dist(&, ) for all k € (0,1). This implies that x € 9SS
(see [1]) and so T(D?’I(?c)) C T(aSNS) c I(S). Thus we can choose y € S such that Tx =
Iy. Since Iy = Tx € Ps(%), it follows that y € G!(R). Consequently, T(DY' (%)) C
I(GY'(%)) C Ps(%). Therefore, T(D§' (%)) ¢ I(GY'(2))nDY! (%) ¢ I(DY' (%)) € D' (7).
Now Theorem 2.2 guarantees that Ps(X)NF(T)NF(I) + @. |

Remark 2.7. Theorems 2.5 and 2.6 remain valid when D?’I(fc) = Ps(x). If I(Ps(X)) C
Ps(%), then Ps(%) C CL(%) C G?’I(JAC) (see [1]) and so Dg’l(fc) = Py(x). Consequently, Theo-
rem 2.5 contains Theorem 1.3 as a special case.

The following result includes [1, Theorem 4.1] and [4, Theorem 8]. It also contains
the well-known results due to Smoluk [17] and Subrahmanyam [18].

Tueorem 2.8. Let T be a self~mapping of a normed space X with x € F(T) and S € 3,
such that T(Sz) C S. If I T(Sz) is compact and T is continuous on Sy and satisfies for all
x € S;U{x}

llx—XxIl ify=Xx,
ITx - Tyll < max{llx—yll,dist (x,[Tx,0]),dist (y,[Ty,0]), (2.16)
%[dist(x,[Ty,O])+dist(y,[Tx,0])]} ify e Sz

then

(i) Ps(X) is nonempty, closed, and convex,
(ii) T(Ps(X)) C Ps(X),
(iii) Ps(X)NF(T) + @.

Proof. (i) We may assume that X ¢ S. If x € S\ S;, then [|x|| > 2]|X]|. Notice that
lx —xIl = llxll = [IX]l > [IX]] = dist (X,Sz). (2.17)

Consequently, dist(x,Sz) = dist(X,S) < [|X]|. Also ||z — X|| = dist(x,cl T(S;)) for some z €
clT(Sz). Thus

dist (x,S;) < dist (x,cl T(Sz)) < dist (X, T(S;))
< Tx—xll=Tx - TX|| (2.18)
< llx—xll
for all x € S;. This implies that ||z — X|| = dist(X,S) and so Ps(xX) is nonempty. Further-
more, it is closed and convex.
(ii) Let y € Ps(x). Then
1Ty —xIl = ITy - Txll < lly — x|l = dist(x, ). (2.19)

This implies that Ty € Ps(x) and so T(Ps(x)) C Ps(X).
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(iii) Theorem 2.2 guarantees that Ps(x)NF(T) # @ since cl T(Ps(x)) C I T(S;) and
cl T(Sz) is compact. O

TueorEM 2.9. Let I and T be self-mappings of a normed space X withx € F(I)NF(T) and
S € 9y such that T(S;) C I(S) C S. Suppose that I is linear, ||Ix — X|| = ||x — X|| forallx € S,
cl1(Sz) is compact and I satisfies, for all x, y € Sz,

Ix—1Iyll < max{llx — yll,dist (x, [Ix,0]),dist (y,[I y,0]),
(2.20)
%[dist (x,[Iy,0]) +dist (y, [Ix,O])]}.

IfI and T are R-subweakly commuting and continuous on S; and satisfy, for all x € S;U{x},
and p € F(I),

IIx — IX|| ify =%,
I Tx - Tyl < max{lllx—lyll,dist (Ix, [ Tx, p]),dist (Iy,[Ty,pl), (2.21)
%[dist(]x,[Ty,p])+dist(Iy,[Tx,p])]} ifyeSs

then

(i) Ps(x) is nonempty, closed, and convex,
(ii) T(Ps(X)) C I(Ps(X)) C Ps(X),
(iii) Ps(X)NF(I)NnF(T) #+ @.

Proof. From Theorem 2.8, (i) follows immediately. Also, we have I(Ps(x)) C Ps(x). Let
y € T(Ps(x)). Since T(S;) C I(S) and Ps(x) C S;, there exist z € Pg(X) and x; € S such
that y = Tz = Ix;. Furthermore, we have

113, — 2| = T2 = T < [z~ IR]| < |z - %] = d(Z, ). (2.22)

Thus x; € C{(X) = Ps(X) and so (ii) holds.
Since, by Theorem 2.8, Ps(X)NF(I) # O, it follows that there exists p € Ps(X) such that
p € F(I). Hence (iii) follows from Theorem 2.2. O

The following corollary extends [1, Theorem 4.2(a)] to a class of noncommuting maps.

CoRrOLLARY 2.10. Let I and T be self-mappings of a normed space X with x € F(I)nF(T)
and S € 8 such that T(S;) C I(S) C S. Suppose that I is linear, ||[1x — X|| = ||x — X|| for all
x €S, clI(Sz) is compact, and I is nonexpansive on Sz. If I and T are R-subweakly commut-
ing on S; and T is I-nonexpansive on S;U{x}, then

(i) Ps(x) is nonempty, closed and convex,
(ii) T(Ps(x)) C I(Ps(x)) C Ps(), and
(iii) Ps(X)NF(I)NE(T) # .
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