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We present common fixed point theory for generalized contractive R-subweakly com-
muting maps and obtain some results on invariant approximation.

1. Introduction and preliminaries

Let S be a subset of a normed space X = (X ,‖ · ‖) and T and I self-mappings of X .
Then T is called (1) nonexpansive on S if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ S; (2) I-
nonexpansive on S if ‖Tx − Ty‖ ≤ ‖Ix − I y‖ for all x, y ∈ S; (3) I-contraction on S
if there exists k ∈ [0,1) such that ‖Tx − Ty‖ ≤ k‖Ix − I y‖ for all x, y ∈ S. The set of
fixed points of T (resp., I) is denoted by F(T) (resp., F(I)). The set S is called (4) p-
starshaped with p ∈ S if for all x ∈ S, the segment [x, p] joining x to p is contained in
S (i.e., kx + (1− k)p ∈ S for all x ∈ S and all real k with 0 ≤ k ≤ 1); (5) convex if S is p-
starshaped for all p ∈ S. The convex hull co(S) of S is the smallest convex set in X that
contains S, and the closed convex hull clco(S) of S is the closure of its convex hull. The
mapping T is called (6) compact if clT(D) is compact for every bounded subset D of
S. The mappings T and I are said to be (7) commuting on S if ITx = TIx for all x ∈ S;
(8) R-weakly commuting on S [7] if there exists R ∈ (0,∞) such that ‖TIx − ITx‖ ≤
R‖Tx − Ix‖ for all x ∈ S. Suppose S ⊂ X is p-starshaped with p ∈ F(I) and is both
T- and I-invariant. Then T and I are called (8) R-subweakly commuting on S [11] if
there exists R ∈ (0,∞) such that ‖TIx − ITx‖ ≤ Rdist(Ix, [Tx, p]) for all x ∈ S, where
dist(Ix, [Tx, p])= inf{‖Ix− z‖ : z ∈ [Tx, p]}. Clearly commutativity implies R-subweak
commutativity, but the converse may not be true (see [11]).

The set PS(x̂)= {y ∈ S : ‖y− x̂‖ = dist(x̂,S)} is called the set of best approximants to
x̂ ∈ X out of S, where dist(x̂,S) = inf{‖y− x̂‖ : y ∈ S}. We define CI

S(x̂) = {x ∈ S : Ix ∈
PS(x̂)} and denote by �0 the class of closed convex subsets of X containing 0. For S∈�0,
we define Sx̂ = {x ∈ S : ‖x‖ ≤ 2‖x̂‖}. It is clear that PS(x̂)⊂ Sx̂ ∈�0.

In 1963, Meinardus [6] employed the Schauder fixed point theorem to establish the
existence of invariant approximations. Afterwards, Brosowski [2] obtained the following
extension of the Meinardus result.
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Theorem 1.1. Let T be a linear and nonexpansive self-mapping of a normed space X ,
S ⊂ X such that T(S) ⊂ S, and x̂ ∈ F(T). If PS(x̂) is nonempty, compact, and convex, then
PS(x̂)∩F(T) �= ∅.

Singh [15] observed that Theorem 1.1 is still true if the linearity of T is dropped and
PS(x̂) is only starshaped. He further remarked, in [16], that Brosowski’s theorem remains
valid if T is nonexpansive only on PS(x̂)∪{x̂}. Then Hicks and Humphries [5] improved
Singh’s result by weakening the assumption T(S) ⊂ S to T(∂S) ⊂ S; here ∂S denotes the
boundary of S.

On the other hand, Subrahmanyam [18] generalized the Meinardus result as follows.

Theorem 1.2. Let T be a nonexpansive self-mapping of X , S a finite-dimensional
T-invariant subspace of X , and x̂ ∈ F(T). Then PS(x̂)∩F(T) �= ∅.

In 1981, Smoluk [17] noted that the finite dimensionality of S in Theorem 1.2 can be
replaced by the linearity and compactness of T . Subsequently, Habiniak [4] observed that
the linearity of T in Smoluk’s result is superfluous.

In 1988, Sahab et al. [8] established the following result which contains Singh’s result
as a special case.

Theorem 1.3. Let T and I be self-mappings of a normed space X , S⊂ X such that T(∂S)⊂
S, and x̂ ∈ F(T)∩F(I). Suppose T is I-nonexpansive on PS(x̂)∪{x̂}, I is linear and contin-
uous on PS(x̂), and T and I are commuting on PS(x̂). If PS(x̂) is nonempty, compact, and
p-starshaped with p ∈ F(I), and if I(PS(x̂))= PS(x̂), then PS(x̂)∩F(T)∩F(I) �= ∅.

Recently, Al-Thagafi [1] generalized Theorem 1.3 and proved some results on invariant
approximations for commuting mappings. More recently, with the introduction of non-
commuting maps to this area, Shahzad [9, 10, 11, 12, 13, 14] further extended Al-Thagafi’s
results and obtained a number of results regarding best approximations. The purpose of
this paper is to present common fixed point theory for generalized I-contraction and R-
subweakly commuting maps. As applications, some invariant approximation results are
also obtained. Our results extend, generalize, and complement those of Al-Thagafi [1],
Brosowski [2], Dotson Jr. [3], Habiniak [4], Hicks and Humphries [5], Meinardus [6],
Sahab et al. [8], Shahzad [9, 10, 11, 12], Singh [15, 16], Smoluk [17], and Subrahmanyam
[18].

2. Main results

Theorem 2.1. Let S be a closed subset of a metric space (X ,d), and T and I R-weakly
commuting self-mappings of S such that T(S) ⊂ I(S). Suppose there exists k ∈ [0,1) such
that

d(Tx,Ty)≤ kmax
{
d(Ix,I y),d(Ix,Tx),d(I y,Ty),

1
2

[
d(Ix,Ty) +d(I y,Tx)

]}
(2.1)

for all x, y ∈ S. If cl(T(S)) is complete and T is continuous, then S∩F(T)∩F(I) is singleton.
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Proof. Let x0 ∈ S and let x1 ∈ S be such that Ix1 = Tx0. Inductively, choose xn so that
Ixn = Txn−1. This is possible since T(S)⊂ I(S). Notice

d
(
Ixn+1,Ixn

)= d
(
Txn,Txn−1

)
≤ kmax

{
d
(
Ixn,Ixn−1

)
,d
(
Ixn,Txn

)
,d
(
Ixn−1,Txn−1

)
,

1
2

[
d
(
Ixn,Txn−1

)
+d
(
Ixn−1,Txn

)]}

= kmax
{
d
(
Ixn,Ixn−1

)
,d
(
Ixn,Txn

)
,

d
(
Ixn−1,Txn−1

)
,
1
2
d
(
Ixn−1,Txn

)}

≤ kmax
{
d
(
Ixn,Ixn−1

)
,d
(
Ixn,Txn

)
,

1
2

[
d
(
Ixn−1,Ixn

)
+d
(
Ixn,Txn

)]}
≤ kd

(
Ixn,Ixn−1

)

(2.2)

for all n. This shows that {Ixn} is a Cauchy sequence in S. Consequently, {Txn} is a
Cauchy sequence. The completeness of cl(T(S)) further implies that Txn → y ∈ S and
so Ixn→ y as n→∞. Since T and I are R-weakly commuting, we have

d
(
TIxn,ITxn

)≤ Rd
(
Txn,Ixn

)
. (2.3)

This implies that ITxn→ Ty as n→∞. Now

d
(
Txn,TTxn

)≤ kmax
{
d
(
Ixn,ITxn

)
,d
(
Ixn,Txn

)
,d
(
ITxn,TTxn

)
,

1
2

[
d
(
Ixn,TTxn

)
+d
(
ITxn,Txn

)]}
.

(2.4)

Taking the limit as n→∞, we obtain

d
(
y,Ty

)≤ kmax
{
d(y,Ty),d(y, y),d(Ty,Ty),

1
2

[
d(y,Ty) +d(Ty, y)

]}
= kd(y,Ty),

(2.5)

which implies y = Ty. Since T(S) ⊂ I(S), we can choose z ∈ S such that y = Ty = Iz.
Since

d
(
TTxn,Tz

)≤ kmax
{
d
(
ITxn,Iz

)
,d
(
ITxn,TTxn

)
,d
(
Iz,Tz

)
,

1
2

[
d
(
ITxn,Tz

)
+d
(
Iz,TTxn

)]}
,

(2.6)
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taking the limit as n→∞ yields

d(Ty,Tz)≤ kd(Ty,Tz). (2.7)

This implies that Ty = Tz. Therefore, y = Ty = Tz = Iz. Using the R-weak commutativ-
ity of T and I , we obtain

d(Ty,I y)= d(TIz,ITz)≤ Rd(Tz,Iz)= 0. (2.8)

Thus y=Ty=I y. Clearly y is a unique common fixed point of T and I . Hence S∩F(T)∩
F(I) is singleton. �

Theorem 2.2. Let S be a closed subset of a normed space X , and T and I continuous self-
mappings of S such that T(S) ⊂ I(S). Suppose I is linear, p ∈ F(I), S is p-starshaped, and
cl(T(S)) is compact. If T and I are R-subweakly commuting and satisfy

‖Tx−Ty‖ ≤max
{
‖Ix− I y‖,dist

(
Ix, [Tx, p]

)
,dist

(
I y, [Ty, p]

)
,

1
2

[
dist

(
Ix, [Ty, p]

)
+ dist

(
I y, [Tx, p]

)]} (2.9)

for all x, y ∈ S, then S∩F(T)∩F(I) �= ∅.

Proof. Choose a sequence {kn} ⊂ [0,1) such that kn → 1 as n→∞. Define, for each n, a
map Tn by Tn(x)= knTx+ (1− kn)p for each x ∈ S. Then each Tn is a self-mapping of S.
Furthermore, Tn(S)⊂ I(S) for each n since I is linear and T(S)⊂ I(S). Now the linearity
of I and the R-subweak commutativity of T and I imply that

∥∥TnIx− ITnx
∥∥= kn‖TIx− ITx‖ ≤ knRdist

(
Ix, [Tx, p]

)
≤ knR

∥∥Tnx− Ix
∥∥ (2.10)

for all x ∈ S. This shows that Tn and I are knR-weakly commuting for each n. Also

∥∥Tnx−Tny
∥∥= kn‖Tx−Ty‖

≤ kn max
{
‖Ix− I y‖,dist

(
Ix, [Tx, p]

)
,dist

(
I y, [Ty, p]

)
,

1
2

[
dist

(
Ix, [Ty, p]

)
+ dist

(
I y, [Tx, p]

)]}

≤ kn max
{
‖Ix− I y‖,

∥∥Ix−Tnx
∥∥,
∥∥I y−Tny

∥∥,

1
2

[∥∥Ix−Tny
∥∥+

∥∥I y−Tnx
∥∥]}

(2.11)

for all x, y ∈ S. Now Theorem 2.1 guarantees that F(Tn)∩F(I) = {xn} for some xn ∈ S.
The compactness of cl(T(S)) implies that there exists a subsequence {xm} of {xn} such
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that xm→ y ∈ S as m→∞. By the continuity of T and I , we have y ∈ F(T)∩F(I). Hence
S∩F(T)∩F(I) �= ∅. �

The following corollaries extend and generalize [3, Theorem 1] and [4, Theorem 4].

Corollary 2.3. Let S be a closed subset of a normed space X , and T and I continuous self-
mappings of S such that T(S) ⊂ I(S). Suppose I is linear, p ∈ F(I), S is p-starshaped, and
cl(T(S)) is compact. If T and I are R-subweakly commuting and T is I-nonexpansive on S,
then S∩F(T)∩F(I) �= ∅.

Corollary 2.4. Let S be a closed subset of a normed space X , and T and I continuous
self-mappings of S such that T(S) ⊂ I(S). Suppose I is linear, p ∈ F(I), S is p-starshaped,
and cl(T(S)) is compact. If T and I are commuting and satisfy (2.9) for all x, y ∈ S, then
S∩F(T)∩F(I) �= ∅.

Let DR,I
S (x̂)= PS(x̂)∩GR,I

S (x̂), where

GR,I
S (x̂)= {x ∈ S : ‖Ix− x̂‖ ≤ (2R+ 1)dist(x̂,S)

}
. (2.12)

Theorem 2.5. Let T and I be self-mappings of a normed space X with x̂ ∈ F(T)∩F(I) and
S ⊂ X such that T(∂S∩S) ⊂ S. Suppose I is linear on DR,I

S (x̂), p ∈ F(I), DR,I
S (x̂) is closed

and p-starshaped, clT(DR,I
S (x̂)) is compact, and I(DR,I

S (x̂)) = DR,I
S (x̂). If T and I are R-

subweakly commuting and continuous on DR,I
S (x̂) and satisfy, for all x ∈DR,I

S (x̂)∪{x̂},

‖Tx−Ty‖ ≤




‖Ix− Ix̂‖ if y = x̂,

max
{
‖Ix− I y‖,dist

(
Ix, [Tx, p]

)
,dist

(
I y, [Ty, p]

)
,

1
2

[
dist

(
Ix, [Ty, p]

)
+ dist

(
I y, [Tx, p]

)]}
if y ∈DR,I

S (x̂),

(2.13)

then PS(x̂)∩F(T)∩F(I) �= ∅.

Proof. Let x ∈DR,I
S (x̂). Then x ∈ ∂S∩S (see [1]) and so Tx ∈ S since T(∂S∩S)⊂ S. Now

‖Tx− x̂‖ = ‖Tx−Tx̂‖ ≤ ‖Ix− Ix̂‖ = ‖Ix− x̂‖ = dist(x̂,S). (2.14)

This shows thatTx ∈ PS(x̂). From theR-subweak commutativity ofT and I , it follows that

‖ITx− x̂‖ = ‖ITx−Tx̂‖ ≤ R‖Tx− Ix‖+
∥∥I2x− Ix̂

∥∥≤ (2R+ 1)dist(x̂,S). (2.15)

This implies thatTx ∈GR,I
S (x̂). Consequently,Tx ∈DR,I

S (x̂) and soT(DR,I
S (x̂))⊂DR,I

S (x̂)=
I(DR,I

S (x̂)). Now Theorem 2.2 guarantees that PS(x̂)∩F(T)∩F(I) �= ∅. �

Theorem 2.6. Let T and I be self-mappings of a normed space X with x̂ ∈ F(T)∩F(I) and
S ⊂ X such that T(∂S∩S) ⊂ I(S) ⊂ S. Suppose I is linear on DR,I

S (x̂), p ∈ F(I), DR,I
S (x̂) is

closed and p-starshaped, clT(DR,I
S (x̂)) is compact, and I(GR,I

S (x̂))∩DR,I
S (x̂)⊂ I(DR,I

S (x̂))⊂
DR,I

S (x̂). If T and I are R-subweakly commuting and continuous on DR,I
S (x̂) and satisfy, for

all x ∈DR,I
S (x̂)∪{x̂}, (2.13), then PS(x̂)∩F(T)∩F(I) �= ∅.
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Proof. Let x ∈ DR,I
S (x̂). Then, as in Theorem 2.5, Tx ∈ DR,I

S (x̂), that is, T(DR,I
S (x̂)) ⊂

DR,I
S (x̂). Also ‖(1− k)x+ kx̂− x̂‖ < dist(x̂,S) for all k ∈ (0,1). This implies that x ∈ ∂S∩S

(see [1]) and so T(DR,I
S (x̂))⊂ T(∂S∩S)⊂ I(S). Thus we can choose y ∈ S such that Tx =

I y. Since I y = Tx ∈ PS(x̂), it follows that y ∈ GR,I
S (x̂). Consequently, T(DR,I

S (x̂)) ⊂
I(GR,I

S (x̂)) ⊂ PS(x̂). Therefore, T(DR,I
S (x̂)) ⊂ I(GR,I

S (x̂))∩DR,I
S (x̂) ⊂ I(DR,I

S (x̂)) ⊂ DR,I
S (x̂).

Now Theorem 2.2 guarantees that PS(x̂)∩F(T)∩F(I) �= ∅. �

Remark 2.7. Theorems 2.5 and 2.6 remain valid when DR,I
S (x̂) = PS(x̂). If I(PS(x̂)) ⊂

PS(x̂), then PS(x̂)⊂ CI
S(x̂)⊂GR,I

S (x̂) (see [1]) and soDR,I
S (x̂)= PS(x̂). Consequently, Theo-

rem 2.5 contains Theorem 1.3 as a special case.

The following result includes [1, Theorem 4.1] and [4, Theorem 8]. It also contains
the well-known results due to Smoluk [17] and Subrahmanyam [18].

Theorem 2.8. Let T be a self-mapping of a normed space X with x̂ ∈ F(T) and S ∈ �0

such that T(Sx̂) ⊂ S. If clT(Sx̂) is compact and T is continuous on Sx̂ and satisfies for all
x ∈ Sx̂∪{x̂}

‖Tx−Ty‖ ≤




‖x− x̂‖ if y = x̂,

max
{
‖x− y‖,dist

(
x, [Tx,0]

)
,dist

(
y, [Ty,0]

)
,

1
2

[
dist

(
x, [Ty,0]

)
+ dist

(
y, [Tx,0]

)]}
if y ∈ Sx̂,

(2.16)

then

(i) PS(x̂) is nonempty, closed, and convex,
(ii) T(PS(x̂))⊂ PS(x̂),

(iii) PS(x̂)∩F(T) �= ∅.

Proof. (i) We may assume that x̂ �∈ S. If x ∈ S \ Sx̂, then ‖x‖ > 2‖x̂‖. Notice that

‖x− x̂‖ ≥ ‖x‖−‖x̂‖ > ‖x̂‖ ≥ dist
(
x̂,Sx̂

)
. (2.17)

Consequently, dist(x̂,Sx̂)= dist(x̂,S)≤ ‖x̂‖. Also ‖z− x̂‖ = dist(x̂, clT(Sx̂)) for some z ∈
clT(Sx̂). Thus

dist
(
x̂,Sx̂

)≤ dist
(
x̂, clT

(
Sx̂
))≤ dist

(
x̂,T

(
Sx̂
))

≤ ‖Tx− x̂‖ = ‖Tx−Tx̂‖
≤ ‖x− x̂‖

(2.18)

for all x ∈ Sx̂. This implies that ‖z− x̂‖ = dist(x̂,S) and so PS(x̂) is nonempty. Further-
more, it is closed and convex.

(ii) Let y ∈ PS(x̂). Then

‖Ty− x̂‖ = ‖Ty−Tx̂‖ ≤ ‖y− x̂‖ = dist(x̂,S). (2.19)

This implies that Ty ∈ PS(x̂) and so T(PS(x̂))⊂ PS(x̂).
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(iii) Theorem 2.2 guarantees that PS(x̂)∩F(T) �= ∅ since clT(PS(x̂)) ⊂ clT(Sx̂) and
clT(Sx̂) is compact. �

Theorem 2.9. Let I and T be self-mappings of a normed space X with x̂ ∈ F(I)∩F(T) and
S∈�0 such that T(Sx̂)⊂ I(S)⊂ S. Suppose that I is linear, ‖Ix− x̂‖ = ‖x− x̂‖ for all x ∈ S,
clI(Sx̂) is compact and I satisfies, for all x, y ∈ Sx̂,

‖Ix− I y‖ ≤max
{
‖x− y‖,dist

(
x, [Ix,0]

)
,dist

(
y, [I y,0]

)
,

1
2

[
dist

(
x, [I y,0]

)
+ dist

(
y, [Ix,0]

)]}
.

(2.20)

If I and T are R-subweakly commuting and continuous on Sx̂ and satisfy, for all x ∈ Sx̂∪{x̂},
and p ∈ F(I),

‖Tx−Ty‖ ≤




‖Ix− Ix̂‖ if y = x̂,

max
{
‖Ix− I y‖,dist

(
Ix, [Tx, p]

)
,dist

(
I y, [Ty, p]

)
,

1
2

[
dist

(
Ix, [Ty, p]

)
+ dist

(
I y, [Tx, p]

)]}
if y ∈ Sx̂,

(2.21)

then

(i) PS(x̂) is nonempty, closed, and convex,
(ii) T(PS(x̂))⊂ I(PS(x̂))⊂ PS(x̂),

(iii) PS(x̂)∩F(I)∩F(T) �= ∅.

Proof. From Theorem 2.8, (i) follows immediately. Also, we have I(PS(x̂)) ⊂ PS(x̂). Let
y ∈ T(PS(x̂)). Since T(Sx̂) ⊂ I(S) and PS(x̂) ⊂ Sx̂, there exist z ∈ PS(x̂) and x1 ∈ S such
that y = Tz = Ix1. Furthermore, we have

∥∥Ix1− x̂
∥∥= ‖Tz−Tx̂‖ ≤ ‖Iz− Ix̂‖ ≤ ‖z− x̂‖ = d(x̂,S). (2.22)

Thus x1 ∈ CI
S(x̂)= PS(x̂) and so (ii) holds.

Since, by Theorem 2.8, PS(x̂)∩F(I) �= ∅, it follows that there exists p ∈ PS(x̂) such that
p ∈ F(I). Hence (iii) follows from Theorem 2.2. �

The following corollary extends [1, Theorem 4.2(a)] to a class of noncommuting maps.

Corollary 2.10. Let I and T be self-mappings of a normed space X with x̂ ∈ F(I)∩F(T)
and S∈ �0 such that T(Sx̂)⊂ I(S)⊂ S. Suppose that I is linear, ‖Ix− x̂‖ = ‖x− x̂‖ for all
x ∈ S, clI(Sx̂) is compact, and I is nonexpansive on Sx̂. If I and T are R-subweakly commut-
ing on Sx̂ and T is I-nonexpansive on Sx̂∪{x̂}, then

(i) PS(x̂) is nonempty, closed and convex,
(ii) T(PS(x̂))⊂ I(PS(x̂))⊂ PS(x̂), and

(iii) PS(x̂)∩F(I)∩F(T) �= ∅.
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