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The paper presents models of car dynamics with varying complexity. Joint coordinates
and homogenous transformations are used to model the motion of a car. Having for-
mulated the models of the car, we discuss the influence of the complexity of the model
on numerical efficiency of integrating the equations describing car dynamics. Methods
with both constant and adaptive step size have been applied. The results of numerical
calculations are presented and conclusions are formulated.
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1. Introduction

From the mechanical point of view, vehicles are complex multibody systems with the tree-
like structures. Their modelling has to take into account not only the complex structure
of kinematic chains but also flexibility of some elements and joints, friction in joints,
and sophisticated relations that describe the forces acting on the wheels from the road
surface. The complexity of car models depends on applications and is strongly influenced
by availability of parameters. In the paper, we discuss three kinds of models with varying
complexity.

The most complex models of a car may consist of very many subsystems, the mo-
tion of which can be described by a large number of degrees of freedom. These models
allow structural models of suspensions and drive systems of a car to be taken into consid-
eration. Usually the models are formulated using absolute coordinates and special pro-
fessional software with a large scale of generality (e.g., MSC Adams, DADS, SIMPACK)
[1]. Such calculation models are very time-consuming, and require a large amount of
specific data. On the other hand, they allow us to obtain results which are in good cor-
respondence with experimental measurements [2]. Our model formulated using joint
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coordinates and homogenous transformations, denoted in the paper by {C}, belongs to
this group.

The second group consists of models which are fairly general but are characterized by
a smaller number of degrees of freedom. Here, usually functional models of suspensions
and drive systems are used [3, 4]. The number of necessary parameters is much smaller,
but they require measurements in order to define proper functional characteristics of the
subsystems. These models are widely applied in the initial phase of research, in design of
active subsystems, and in control of vehicle motion. In our paper, the model denoted by
{I} represents this group.

The simplest models are usually applied in real-time simulations and in control of
vehicle motion. The simplifying assumptions can result in unsatisfactory correspondence
of calculation and measurement results. This is the reason that such models are usually
devoted to particular types of cars or their motion. The model denoted in the paper by
{S} is from this group.

Apart from some models formulated for specific applications, the equations of mo-
tion of a car form a system of differential ordinary equations which is nonlinear and stiff.
Using the models described, we will compare numerical methods of integrating the equa-
tions of motion and discuss whether they can be applied to real-time simulations of car
motion.

2. Models of a car

The models presented in the paper are obtained using joint coordinates and homoge-
nous transformations. Joint coordinates allow us to reduce the number of generalized
coordinates of the system considered, and in contrast to absolute coordinates reduce the
number of constraint equations. However, the mass matrix is not diagonal and its coef-
ficients depend on generalized coordinates [5]. Homogenous transformations are often
used in robotics [6, 7]. This method allows us to transform coordinates from local coordi-
nate system {}′ to another coordinate system {} (Figure 2.1) using only one mathematical
operation:

r= Tr′, (2.1)

where

T=
[

R r0

0 1

]
=

⎡⎢⎢⎢⎣
cψcθ cψsθsϕ− sψcϕ cψsθcϕ+ sψsϕ x0

sψcθ sψsθsϕ+ cψcϕ sψsθcϕ− cψsϕ y0

−sθ cθsϕ cθcϕ z0

0 0 0 1

⎤⎥⎥⎥⎦ , (2.2)

R is the rotation matrix, r0 is the position vector, s means sin function, and c means cos
function.
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Figure 2.1. Transformation of coordinates.

In our paper, we use the Euler ZYX angles (ψ-yaw, θ-pitch, ϕ-roll) and thus the matrix
R takes the form

R=
⎡⎢⎣cψcθ cψsθsϕ− sψcϕ cψsθcϕ+ sψsϕ
sψcθ sψsθsϕ+ cψcϕ sψsθcϕ− cψsϕ
−sθ cθsϕ cθcϕ

⎤⎥⎦ . (2.3)

Application of joint coordinates and homogenous transformations in formulating the
equations of motion of multibody systems using Lagrange equations are described in
detail in [5, 8], which also demonstrate how equations of motion change when a body
is attached to an existing kinematic chain. Additional information which allows us to
include the constraint equations in vehicle models is presented in [9].

Below, we present the models of car dynamics with varying levels of complexity.

Complex model {C}. The model is shown in Figure 2.2.
The model includes structural models of suspensions and drive system. Formulation

of this model, the equations of motion, and the verification of results are described in de-
tail in [9]. The car body is treated as a rigid body and its vector of generalized coordinates
has the following form:

qn =
[
xn yn zn ψn θn ϕn

]T
, (2.4)

where xn, yn, zn are coordinates of the origin of local coordinate system {n} in global
coordinate system {}, ψn, θn, ϕn are ZYX Euler angles.

The front suspension is a McPherson type. Its main elements (k = 1,2—left- or
right-hand side of the vehicle) are the following:

(a) suspension column, whose relative rotations are described by the components of
the vector:

q(T ,k) =
[
ψ(T ,k) θ(T ,k) ϕ(T ,k)

]T
, (2.5)

(b) hub with two degrees of freedom in relative motion:

q(Z,k) =
[
z(Z,k) ψ(Z,k)

]T
, (2.6)
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Ẑ

(W ,3)θ

(c)

Figure 2.2. Complex model of the car {C}: (a) general scheme; (b) front McPherson suspension; (c)
rear suspension with trailing arms.

(c) wheel rotation angle (with respect to the hub):

q(W ,k) =
⌊
θ(W ,k)

⌋
, (2.7)

(d) control arm angle of rotation with respect to the car body:

q(H ,k) =
⌊
ϕ(H ,k)

⌋
, (2.8)

(e) spherical joints connecting the tie rod with the hub and the control arm with the
hub (this means that kinematic closed loops occur in the model).

The rear suspension is composed of the following elements (k = 1,2):
(a) shock absorber, whose relative motion is described by angles:

q(T ,k) =
[
ψ(T ,k) θ(T ,k) ϕ(T ,k)

]T
, (2.9)

(b) piston rod with two degrees of freedom in relative motion:

q(F,k) =
[
z(F,k) ψ(F,k)

]T
, (2.10)

(c) trailing arm:

q(H ,k) =
⌊
ϕ(H ,k)

⌋
, (2.11)
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Figure 2.3. Intermediate model of a car {I}.

(d) wheel rotation angle:

q(W ,k) =
⌊
θ(W ,k)

⌋
, (2.12)

(e) spherical joints that link trailing arms with absorbers.
The vector of generalized coordinates of the whole system can be written as follows:

qZ =
[

qTV qTK qTD
]T

, (2.13)

where qV is the vector of generalized coordinates of the vehicle, which includes elements
of suspension (2.5)–(2.12) and the generalized coordinates of the car body (2.4), qK is
the vector of generalized coordinates of the steering system, and qD is the vector of gen-
eralized coordinates of the drive system.

The equations of motion and constraint equations form a system of 75 + n(L)
ϕ +n(R)

ϕ +

n(D)
ϕ +n(W)

ϕ equations where n(L)
ϕ , n(R)

ϕ , n(D)
ϕ , n(W)

ϕ are the numbers of rigid finite elements
used for discretization of the semiaxles (L,R), drive shaft (D), and the steering column
[9].

Intermediate model {I}. The model is described in detail in [4]. The vehicle is composed
of the following subsystems (Figure 2.3):

(i) car body, which has six degrees of freedom,
(ii) suspensions, each of which has four degrees of freedom,

(iii) wheels with tyres,
(iv) steering mechanism (simplified model) with two degrees of freedom,
(v) drive system (optional).

The motion is described by 28 generalized coordinates, which are the components of
the following vector:

qP =
[

qTn qTZ1
ϕ1 qTZ2

ϕ2 qTZ3
ϕ3 qTZ4

ϕ4 yL ϕw fTD
]T

, (2.14)
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Figure 2.4. Simplified model of the car.

where qn is the vector of coordinates of the car body, as described in (2.4),

qZk =
[
x(z)
k y(z)

k z(z)
k δ(z)

k

]T
, k = 1, . . . ,4, (2.15)

x(z)
k , y(z)

k , z(z)
k are displacements of suspensions, δ(z)

k are steering angles, ϕk are wheel rota-
tion angles, yL is the displacement of the rack in the steering gear, ϕW is steering wheel an-
gle, and fD = [ϕ(D)

1 ··· ϕ(D)
nD ]T is the vector of generalized coordinates of the drive

system.
This model has been used to solve an optimization problem described in [4, 9]. The

main purpose of this task was to find courses of drive torques of independent electric en-
gines which ensure car stability in extreme conditions (such as a sudden change of lane).

Simplified model {S}. In this model, the car body is treated also as a rigid body. The vec-
tor of generalized coordinates has the form as in (2.4). The motion of wheels is described
by generalized coordinates which are the components of the vector:

qw =
[
ϕ1 ϕ2 ϕ3 ϕ4

]T
, (2.16)

where ϕi is the rotational angle of wheel i.
The vector of generalized coordinates of the vehicle has the following components:

qU =
[
xn yn zn ψn θn ϕn ϕ1 ϕ2 ϕ3 ϕ4

]T
. (2.17)

In this model, vertical flexibility of the suspension is taken into account by modification
of stiffness coefficients of the tyres (Figure 2.4).

The equations of motion of all models presented can be written in the following gen-
eral form of differential-algebraic equations:

M(q)q̈ + D(q)R= F(t,q, q̇), (2.18a)

Φ(q)= 0, (2.18b)

where R is the vector of unknown reaction forces.
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The constraint equations (2.18b) can be written in a differential form, and then the
standard numerical procedures for integrating a set of differential ordinary equations
can be applied.

3. Results of calculations

The Dugoff-Uffelmann model of tyres [10] has been applied in all models presented. The
data used are appropriate for a small car.

All models presented were verified experimentally. In Figure 3.1, we compare the re-
sults of measurements with those obtained by calculations using the complex model {C}
[2] (B-measurements, W-calculations).

In Figure 3.2, the test vehicle with measurement instrumentation is presented. The
measured accelerations presented in Figure 3.1, were obtained from sensors placed on
car body and suspension, as presented on photos in Figures 3.2(c) and 3.2(d). Motions
(on straight and circular path) over one, two, or three identical obstacles (200 mm width
and 25 mm height) with sharp edges have been analyzed.

The main vehicle parameters (used in all models analysed in the paper) are shown in
Table 3.1.

The calculation results obtained for models with varying complexity are presented
in Figure 3.3. The motion on a μ-split surface is considered. It can be observed that all
models give similar results.

The Runge-Kutta method of the fourth order with constant step size (h=0.001 second)
has been applied in all cases.

In the paper, we present the calculation results obtained for the following methods of
integration of differential equations [11] describing the car motion.

(A) Methods with constant step size:
(i) Runge-Kutta method of the fourth order (RK),

(ii) implicit Euler method (IE).
(B) Methods with adaptive step size:

(i) Runge-Kutta-Fehlberg method (RKF),
(ii) Bulirsch-Stoer method (BS).

(C) Methods for stiff differential equations with adaptive step size:
(i) Resenbrock method (RS),

(ii) Bulirsh-Stoer-Daufhardt method (BSD).
The calculations have been carried out for three different cases which are connected with
a sudden change in vehicle motion. For methods with constant step size, we have con-
sidered the following values of the step size: h= 0.001 for RK (Runge-Kutta of the fourth
order) and h = 0.01 for IE (implicit Euler) when the models {I} or {S} have been used.
For the IE method and the model {C}, a special time step has to be selected. The solution
is stable only if a small time step is used. For the IE method, we have to calculate the in-
verse of the mass matrix, so the time of simulation rises significantly due to the increase
in the number of the equations in the system. The calculations allow us to conclude that
the IE method is not effective when it is used to solve the equations of motion of the com-
plex model {C}. Below, we present the calculation results for three different manoeuvres
of a car.
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Figure 3.1. Comparison of measurement and calculation results: (a) vertical acceleration of the front
right hub; (b) vertical acceleration of the car body.
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Figure 3.2. Experimental verification: (a) measurement devices; (b) Daytona© steering wheel (angle
and torque measurement); (c) car body sensor; (d) front suspension sensor.

3.1. Lane change manoeuvre. It has been assumed that steering angles of wheels of the
vehicle change as shown in Figure 3.4(a). In Figure 3.4(b), we present the lateral displace-
ment of the car body (its centre of gravity-CG) for all models. One can see that all models
give similar results.

The comparison of numerical effectiveness of the methods used to solve this task is
presented in Table 3.2.

Table 3.2 presents the number of calls (of the function that generates set of (2.18))
and calculation time (on PC with Intel Pentium IV 2.4 GHz processor) for each model
presented in Section 2, and for each method of integration.
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Table 3.1. The main vehicle parameters.

Parameter Value

Car body mass 650 (kg)

Car body moments of inertia I(XX), I(YY), I(ZZ) 300, 800, 850 (kg m2)

CG height 530 (mm)

Unsprung mass front/rear 20.5/18 (kg)

Wheel\track base 1320\2200 (mm)

Unloaded tire radius 300 (mm)

Front\rear susp. coeff of stiffness 30\40 (kN/m)

Steering rack ratio 75 (mm/rad)

Scrub radius ∼ 4 (mm)

μ= 0.9

3 2

4 1
μ= 0.35
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Figure 3.3. The influence of model complexity on calculation results: (a) μ-split surface; (b) yaw
velocity of the car body.

3.2. Travel over an obstacle. The second case analysed concerns a vehicle moving over an
obstacle with the left-hand side wheels. The dimensions of the obstacle are presented in
Figure 3.5(a). The obstacle causes a lateral displacement of the vehicle (it starts turning)
if the driver does not take any action to correct the direction. This displacement is shown
in Figure 3.5(b).

In this case, simulation time has been limited to 5 seconds. The results are presented
in Table 3.3.

For intermediate model {I}, the step size h= 0.005 has to be applied to the IE method.
With this step size, the IE method requires much more time for computing than the
standard RK routine. It is important to note that the Runge-Kutta method requires the
shortest calculation time for both {C} and {I} models.
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Figure 3.4. (a) Assumed steering wheel angles; (b) lateral displacement of the car body CG.

Table 3.2. Comparison of methods for lane change manoeuvre.

Model c i s

Method
Number of Calculation Number of Calculation Number of Calculation

function calls time min/s function calls time min/s function calls time min/s

RK4 50 000 5/36 50 000 4/00 50 000 0/30

IE — — 61 000 4/01(∗) 21 021 0/11(∗)

BSD 256 029 54/18 43 713 4/47 881 0/01

ROS 1 581 255 151/32 442 255 63/52 31 742 0/18

BS 147 257 34/42 63 445 8/11 21 105 0/012

RKF 103 615 23/07 118 250 9/28 11 696 0/07

(∗)-step size h= 0.01.

3.3. Braking on a μ-split surface. The last example analysed is related to braking on a μ-
split surface. The situation (surfaces with different coefficients of adhesion on the road)
is presented in Figure 3.3(a). The courses of braking torques (identical for each wheel)
are presented in Figure 3.6.

As in the two previous cases, we have performed simulations for this task using all
models and methods considered, and the results are presented in Table 3.4.

The time step h = 0.001 has to be selected for the IE method in ensure stability. This
proves that the IE method is fast, but only for very simple models.

Below, we present results of calculations obtained when commercially available code
has been applied (MSC.ADAMS). The case of motion analyzed was identical to our B
example (moving over obstacle), and complex model {C} of vehicle (strictly equivalent
model developed in MSC.ADAMS/Car) has been passed to the solver.

As can be seen in Table 3.5, GSTIFF solver is very effective implementation. CON-
STANT BDF solver, also designated to stiff systems, even if not as fast as GSTIFF, is men-
tioned to be more stable [12]. Nonstiff solver in ADAMS such as RKF45 uses appropriate



Marek Szczotka et al. 11

5cm

10m 1.5m

(a)

0 1 2 3 4 5

Time (s)

RK 4
BSD
BS

ROS
RKF

�0.1
�0.05

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35
�10�1

Car body CG lateral
displacement

La
te

ra
ld

is
pl

ac
em

en
t

of
ca

r
bo

dy
Y

(m
)

(b)

Figure 3.5. Travel over an obstacle: (a) obstacle dimensions; (b) lateral displacement of car body CG
caused by obstacle.

0 0.5 1 1.5 2 2.5 3
Time (s)

Breaking torque

0

50

100

150

200

250

300

350

T
(N

m
)

Figure 3.6. The course of braking torque applied.

Table 3.3. Effectiveness of the methods for travel over an obstacle.

Model c i s

Method
Number of Calculation Number of Calculation Number of Calculation

function calls time min/s function calls time min/s function calls time min/s

RK4 25 000 5/36 25 000 1/54 25 000 0/15

IE — — 61 000 4/13(∗∗) 10 521 0/6(∗)

BSD 256 029 24/12 32 025 2/20 1026 0/06

ROS 1 581 255 123/43 232 800 14/42 24 984 0/17

BS 147 257 17/02 59 458 3/42 14 776 0/10

RKF 103 615 12/31 57 717 3/35 8311 0/09

(∗) time step h= 0.01 (s)
(∗∗) time step h= 0.005 (s).
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Table 3.4. Comparison of methods for braking on a μ-split surface.

Model c i s

Method
Number of Calculation Number of Calculation Number of Calculation

function calls time min/s function calls time min/s function calls time min/s

RK4 15000 3/24 15000 1/26 15000 0/09

IE — — 196685 5/40(∗∗) 6300 0/03(∗)

BSD 60874 8/16 18717 1/22 1708 0/02

ROS 580412 61/22 365847 42/32 25342 0/24

BS 35831 3/54 34556 2/20 6777 0/10

RKF 66838 8/09 26695 1/45 5566 0/08

(∗)-step size h= 0.01
(∗∗)-step size h= 0.001.

Table 3.5. Comparison of simulation time in MSC.ADAMS\Car (model {C}, obstacle passing).

Solver type min/s

GSTIFF 2\45

CONSTANT BDF 11\49

RKF45 unstable

conversion of DAE into ODEs system of equation. This solver is not recommended: in our
case, the simulation takes very long calculation time (even a couple of hours) or becomes
unstable, depending on parameters. However, taking into account differences in mod-
elling methods used (general coordinates in ADAMS, joint coordinates in our models),
presented results can be treated only as a “loose comparison.” At this point, we are not
able to make any strict comparison MSC.ADAMS versus our models, since both codes are
completely different in modelling approach, numerical methods applied, and so forth.

4. Conclusions

It can be concluded that there is not one specific method that allows us to quickly obtain a
stable and accurate solution for all models. The complexity of the vehicle model strongly
influences numerical effectiveness of methods considered.

For the complex model {C}, the best method is the Runge-Kutta method with con-
stant step size. However, if the manoeuvres analysed are relatively moderate, the BSD
method for stiff systems is much more effective. We have analysed an example in which
BSD takes only 14 seconds of calculation time while the RK requires 5 minutes and
36 seconds. In the case of shock phenomena (such as travel over an obstacle), the best re-
sults were obtained when a method with a constant step size was applied. In other cases,
we suggest to use BSD for stiff systems as a good and stable method.

For the intermediate model {I}, all of the methods have a similar effectiveness, except
the ROS method. In this case, as for the complex model {C}, the effectiveness of the
methods selected strongly depends on the manoeuvre analysed. If simulation does not
contain any abrupt changes, the BSD method is the fastest.
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The conclusions for model {S} are different. Here the IE method gives the most rapid
solution. The BSD method also gives similar results, but in some applications a constant
step size method is preferred. The simplified model {S} analysed in the paper can be
applied in a driving simulator, when calculations have to be performed in real time. For
this application, the implicit Euler (IE) method should be selected. In driving simulator
application time has to be predictable.

We hope that the examples presented address the problems of dynamic simulations of
vehicles. For the cases of motion presented, standard procedures with an adaptive inte-
gration step require much longer time for solution than the simple Runge–Kutta method
with the constant step size; this is because the Jacobin matrix required to perform inte-
gration in more advanced methods has to be calculated.
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