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This paper reconsiders Bertrand duopoly and oligopoly in the spatial formulation due
to Hotelling, 1929. The equilibrium configurations of price and location structure are
considered, given elastic demand, and a full dynamics is formulated in order to check for
stability of equilibrium and the possibilities of complex dynamics, such as occurs easily
with Cournot oligopoly. The main discussion concerns Hotelling’s original case of two
sellers on a given interval, though results for different cases, such as three firms on a
circle, and lattices in 2D are indicated.
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1. INTRODUCTION

An apology for the above title is in place. When
Cournot in 1838 published his seminal work on
duopoly, it seems not to have been commented at all
for the very long period of 45 years. Then, in 1883,
Bertrand published a belated and more than
normally venomous review of Cournot’s work
(and of Wfilrfis’s more recent work in one).
Schumpeter says that, though "Bertrand was.., the

first to make an attack.., it was so inadequate...
that it is in doubt whether it "would have made
much impression if... others had not.., repudiated
Cournot’s solution". Schumpeter says the criticism
was "eager@ seized upon, as an authoritative
condemnation, by people who understood neither
mathematics nor economics". As other scientists,
especially Edgeworth in 1897 and Hotelling in 1929,
gave substance to the argument, unlike Bertrand

without misinterpreting Cournot, it seems a bit
displaced to continue using the denomination
"Bertrand Oligopoly", but, as it happens all too
often in science, the attribution is generally
accepted, and we better have to continue the
tradition in order to facilitate cross-referencing.
The point of controversy was the following:

Cournot assumed the supply quantities of some
homogeneous good to be the choice variables for
the competitors, and put up the conditions for
equilibrium, as well as the fundamentals for the
dynamics in terms of the reaction functions,
representing the optimal reaction with respect to
its supply for one competitor, given the action of
the other with respect to his. According to the
criticism, given the good was homogeneous, one
firm could, by undercutting the competitor’s price,
however slightly, always recover the entire market
as its share. In the end this competition would lead
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to collusive monopoly, or to competitive pricing at
the level of marginal costs.
Out of this argument the idea of product

differentiation was born. Buyers would regard
the commodity as heterogeneous, they would have
preference for the product of one seller, and so

only gradually desert their favourite brand when
price differences became too pronounced. The
now classical work on all this is Chamberlin’s of
1932.
However, Hotelling assumed that the com-

modity itself was homogeneous, but that the
competitors could establish bounded local mono-

polies, defended by transportation costs. This

ingenious contribution dealt with competitive
price duopoly, just as in the general literature
on monopolistic competition, and in addition
some intriguing location paradoxes, such as

clustering in space. There has been a tendency in
subsequent literature to single out these location
paradoxes, "two ice cream sellers on a beach" in
vulgar text book terms, whereas the oligopoly
aspects were left for the general discussions of
product differentiation with no explicit reference
to space.

There are, however, still many interesting
aspects to study in Hotelling’s original setup,
along the routes he pointed out himself, by
introducing elastic demand, which changes the
extreme location instability.

2. GENERALITIES

Suppose a firm is located along a 1D line at

point Xi. To the left of it there is another firm at

point xi_ 1, to the right of it another at point xi+ 1.

The firms charge "mill" prices Pi-i Pi, Pi+l.
Alternative monopolistic price policies, such as

discriminatory pricing, including uniform delivery
price as a special case, have been studied by
Beckmann (1968, 1976) and could be applied also
here.
Assume local demand at point x, given the good

is transported from the supplier at point x; is given

by a linear demand function:

qi-- 0
Pi + k x- xil
Pi --[- k x xi[ > -

here k denotes the (constant) transportation cost

per unit distance. Unlike supply which is concen-
trated to a discrete set of locations, demand is

spread out continuously over the line at a density
given by (1).

Total demand for the ith firm then is

Qi ai
bi

(OZ /(Pi -+- klx- xil))dx (2)

provided the upper alternative of (1) applies. The
integral (2) then has the closed form solution"

Oi (oz -/pi)(bi- ai)

2
((ai-xi) +(bi-xi

here ai, bi denote the boundary points for the
market. These points are not fixed, but determined
by the conditions that prices from different
suppliers be equal in boundary points:

Pi -+- k ai xil -pi-1 -+- k ai Xi-l

pi -+- k bi xi[ -pi+l + k bi Xi+l
(4)

As xi_ < a < x < bi < xi+ 1, the conditions (4)
yield:

Xi-1 @ Xi Pi Pi-1a =-----2 2k
xi -t-- Xi+l Pi+l --Pbi 2 2k

Note that this implies that always bi--ai+l.
Substituting from (5) in (3) the latter becomes"

!
Oi (o -/Pi)-k (](Xi+l xi-1

-+- Pi+l -+- Pi-1 2pi)
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8k ((kxi-1 kxi +Pi -Pi-

-t- (kxi+l kxi -+- pi+l pi)2) (6)

The ith firm will maximize its profits: IIi =Pi Qi-
Ci(Qi), where we take a linear production cost
function Ci (Qi) ci Qi. Thus:

I-[i (Pi ci)Qi (7)

Maximising profits 17i means choosing price pi and
location xi. We could also keep locations fixed and
devise just a price adjustment process, alone or
combined with a relocation process on a slower
time scale.

Suppose we first want to find the optimal
location. Taking OIIi/Oxi 0 and solving we get:

Xi-1 @ Xi+l Pi-1 Pi+l
xi= 2 2k 2k

(8)

This makes sense: If the competitors’ prices are

equal, the firm locates midway in between, whereas
a higher price of the competitor left or right drags
the firm in that direction. Second order condition
is 02IIi/Ox2 -(1/2)flk(pi ci) < O. We must
have Pi > ci, as otherwise the firm makes no profit,
so the second order condition is negative, and the
location choice indeed maximises profit.

Given the firm has chosen an optimal location,
we can substitute for xi from (8) back in the
expression (6) for Qi and hence in (7) Hi= (pi-ci)
Q.. In order to attain a concise formula, define a

new compound variable:

/i k(Xi+l xi-1 --t- Pi-1 --t- Pi+ (9)

We can also write )i=Pi -+-k(xi-xi_ 1)-+-Pi+
k(xi+ 1-xi), so Ai has the interpretation of the sum
of the local prices of the commodity, including
transportation costs, if transported to xi from the
left neighbour x;_ and from the right neighbour

xi+ 1. The formula (9) is, however, more useful for
stressing that Ai only depends on xi_

but not on

With the new variable defined, the profits of the
ith firm become:

IIi (Pi ci)(/i 2pi) (8o (i-[- 6pi))

(10)

Differentiating (10), a cubic in pi, with respect to pi,

and solving the resulting quadratic equation for
the variable, we get two solutions, of which the
following maximises profits:

64 8(6ci q-- 5/i) -+- (36c/ lZci/i + 13A/)

(11)

Second order conditions are easily checked, and
show that (11) always yields a local maximum,
whereas its conjugate, with the minus sign before
the root expression reversed, always yields a
minimum.
A dynamical process can now be put up where

the ith firm takes the price and location for the
neighbours left and right as given. One may have
any number n of firms, and we could let al, bn be
the given endpoints of the whole market, or we can

let them be located on a circle so that al bn. Just
three firms on a circle, where in each run the all
firms adjust price and location to those of the right
and left neighbours in the previous run, may be a

good start, as would the case of two firms on a

fixed interval, the original Hotelling case.

3. CONSTRAINTS

The linear demand function (1) has certain

discontinuity problems which were not taken in
account when evaluating the integral (2). Above
the price pi=c//3, demand drops to zero. Of
course, prices cannot be negative either. They must
even be higher than the positive unit production
costs p; > ci. What was said above about maximum
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price must hold everywhere for price plus trans-

portation cost. Hence, the highest total prices for
the consumers, at the boundary points ai, bi, must
not exceed

-/3 > Pi + klai xil - _> Pi + klbi xi (12)

Both actually boil down to the same condition
once we consider how a;, b; and xi were determined
in the above formulas (5) and (8)"

a>l k- (pi-, + 2pi + pi+l) (Xi+l xi-,) (13)

If we want to avoid having to deal with
discontinuities, we must check that this condition
holds all the time.

4. DISJOINT MONOPOLIES

Should the above condition (13) not be satisfied,
then the market diameter 2ri is less than the
interval available, because demand drops to zero
at a flPi- flkri-- 0, which yields

rz- -pi (14)

Then the quantity integral (2) becomes:

Qi (oz (pi + k x- xil))dx
Xi ri

2(a- flpi)ri- flkr2i

or, with substitution for the market radius from
(14),

Qi - pi (16)

Profits then are:

( )2Ci) pi (17)

so, differentiating this cubic with respect to Pi,

equating the derivative to zero, and solving, we get
two solutions"

a la 2

Pi--- Pi--5+-jCi (18)

The first solution is a profit minimum and the
second a maximum, in fact the well known
solution to a spatial monopoly mill pricing
problem in 1D, given a linear demand function.
(See Beckmann, 1968, 1976) This solution is
relevant when demand drops to zero at a distance
before the prices with accumulated transportation
costs break even for the competitors. The result
then is that the market areas of neighbouring firms
no longer touch, but are isolated, possibly with
intervals in between which are not served by any
firm the price would simply be too high for
anybody to buy the commodity. Whether this
occurs seems to be a question of how many firms
crowd on a given distance, what the maximum
price is, and what the marginal costs are.
We can easily express the monopoly market

radius (14) in terms of production costs in stead of
in terms of prices. Just substitute from the second
expression of (18) in (14), and we get:

r -- - c (19)

The total space L occupied by n touching
monopolies is"

41- (a)L 2ri - - C (20)
i=l i=1

It is hence clear that the total length L of the space
available must be less in order that oligopolistic
competition should develop, i.e.

41(a )L<
i=1 ----Ci (21)
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5. MARKET RADIUS IN OLIGOPOLY

Consider now the oligopoly case anew. Note that
we can define a market radius even here. The
choice rule for optimal location (8) implies that the
firm always places itself in the midpoint of its

market interval [ai, bi]. To see this, substitute from
(8) into (5), and form the differences:

Xi+l Xi-1 Pi-1 2pi / Pi+l
X a /

4 4k

Xi+l Xi-1 Pi-1 2pi at- Pi+lbi- xi -4 4k

(22)

The expressions being equal, we can define market
radius even for oligopoly:

Xi+l Xi-1 Pi-1 2pi + Pi+l
ri 4 + 4k

(23)

This result is based on the fact that there were
other firms to the right and left, so what if ai or b;
is fixed, i.e., that the firm is the leftmost or

rightmost in a given interval? Then things become
very different. It is no longer possible to define a

market radius, because the firms do not locate in
the centres of their market areas. They may even
crowd in the same point.

6. THE HOTELLING CASE

This always happened in the original Hotelling
case, with /3=0. Suppose now that we just
have two competitors, so n= 2. Further, al
and b2= are fixed, so we consider the inter-
val [- 1, 1]. We could have introduced an arbitrary
length of the interval, but distance and trans-
portation cost always stay in a ratio of recipro-
city, so we do not lose anything in generality
by fixing the interval from the outset. From (5)
then:

a2--bl xl+x2 PZ-Pl (24)--/ 2

Further from (3):

Q1 (a -/3pl)(1 + bl)
k )2 2)
2
((l+xl +(b-x) (25)

Q2 (oe -/p2)(1 82)
k )2
2

(82 x2 / ((1 x2)2) (26)

The optimal locations can be found by differen-
tiating (25)-(26) with respect to Xl, X2 respec-
tively, as location does not enter the multiplicative
factor for profits in (7). Thus we obtain:

x2-4 p2-3p 2o
x, (27)

5 5k 5k

xl + 4 3p2 Pl 2c
X2 (28)

5 5k

Note that (27)-(28) are different from (8), as we
now have one boundary point fixed for each firm.

Also, for later use, note that if we solve the
location choice Eqs. (27)-(28) as a simultaneous

system, then we get xl +x2 =0, and so from (24):

a2 bl P2 Pl (29)
k

Hence in equilibrium the inner market boundary
point only depends on the price difference divided
by the transportation cost rate. In disequilibrium,
the inner market boundary point, resulting from
the location choice by the first firm, is obtained by
substituting from (27) in (24):

3x2 2 3p2 4/31
bl -a2---/ (30)

5 5k

Similarly, the choice by the second firm, obtained
by substituting from (28) in (24) results in:

3x + 2 4p2- 3pl
bl a2 ----+ (31)

5 5k
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Equations (27)-(28) and (30)-(31) can now be
substituted in (25)-(26), which can best stated by
one single formula:

Qi - + Ai

(32)

provided we define

A=k(l+xz)+p2 Az=k(1-x)+p (33)

From (32) we get profits:

IIi (pi ci) 6p2i 4pi 2- + Ai

+ (34)

so, optimising (34) with respect to p; we obtain:

(35)

Again the second order conditions are fulfilled for
the solution (35).
We can now set up the Hotelling model as a

dynamical system from (27)-(28) and (35):

X2 4 P2 3pl 2a
(36)Xl-- 5 5k 5/3k

Xl + 4 3p2 Pl 2a
(37)x2 5 5k 5/3k

4a 3 2p=+c+ s

36(- c2)2- 24(- c2)(- A2)+ 34(- X2)
(39)

where the dash indicates advancing the map one

period, from to + 1. Substitution from (33) for
A, 2 is taken as given.

7. EQUILIBRIUM FOR TWO
IDENTICAL FIRMS

Let us first check out equilibrium. Then Eqs. (27)-
(28), and the two Eqs. (35) hold as a simultaneous
system. Together with the two Eqs. (33) we have
six equations in the six variables xi, Pi, Ai, 1,2.
Suppose for simplicity that the firms are identical,
i.e., their marginal costs are equal, ci c for i= 1,
2. A good guess is that then in equilibrium the
firms also charge the same mill prices, i.e., Pi =P
for i= 1,2. From (27)-(28) we can then, sub-
stituting pi=p, obtain

x --5+g 5-p x:-3 3k -P

(40)

As we see, x +x2 0, SO the firms locate symme-
trically around the zero point, the midpoint of the
whole interval (- 1, 1), though not as a rule in the
midpoints + 1/2 of their respective market areas.
From (29) we already saw that in equilibrium with
equal prices the markets are separated by the zero

point.
Now substitute x x2 0 in (40), and note that

both firms locate in the same point if and only if:

4a 3 2

36(- c,)2- 24(- c)(- A,)+ 34(- A,)
(38)

--p 2k (41)

holds. Also substitute X =--0.5, X2--0.5 in (40)
and note that the firms locate exactly in the middle
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of their intervals if and only if.

c k
-p- (42)

This, however is the case of disjoint monopolies.
To see this, substitute L 2 in (20), then use ci c

in (20) and pi=p in the second Eq. (18), and
eliminate p. The result is (42). So this case

represents disjoint monopolies. Otherwise the
firms always locate closer together.
With infallible intuition Hotelling noted that in

our case of elastic demand (not treated by himself)
"the tendency.., to establish business excessively
close will be less marked", but the competitors
would "not go as far.., as public welfare would
require", i.e., locating in the midpoints of their

respective markets, due to the "tempting inter-

mediate market". As a matter of fact, they would,
but only in the extreme case of adjacent mono-

polies. However, monopoly pricing would not

correspond to the demands of public welfare
either, for a different but quite obvious reason.

In Hotelling’s original case it was possible that
once the firms located in the same point, competi-
tion would take the form of price cutting even until

the marginal cost level was reached the classical

competitive solution, but then the location choice
would imply loss of public welfare due to excessive

transportation costs.
In order to avoid both the extreme cases,

monopoly and crowding in the centre, we would
require k/2 <_ c/-p <_ 2k, i.e., maximum price
must overshoot the equilibrium price by between
half and double the transportation cost rate. From
(40) the firms might even wish to overshoot
crowding and locate on the wrong sides of the
midpoint. Obviously such a case can never be an

equilibrium solution.
Note that Hotelling’s extreme crowding phenom-

enon may occur even ifdemand is elastic, something
he seems not to have suspected. Also note that
crowding never occurs if there are for instance three
identical firms in equilibrium on a circle periphery,
as an intermediate firm according to (8) locates
halfway between its neighbours, and as in such a

setup each firm always is surrounded by two

competitors. So, crowding is a phenomenon due
to fixed boundaries, even in Hotelling’s original
special case where demand is inelastic, i.e.,/3 O.

Next, note from (33) with (40) substituted that

c 4 5
) ,2 -/v--: + xp + k (43)

So, the auxiliary variables become equal for the
two identical competitors, and given also that
marginal costs are equal, we get by substituting
from (43) in (35), and using ci-c

2c 3 8 3
p + c +k 10

4 3-c -8 5-c k+34k2 (44)

We now obtained equilibrium price p from (44) in

terms of the three parameters, maximum price a/b,
unit production cost c, and the transportation cost

rate k. Then, substituting for equilibrium price, p,
maximum price, a/b, and transportation cost rate

k into (40) we also obtain the equilibrium locations

X1, X2.

8. DYNAMICS OF THE HOTELLING
CASE

We need these equilibrium values for p and x, x2
also in order to investigate the stability of the
equilibrium point. We obtain the 4 by 4 Jacobian
matrix of the full dynamical system (36)-(39),
using the auxiliary variables (33), by differentiating
the system and then substituting the equilibrium
values for p and xi, x2. Some of the entries become
very simple, others quite messy. We get:

O(pll,p, x], x2)
O(pl ,p2,xl ,X2)

0

5k

5k

OP’I 00P’l-Op--5

Op’0 -, 0

o5k

3__ 1 05k

(45)
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In equilibrium, pl--P2 and xl @X2=0, and hence
Op /Op2 Opz/Op and Op’1/Ox2 nt- OP;2/OX O
From (36)-(39) and (33), in equilibrium, further
Op’/Op op’l /op. Op’ /Ox Op /Op and
Opz/OXl -kOp’l/Op2. So, denoting the first reac-
tion function (36)p] 0Go2), and its derivative:

’ OP (46)0p

the Jacobian matrix (45) simplifies to:

o +’ o

qS’ 0 -kqS’ 0

+/- o5k 5k

05: 5 g

(47)

which just has one complex entry q. This entry
can be calculated from (38) by differentiating with
respect to 1"

, 2 6c- 17, + lc//3+ V/36(c//3- c) 24(c//3- c)(/- ) + 34(c/- )2
(48)

We dropped the indices, as in equilibrium we deal
with equal prices and costs. We further have to
substitute for A from (43), and for p from (44).
Then b’ becomes completely determined by the
parameters: maximum price c//3, production cost
c, and transportation cost k. But the resulting
expression is by no means translucent.
On the other hand, the stability of equilibrium

only depends on the value of q5. The Jacobian
determinant of (47) is:

o ’ o zc’

0 -155k 5k

1 05k 5k

-54,’: (49)

and the characteristic equation factorises into"

3
+

(50)

Note the temporary shift of meaning for to an

eigenvalue. It so seems that the system, as far as

stability of equilibrium is concerned, can be
analysed as a composite of two two-dimensional
maps. Further, we immediately see from (50), by
substituting and -1 for A that there is loss of
stability, flip and cusp bifurcations respectively, at
the critical parameter values qSt=-2, -1/2, 3/4
and 3.

Also, it is easy to see by computing the
discriminants of the factors of (50) that the roots
of the first factor are complex conjugates for 4/in
the interval (7/5- 4x//5, 7/5 + 4x//5), and the
roots of the second for q5 in the interval

(-1- 2x//5,-1 + 2x//5), so, except for a very
tiny interval around zero, either one or the other of
the factors produces complex roots. There are

hence Hopf bifurcations with loss of stability when

4= 5/3 and q’=-5/3, which fit nicely in these
intervals. However, before that occurs there is a

flip or cusp bifurcation due to some real eigenval-
ue. In conclusion the equilibrium point is com-

pletely stable in the interval 1/2 < 4 < 3/4.
Thus all depends on the values q5 can take.

However, inspecting (48), we find that the values it
can take are bounded by the expression:

2 ,/X4
9 18

--sgn() 1) (51)

so q5; is in the interval [-0.1017..., 0.5462...]. We
therefore conclude that the equilibrium of two

identical firms on a given interval cannot lose
stability, and so not produce any interesting
dynamic phenomena at all.
The question now is whether this stability is due

to the fact that we studied the equilibrium of
identical firms. The reaction functions of the type



BERTRAND OLIGOPOLY 9

(35) are of the upside down parabola shape which
are in principle capable of producing chaos.
However, from experience, we would need a rising
branch of one reaction curve to intersect a falling
branch of the other, with sufficiently high slopes to

produce instability around the intersection point.
For this we would need some asymmetry, and so

identical firms will simply not do. The case with
different production costs for the firms (the only
possible point of difference), however, becomes
much more complex. For instance, we cannot
solve for the equilibrium prices from the system
(35), because they provide a pair of second order
equations, and so closed form solutions such as

(44) cannot be obtained. Further, the fourth order
characteristic Eq. (50) does not factorise. Still, the
derivatives of the two reaction functions, such as

qS’, their product to be quite exact, still controls
everything. Preliminary studies indicate that the
same tendency to stability remains even if the firms
are unequal.

So the real problem seems to be too much
linearity. The demand function is linear, and so is
the cost function. In spaceless economics we would
not obtain any nonlinearity at all. However, space
itself produces some nonlinearity. We got cubic
expressions for the profits, and quadratic equa-
tions to determine the price reactions, just from
integrating over space. But obviously it was not

enough, so if we want to produce complex
dynamics we need to introduce some nonlinearity
in the basic assumptions already. We called the
proven stability a problem, but it is a matter of
taste if we regard the lack of interesting dynamics a

problem or not. The average economist would be
more than satisfied with stability of equilibrium.

9. THE DEGREES OF FREEDOM

Throughout the discussion we kept the coefficients
c and from the demand function, though
nowhere in the reaction functions did these
parameters enter except in terms of their ratio

c//3, so we could just have used one symbol for

their ratio. Further, inspecting the reaction for-
mulas it is obvious that if we redefine all value
variables (prices, production costs, transportation
costs) as ratios to this maximum price c//3, then
nothing at all is changed. Accordingly, we could
even put c//3= without any loss of generality.
In this way the free parameters are reduced to
only two, production costs c, and transportation
costs k.

10. DIFFERENT MODELS

There are different variants of the original Ho-
telling model, which may be worthwhile studying,
both for their own interest, and for the possibility
that they may produce complex dynamics. One
has been touched upon already: the case of
three oligopolists on a closed curve. The distin-

guishing factor is that there are no boundary
points, so each firm is surrounded by two com-

petitors, and a phenomenon such as crowding
never occurs.
Another obvious generalisation is to 2D,

touched upon by Hotelling already, which is the
really interesting case. However it is incomparably
more complex, at least for a study of the full
dynamics. In 2D, market boundaries become
curves, so market areas have shape in addition to
size. Also, in 2D, there arises a question of the
distance metric to be applied for the transporta-
tion cost, the Euclidean metric by no means being
the analytically easiest, nor the factually most
relevant. Candidates for equilibrium obviously are

the regular lattices, corresponding to square,
triangular, and hexagonal Eulerian tessellations
of market areas. General considerations of trans-
versality already would seem to favour the
hexagonal case, singled out by classical location
theory, though on grounds of the economy in its

compactness. It is highly interesting to work out
the stability problems for the various equilibrium
tessellations. The simplest case to treat is the
regular square tessellation, especially if combined
with a so called "Manhattan metric" where
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equidistance loci too are not circular but square.
Before leaving these conjectures, we note that in
2D the degree of nonlinearity is automatically
raised, profit functions becoming quartic, and
reaction functions roots to cubic equations.
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